COS 318: Operating Systems

OS Structures and System Calls

Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/




Logistics

Weekly TA office hours posted on Piazza
e May change from week to week
Four Lab TAs available over the weekends (Fri — Sun)
e David Durst
e Anna Simpson
e Catherine Wu
e Harvest Zhang




Baby Steps




Outline

Protection mechanisms
OS structures
System and library calls




Protection Issues

CPU

e Kernel has the ability to take CPU away from users to
prevent a user from using the CPU forever

e Users should not have such an ability
Memory

e Prevent a user from accessing others’ data

e Prevent users from modifying kernel code and data
structures

/O
e Prevent users from performing “illegal” 1/Os

Question
e What’ s the difference between protection and security?




Architecture Support: Privileged Mode

An interrupt or exception (INT)

User mode A Kernel (privileged) mode
* Regular instructions » Regular instructions
* Access user memory * Privileged instructions
« Access user memory
» Access kernel memory
= ‘_ NS /

A special instruction (IRET)




Privileged Instruction Examples

Memory address mapping

Flush or invalidate data cache

Invalidate TLB entries

Load and read system registers

Change processor modes from kernel to user
Change the voltage and frequency of processor
Halt a processor

Reset a processor

Perform I/O operations




x86 Protection Rings

Privileged instructions
Can be executed only
When current privileged
Level (CPR)1s 0

Operating syste

kernel >
Level 0
Operating syste
- Level 1
services
o Level 2
Applications >

Level 3




Layered OS Structure

¢ Hiding information at each layer
¢+ Layered dependency Level N

¢+ Examples:
e THE (6 layers)
e MS-DOS (4 layers)

e MULTICS (8 layers) Level 1
¢ Pros
e Layered abstraction Level 0

e Separation of concerns
¢ Cons Hardware

e Inefficient
e Inflexible




Monolithic OS

All kernel routines are together, any

can call any
A system call interface
_ User User
Examples:
e Linux, BSD Unix, Windows progtam program
Pros o
e Shared kernel space A 6‘0&// %*606\\

e (Good performance

Cons
e No information hiding
e Instability

e How many bugs in 5M lines of code?

Kernel

(many things)

10




Microkernel

Put less in kernel mode; only small
part of OS

Services are implemented as
regular process

u-kernel gets svcs on for users by
messaging with service processes

Examples:

e Mach, Taos, L4, OS-X
Pros?

e Modularity

e Fault isolation

Cons?

e |nefficient (lots of boundary
crossings)

User
program

OS

Services

~

/4
—L

u-kernel

11




Virtual Machine

¢ Separate multiprogramming
from abstraction; VMM
provides former Apps Apps

¢ Virtual machine monitor

e Virtualize hardware, but
expose as multiple VM, VM,
instances of “raw” HW

e Run several OSes, one on Virtual Machine Monitor
each instance @Q
g 4

e Examples
Raw Hardware

oS, . 0S,

 IBM VM/370
 Java VM
« VMWare, Xen

¢ What would you use a virtual
machine for?

12




Two Popular Ways to Implement VMM
o060

Linux

Hardware Hardware

VMM runs on hardware VMM as an application

(A special lecture later in the semester)

13



Interlude
Q00

—_—

YOU'RE ONE OF THOSE
i || CONDESCENDING UNIX
s || COMPUTER USERS!

HERE'S A NICKEL,
KID. GET YOUR-
SELF A BETTER

COMPUTER HOLY WARS

INYC)

THAT SCRUFFY
BEARD ... THOSE
SUSPENDERS.. .
THAT SMUG
EXPRESSION

COMPUTER,

& s~

“UNIX is basically a simple operating system, but you
have to be a genius to understand the simplicity.”

HOLD IT RIGHT
THERE, BUDDY

yndica

—
S Adams E-mall: SCOTTADAMSSAOL.COM

/3y © 1995 United Featire S

-- Dennis Ritchie

14




Outline

¢ Protection mechanisms
¢ OS structures
¢ System and library calls

15



System Calls

Operating system API

e Interface between an application and the operating
system kernel

Categories

e Process management
e Memory management
e File management

e Device management
e Communication

16



How many system calls?

6th Edition Unix: ~45

POSIX: ~130
FreeBSD: ~500
Linux: ~300

Windows: 400? 10007 1M?

17



System Call Mechanism

Assumptions
e User code can be arbitrary

e User code cannot modify kernel
memory

Design Issues

e User makes a system call with
parameters

e [he call mechanism switches
code to kernel mode

e Execute system call
e Return with results

User User
program program

&

L \!

8 7
) 9*60
I
Kernel 1n

protected memory

18




Passing Parameters

Pass by registers

e # of registers

e # of usable registers

e # of parameters in system call
e Spill/fill code in compiler
Pass by a memory vector (list)

e Single register for starting address
e Vector in user’ s memory

Pass by stack
e Similar to the memory vector
e Procedure call convention

19




OS Kernel: Trap Handler

|
Interrupt
. Syscall table SCIVICE
HW Device \ routines
Interrupt |
System |
System Call » Service I
dispatcher | | System
HW || services
exceptions |
: System B : |
SW exceptions service ?ccept1on
Virtual. address dispatcher dispatcher 1 Exception
exceptions | | handlers
VM
/ manager s
pager

HW implementation of the boundary

20




Ek &

From http://minnie.tuhs.org/UnixTree/V6

Q00
Vo6/usr/sys/ken/sysent.c

3, &smount, /* 21 = mount */
Find atmost|5 ~| related files.  Search I ;' &s“mm.lzt' :’;: gg = “mc'm?z ::’;
™ including files from this version of Unix. D: 2;::3;1: J* 24 = :Zziid ny
0, &stimne, /* 25 = stime */
3, &ptrace, /* 26 = ptrace */
ﬁ* 0, &nosys, f* 27 = x *f
” 1, sfstat, /* 28 = fstat */
0, &nosys, f* 29 = x *f
T 1, &nullsys, /* 30 = swmdate; inoperative */
) ) ) 1, &stty, /* 31 = stty */

* This table is the switch used to transfer 1, sgtty, J* 32 = gty */

* to the appropriate routine for processing a system call. 0, snosys, /t 33 = x +/

* Each row contains the nuwber of arguments expected 0¥ ghidea: /* 34 = nice */

* and a pointer to the routine. 0, ssslep, /* 35 = sleep */
.*/ 0, &sync, /* 36 = sync */
nt sysent[] 1, skill, /* 37 = kill *+/

{ 2 i 0, &getswit, /* 38 = switch */

0, &nullsys, /* 0 = indir */ 0, &nosys, /% 30 = x +/
0, &rexit, /* 1 = exit */ 0y enosys; J+ a0 = x */
0, &fork, /* 2 = fork */ 0% sdup; /% 41 = dup */
2, &read, /* 3 = read */ 0F sfidpe /* 42 = pipe */
2, swrite, /* 4 = write */ 1' &time; % B3 fimes +f
2,::60pen, /* 3 = open */ 4' &profii /* 44 = prof */
0, sclose, /* 6 = close */ 0: &nosys,’ /% 45 = tiu */
0, &swait, J* 7 = wait */ 0, ssetgid, /* 46 = setgid */
dpEereaty /* '8 = creat */ 0, &getgid, /* 47 = getgid */
2, &link, /* 9 = link */ 5 o3 T dfem San 4
. . ’ = 519
1, sunlink, /* 10 = unlink */
2, &exec, /* 11 = exec */
1, schdir, /* 12 = chdir */
0, sgtime, /* 13 = time */
3, &mwknod, /* 14 = wknod */
2, &chmod, /* 15 = chwod */
2, &chown, /* 16 = chown */
1, &shreak, /* 17 = hreak */
2, &stat, /* 18 = stat */ 21
2, &seek, /* 19 = seek */
0, sgetpid, /* 20 = getpid */



Library Stubs for System Calls

Example:
int read( int fd, char * buf, int size) User
{ program
move fd, buf, size to R;, R,, R;

move READ to R, , 4
int $0x80 - Linux: 80 /&0
move result from R, L NT: 2E +C90

} I

Kernel 1n
protected memory

22



System Call Entry Point

EntryPoint:

save context User

switch to kernel stack User | | memory
stack

check R, =——

call the real code pointed by R, =

place result in R ¢

switch to user stack Registers

restore context Kernel

iret (change to user mode and return) stack Kernel

memory
(Assume passing parameters in registers)

23




Design Issues

®
System calls

e There is one result register; what about more results?
e How do we pass errors back to the caller?

System calls vs. library calls

e What should go in system calls?

e \What should go in library calls?

24



Syscall or library? ;

* common code for open and creat.
* Check permissions, allocate an open file structure,
and call the device open routine if any.

#

/* 6,
openl(ip, mode, trf
* open system call = *.[ : ?
*/ int *ip;
{
open() register struct file *fp;
{ register *rip, m;
register *ip; iok i

extern uchar; .
rip = ip;
m = mode;

ip = namei(&uchar, 0); if{trf '= 2) |
if (ip == NULL) if (m&FREAD)
return; access (rip, IREAD);

if (m&FWRITE) {

u.u arg[l]++;
_arg { access (rip, IWRITE);

openliip, u.u arg[l], 0);

if ((rip->i mode&IFMT) == IFDIR)
} u.u_error = EISDIR;
1
s y
* creat system call if (u.u_error)
*f goto out;
creat () if(trf)
{ itrune (rip);
; * e rele(rip);
register *ip; prele(rip)
if ({fp = falloc()) == NULL)

extern uchar; 7 ¥
goto out;
fp->f flag = m& (FREAD |FWRITE) ;

fp->f inode = rip;
i = u.u ar0[RO];

ip = nawei(&uchar, 1);
if (ip == NULL) {

if (u.u_error) openi(rip, m&FWRITE);
return; if {u.u_error == 0)

ip = maknode (u.u arg[1]&07777& (~ISVTX) ) ; return;

if (ip==NULL) u.u _ofile[i] = NULL;
return; fp->f count--;

openl(ip, FWRITE, 2};

} else out: . .
openl{ip, FWRITE, 1); iput(rip);

ko)




Backwards compatibility...

-
The Open Group Base Specifications Issue 6 . ‘
IEEE Std 1003.1, 2004 Edition
Copyright © 2001-2004 The IEEE and The Open Group, All Rights reserved.

NAME
open - open a file
SYNOPSIS

[OH] B #include <sys/stat.h> &

$include <fcntl.h>

int open{const char *path, int oflag, ... ):

The use of open() to create a regular file is preferable to the use of creat{),
because the latter is redundant and included only for historical reasons.

26




Division of Labors

Memory management example

Kernel

e Allocates “pages” with hardware protection

e Allocates a big chunk (many pages) to library

e Does not care about small allocs

Library

e Provides malloc/free for allocation and deallocation

e Application use these calls to manage memory at fine
granularity

e \When reaching the end, library asks the kernel for
more

27




Feedback To The Program

Applications view system
calls and library calls as
procedure calls

What about OS to apps?

e Various exceptional
conditions

e General information, like
screen resize

What mechanism would OS
use for this?

(G~ e

(SUENUMINES

Application

Operating
System

28




Interrupts and Exceptions

Interrupt Sources

e Hardware (by external devices)

e Software: INT n

Exceptions

e Program error: faults, traps, and aborts
e Software generated: INT 3

e Machine-check exceptions

See Intel document volume 3 for details

29




Interrupts and Exceptions (1)

Vector # Mnemonic Description Type
0 #DE Divide error (by zero) Fault
1 #DB Debug Fault/trap
2 NMI interrupt Interrupt
3 #BP Breakpoint Trap
4 #OF Overflow Trap
5 #BR BOUND range exceeded Trap
6 #UD Invalid opcode Fault
7 #NM Device not available Fault
8 #DF Double fault Abort
9 Coprocessor segment overrun Fault
10 #TS Invalid TSS

30

:

e
ok

=



Interrupts and Exceptions (2)

Vector # Mnemonic Description Type
1 #NP Segment not present Fault
12 #SS Stack-segment fault Fault
13 #GP General protection Fault
14 #PF Page fault Fault
15 Reserved Fault
16 #MF Floating-point error (math fault) Fault
17 #AC Alignment check Fault
18 #MC Machine check Abort
19-31 Reserved
32-255 User defined Interrupt

31




Example: Divide error

What happens when your program divides by zero?

e Processor exception
« Defined by x86 architecture as INT O

e Jump to kernel, execute handler O in interrupt vector
e Handler 0 sends SIGFPE to process

e Kernel returns control to process

e Process has outstanding signal

e Did process register SIGFPE handler?

* Yes:

« Execute SIGFPE handler

 When handler returns, resume program and redo divide
* No: kills process

32




Summary

Protection mechanism

e Architecture support: two modes

e Software traps (exceptions)

OS structures

e Monolithic, layered, microkernel and virtual machine
System calls

e Implementation

e Design issues

e Tradeoffs with library calls

33



