
COS 318: Operating Systems

Overview

Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/

2

Logistics

u  Precepts:
l  Tue: 7:30pm-8:30pm, 105 CS building

u  Design review:
l  Mon 9/23: 11am- - 7:40pm, 010 Friends center

u  Project 1 due:
l  Sun 9/29 at 11:55pm

u  Reminder:
l  Subscribe to the cos318 mailing list!

u  To do:
l  Lab partner? Enrollment?

Who am I?

u  A builder: practical, hands-on
u  A philosopher?
u  Search for beauty J
u  Operating systems spans the spectrum

3

Abstract
Simple, powerful
ideas

Concrete
Making things
work

4

Today

u  Overview of OS structure
u  Overview of OS components

5

Hardware of A Typical Computer

CPU

Chipset Memory
I/O bus

CPU . . .

Network

ROM

Computing machinery
Analytical Engine (~1850) Charles Babbage

ENIAC (~1946) Eckert & Mauchly, UPenn

Johnniac (~1953) von Neumann, IAS

7

A Typical Computer System

Memory CPU

CPU

. . .

OS
Apps
Data

Network

Application

Operating System

ROM

BIOS

8

Hardware Interrupts

u  Raised by external events
u  Interrupt handler is in the

kernel
l  Switch to another process
l  Overlap I/O with CPU
l  …

u  Eventually resume the
interrupted process

0:
1:
…

i:
i+1:
…

N:

Interrupt
handler

9

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

User level

Kernel level
Portable OS Layer

10

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

11

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Written by elves
•  Objects pre-compiled
•  Defined in headers
•  Input to linker
•  Invoked like functions
•  May be “resolved”
when program is loaded

Elves

12

13

Pipeline of Creating An Executable File

u  gcc can compile, assemble, and link together
u  Compiler (part of gcc) compiles a program into assembly
u  Assembler compiles assembly code into relocatable object file
u  Linker links object files into an executable
u  For more information:

l  Read man page of elf, ld, and nm
l  Read the document of ELF

foo.c gcc as foo.s foo.o

ld bar.c gcc as bar.s bar.o

libc.a …

a.out

14

Execution (Run An Application)

u  On Unix, “loader” does the job
l  Read an executable file
l  Layout the code, data, heap and stack
l  Dynamically link to shared libraries
l  Prepare for the OS kernel to run the application
l  E.g., on Linux, “man ld-linux”

a.out loader *.o, *.a ld Application

Shared
library

15

What’s An Application?

u  Four segments
l  Code/Text – instructions
l  Data – initialized global

variables
l  Stack
l  Heap

u  Why?
l  Separate code and data
l  Stack and heap go

towards each other

Stack

Heap

Initialized data

Code

2n -1

0

16

Responsibilities

u  Stack
l  Layout by compiler
l  Allocate/deallocate by process creation (fork) and termination
l  Names are relative to stack pointer and entirely local

u  Heap
l  Linker and loader say the starting address
l  Allocate/deallocate by library calls such as malloc() and free()
l  Application program use the library calls to manage

u  Global data/code
l  Compiler allocate statically
l  Compiler emit names and symbolic references
l  Linker translate references and relocate addresses
l  Loader finally lay them out in memory

17

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

18

OS Service Examples

u  Examples that are not provided at user level
l  System calls: file open, close, read and write
l  Control the CPU so that users won’t get stuck by

running
•  while (1) ;

l  Protection:
•  Keep user programs from crashing OS
•  Keep user programs from crashing each other

u  System calls are typically traps or exceptions
l  System calls are implemented in the kernel
l  When finishing the service, a system returns to the user code

19

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Mode switching
•  Processor management

20

Applications

Software “Onion” Layers

Libraries

OS Services

Device

Driver

Kernel

User and Kernel
boundary

HW

21

Today

u  Overview of OS structure
u  Overview of OS components

22

Processor Management

u  Goals
l  Overlap between I/O and

computation
l  Time sharing
l  Multiple CPU allocations

u  Issues
l  Do not waste CPU resources
l  Synchronization and mutual

exclusion
l  Fairness and deadlock free

CPU I/O CPU

CPU

CPU

CPU I/O

CPU

CPU

CPU

I/O

23

Memory Management

u  Goals
l  Support programs to run
l  Allocation and management
l  Transfers from and to

secondary storage
u  Issues

l  Efficiency & convenience
l  Fairness
l  Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

24

I/O Device Management

u  Goals
l  Interactions between

devices and applications
l  Ability to plug in new

devices
u  Issues

l  Efficiency
l  Fairness
l  Protection and sharing

User 1 User n . . .

Library support

I/O
device

I/O
device . . .

Driver Driver

25

File System
u  Goals:

l  Manage disk blocks
l  Map between files and disk

blocks
u  A typical file system

l  Open a file with
authentication

l  Read/write data in files
l  Close a file

u  Issues
l  Reliability
l  Safety
l  Efficiency
l  Manageability

User 1 User n . . .

File system services

File File . . .

26

Window Systems

u  Goals
l  Interacting with a user
l  Interfaces to examine and

manage apps and the system
u  Issues

l  Direct inputs from keyboard and
mouse

l  Display output from applications
and systems

l  Division of labor
•  All in the kernel (Windows)
•  All at user level
•  Split between user and kernel (Unix)

27

Bootstrap

u  Power up a computer
u  Processor reset

l  Set to known state
l  Jump to ROM code (BIOS is

in ROM)
u  Load in the boot loader from

stable storage
u  Jump to the boot loader
u  Load the rest of the operating

system
u  Initialize and run
u  Question: Can BIOS be on disk?

Boot
loader

OS
sector 1

OS
sector 2

OS
sector n

. . .

Boot
loader

28

Ways to Develop An Operating System

u  A hardware simulator
u  A virtual machine
u  A good kernel debugger

l  When OS crashes, always goes to the debugger
l  Debugging over the network

u  Smart people

1972 1998

Summary

u  Interrupts
u  User level vs. kernel level
u  OS services

l  Processor
l  Memory
l  I/O devices
l  File system
l  Window system

u  Booting the OS

29

