
COS 318: Operating Systems 
 
OS Structures and System Calls 

Kai Li and Andy Bavier 
Computer Science Department 
Princeton University 
 
http://www.cs.princeton.edu/courses/archive/fall13/cos318/ 



Logistics 

u  Weekly TA office hours posted on Piazza 
l  May change from week to week 

u  Four Lab TAs available over the weekends (Fri – Sun) 
l  David Durst 
l  Anna Simpson 
l  Catherine Wu 
l  Harvest Zhang 

2 



Baby Steps 

3 



4 

Outline 

u  Protection mechanisms 
u  OS structures 
u  System and library calls 



5 

Protection Issues 

u  CPU 
l  Kernel has the ability to take CPU away from users to 

prevent a user from using the CPU forever 
l  Users should not have such an ability 

u  Memory 
l  Prevent a user from accessing others’ data 
l  Prevent users from modifying kernel code and data 

structures 
u  I/O 

l  Prevent users from performing “illegal” I/Os 
u  Question 

l  What’s the difference between protection and security? 



6 

Architecture Support: Privileged Mode 

An interrupt or exception (INT) 

A special instruction (IRET) 

Kernel (privileged) mode 
•  Regular instructions 
•  Privileged instructions 
•  Access user memory 
•  Access kernel memory 

User mode 
•  Regular instructions 
•  Access user memory 



7 

Privileged Instruction Examples 

u  Memory address mapping 
u  Flush or invalidate data cache 
u  Invalidate TLB entries 
u  Load and read system registers 
u  Change processor modes from kernel to user 
u  Change the voltage and frequency of processor 
u  Halt a processor 
u  Reset a processor 
u  Perform I/O operations 



8 

x86 Protection Rings 

Level 0 

 
 
 
 

Level 1 

 
 
 
 
 
 
 

Level 2 

 
 
 
 
 
 
 
 
 
 
 

Level 3 

Operating system 
kernel 

Operating system 
services 

Applications 

Privileged instructions 
Can be executed only 
When current privileged 
Level (CPR) is 0 



9 

Layered OS Structure 

u  Hiding information at each layer 
u  Layered dependency 
u  Examples: 

l  THE (6 layers) 
l  MS-DOS (4 layers) 
l  MULTICS (8 layers) 

u  Pros 
l  Layered abstraction 
l  Separation of concerns 

u  Cons 
l  Inefficient 
l  Inflexible 

Hardware 

Level 0 

Level 1 

Level N 
. . . 



10 

Monolithic OS 

u  All kernel routines are together, any 
can call any 

u  A system call interface 
u  Examples:  

l  Linux, BSD Unix, Windows 
u  Pros 

l  Shared kernel space 
l  Good performance 

u  Cons 
l  No information hiding 
l  Instability 
l  How many bugs in 5M lines of code? 

Kernel 
(many things) 

User 
program 

User 
program 



11 

Microkernel 
u  Put less in kernel mode; only small 

part of OS 
u  Services are implemented as 

regular process 
u  µ-kernel gets svcs on for users by 

messaging with service processes 
u  Examples:  

l  Mach, Taos, L4, OS-X 
u  Pros? 

l  Modularity 
l  Fault isolation 

u  Cons? 
l  Inefficient (lots of boundary 

crossings) 

entry 

User 
program 

OS 
Services 

µ-kernel 



12 

Virtual Machine Monitor 

VM1 

OS1 

Virtual Machine 

u  Separate multiprogramming 
from abstraction; VMM 
provides former 

u  Virtual machine monitor 
l  Virtualize hardware, but 

expose as multiple 
instances of “raw” HW 

l  Run several OSes, one on 
each instance 

l  Examples 
•  IBM VM/370 
•  Java VM 
•  VMWare, Xen 

u  What would you use a virtual 
machine for? 

Apps 

VMk 

OSk 

Apps 

. . . 

 
 
 

Raw Hardware 



13 

Two Popular Ways to Implement VMM 

Hardware 

Linux 

Linux Apps 

VMM 

Win Vista 

Win Apps 

Hardware 

Linux 

Linux Apps VMM 

Win Vista 

Win Apps 

VMM as an application VMM runs on hardware 

(A special lecture later in the semester) 



Interlude 

14 

“UNIX is basically a simple operating system, but you 
have to be a genius to understand the simplicity.” 
 
                                               -- Dennis Ritchie 



15 

Outline 

u  Protection mechanisms 
u  OS structures 
u  System and library calls 



16 

System Calls 

u  Operating system API 
l  Interface between an application and the operating 

system kernel 
u  Categories 

l  Process management 
l  Memory management 
l  File management 
l  Device management 
l  Communication 



17 

How many system calls? 

u  6th Edition Unix:  ~45 
u  POSIX:    ~130 
u  FreeBSD:   ~500 
u  Linux:    ~300 
u  Windows:   400?  1000?  1M? 



18 

System Call Mechanism 

u  Assumptions 
l  User code can be arbitrary 
l  User code cannot modify kernel 

memory 
u  Design Issues 

l  User makes a system call with 
parameters 

l  The call mechanism switches 
code to kernel mode 

l  Execute system call 
l  Return with results Kernel in 

protected memory 

User 
program 

User 
program 



19 

Passing Parameters 

u  Pass by registers 
l  # of registers 
l  # of usable registers 
l  # of parameters in system call 
l  Spill/fill code in compiler 

u  Pass by a memory vector (list) 
l  Single register for starting address 
l  Vector in user’s memory 

u  Pass by stack 
l  Similar to the memory vector 
l  Procedure call convention 



20 

OS Kernel: Trap Handler 

HW Device 
Interrupt 

HW 
exceptions 

SW exceptions 

System Call 

Virtual address 
exceptions 

HW implementation of  the boundary 

System 
service 
dispatcher 

System 
services 

Interrupt 
service 
routines 

Exception 
dispatcher Exception 

handlers 

VM 
manager’s 
pager 

Syscall table 

System 
Service 
dispatcher 



21 

From http://minnie.tuhs.org/UnixTree/V6 



22 

Library Stubs for System Calls 

u  Example: 
int read( int fd, char * buf, int size) 
{ 

 move fd, buf, size to R1, R2, R3 
 move READ to R0 
 int $0x80  
 move result from Rresult 

} 
 

Linux: 80 
NT: 2E 

Kernel in 
protected memory 

User 
program 



23 

System Call Entry Point 

User 
stack 

Registers 

User 
memory 

Kernel 
stack 

Registers 

Kernel 
memory 

 
EntryPoint: 

 save context 
 switch to kernel stack 
 check R0 

 call the real code pointed by R0  
place result in Rresult 
 switch to user stack 
 restore context 
 iret (change to user mode and return) 

 
(Assume passing parameters in registers) 



24 

Design Issues 

u  System calls 
l  There is one result register; what about more results? 
l  How do we pass errors back to the caller? 

u  System calls vs. library calls 
l  What should go in system calls? 
l  What should go in library calls? 



25 

Syscall or library? 



26 

Backwards compatibility... 



27 

Division of Labors 

Memory management example 
u  Kernel 

l  Allocates “pages” with hardware protection 
l  Allocates a big chunk (many pages) to library 
l  Does not care about small allocs 

u  Library 
l  Provides malloc/free for allocation and deallocation 
l  Application use these calls to manage memory at fine 

granularity 
l  When reaching the end, library asks the kernel for 

more 

 



28 

Feedback To The Program 

u  Applications view system 
calls and library calls as 
procedure calls 

u  What about OS to apps? 
l  Various exceptional 

conditions 
l  General information, like 

screen resize 
u  What mechanism would OS 

use for this? 

Application 

Operating 
System 



29 

Interrupts and Exceptions 

u  Interrupt Sources 
l  Hardware (by external devices) 
l  Software: INT n 

u  Exceptions 
l  Program error: faults, traps, and aborts 
l  Software generated: INT 3 
l  Machine-check exceptions 

u  See Intel document volume 3 for details 



30 

Interrupts and Exceptions (1) 

Vector # Mnemonic Description Type 

0 #DE Divide error (by zero) Fault 

1 #DB Debug Fault/trap 

2 NMI interrupt Interrupt 

3 #BP Breakpoint Trap 

4 #OF Overflow Trap 

5 #BR BOUND range exceeded Trap 

6 #UD Invalid opcode Fault 

7 #NM Device not available Fault 

8 #DF Double fault Abort 

9 Coprocessor segment overrun Fault 

10 #TS Invalid TSS 



31 

Interrupts and Exceptions (2) 

Vector # Mnemonic Description Type 
11 #NP Segment not present Fault 

12 #SS Stack-segment fault Fault 

13 #GP General protection Fault 

14 #PF Page fault Fault 

15 Reserved Fault 

16 #MF Floating-point error (math fault) Fault 

17 #AC Alignment check Fault 

18 #MC Machine check Abort 

19-31 Reserved 

32-255 User defined Interrupt 



Example: Divide error 

u  What happens when your program divides by zero? 
l  Processor exception 

•  Defined by x86 architecture as INT 0 

l  Jump to kernel, execute handler 0 in interrupt vector 
l  Handler 0 sends SIGFPE to process 
l  Kernel returns control to process 
l  Process has outstanding signal 
l  Did process register SIGFPE handler? 

•  Yes:  
•  Execute SIGFPE handler 
•  When handler returns, resume program and redo divide 

•  No: kills process 

32 



33 

Summary 

u  Protection mechanism 
l  Architecture support: two modes 
l  Software traps (exceptions) 

u  OS structures 
l  Monolithic, layered, microkernel and virtual machine 

u  System calls 
l  Implementation 
l  Design issues 
l  Tradeoffs with library calls 


