
COS 318: Operating Systems

Journaling, NFS and WAFL

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Topics

u  Journaling and LFS
u  Network File System
u  NetApp File System

3

Revisit Implementation of Transactions
u  BeginTransaction

l  Start using a “write-ahead” log on disk
l  Log all updates

u  Commit
l  Write “commit” at the end of the log
l  Then “write-behind” to disk by writing updates to disk
l  Clear the log

u  Rollback
l  Clear the log

u  Crash recovery
l  If there is no “commit” in the log, do nothing
l  If there is “commit,” replay the log and clear the log

u  Issues

l  All updates on the log must be idempotent
l  Each transaction has an Id or TID
l  Must have a way to confirm that a disk write completes

4

Journaling File System

u  Example: Append a data block to a file on disk
l  Allocate disk blocks for data and i-node (update bitmap)
l  Update i-node and data blocks

u  Journaling all updates
l  Execute the following transaction:
BeginTransaction
Update i-node
Update bitmap
Write data block
Commit

u  Journaling only metadata
l  Write data block
l  Execute the following transaction:

 BeginTransaction
 Update i-node
 Update bitmap
 Commit

About Journaling File System

u  Consistent updates using transactions
l  Recovery is simple

u  Store the log on disk storage
l  Overhead is high for journaling all updates
l  SW for commodity hardware journaling only metadata

(Microsoft NTFS and various Linux file systems)
u  Store the log on NVRAM

l  Efficient to journal all updates
l  Can achieve fast writes (many IOPS)

u  “Write behind” performs real updates
l  Where to updates (i-nodes and data blocks)?
l  File layout is critical to performance

5

Log-structured File System (LFS)
u  Structure the entire file system as a log with segments

l  A segment has i-nodes, indirect blocks, and data blocks
l  An i-node map to map i-node number to i-node locations
l  All writes are sequential

u  Issues
l  There will be holes when deleting files
l  Need garbage collection to get rid of holes
l  Read performance?

u  Goal is to improve write performance
l  Not to confuse with the log for transactions/journaling
l  Also useful for write and wear-leveling with NAND Flash

Unused

Log structured

D i P D i P D i P D i P D i P

Inode
map

7

Network File System

u  Multiple clients share a NFS server
u  NFS v2 was introduced in early 80s

Network NFS server Clients

8

NFS Protocols

u  Mounting
l  NFS server can export directories

for remote accesses
l  Client sends a path name to

server to request for mounting
l  Server returns a handle (file

system type, disk, i-node of the
directory, security info)

l  Automount

u  Directory and file accesses
l  No open and close
l  Use handles to read and write
l  Stateless

proj

1 2 3 Server

/

/u /bin /dev

/u/cos126 /u/cos318

Client

9

NFS Protocol (v3)
1.  NULL: Do nothing
2.  GETATTR: Get file attributes
3.  SETATTR: Set file attributes
4.  LOOKUP: Lookup filename
5.  ACCESS: Check Access Permission
6.  READLINK: Read from symbolic link
7.  READ: Read From file
8.  WRITE: Write to file
9.  CREATE: Create a file
10.  MKDIR: Create a directory
11.  SYMLINK: Create a symbolic link
12.  MKNOD: Create a special device
13.  REMOVE: Remove a File
14.  RMDIR: Remove a Directory
15.  RENAME: Rename a File or Directory
16.  LINK: Create Link to an object
17.  READDIR: Read From Directory
18.  READDIRPLUS: Extended read from directory
19.  FSSTAT: Get dynamic file system information
20.  FSINFO: Get static file system Information
21.  PATHCONF: Retrieve POSIX information
22.  COMMIT: Commit cached data on a server to

stable storage

10

NFS Architecture

Virtual file system

Client kernel

Local
FS

Local
FS

NFS
client

Buffer cache

Virtual file system

Local
FS

Local
FS

NFS
server

Buffer cache

NFS Server

Network

11

NFS Client Caching Issues

u  Consistency among multiple client caches
l  Client cache contents may not be up-to-date
l  Multiple writes can happen simultaneously

u  Solutions
l  Expiration

•  Read-only file and directory data (expire in 60 seconds)
•  Data written by the client machine (write back in 30 seconds)

l  No shared caching
•  A file can be cached at only one client cache

l  Network lock manager
•  Sequential consistency (one writer or N readers)

12

NFS Protocol Development
u  Version 2 issues

l  18 operations
l  Size: limit to 4GB file size
l  Write performance: server writes data synchronously
l  Several other issues

u  Version 3 changes (most products still use this)
l  22 operations
l  Size: increase to 64 bit
l  Write performance: WRITE and COMMIT
l  Fixed several other issues
l  Still stateless

u  Version 4 changes
l  42 operations
l  Solve the consistency issues
l  Security issues
l  Stateful

13

NetApp’s NFS File Server

u  WAFL: Write Anywhere File Layout
l  The basic NetApp’s file system

u  Design goals
l  Fast services (more operations/sec and higher bandwidth)
l  Support large file systems and allow growing smoothly
l  High-performance software RAID
l  Restart quickly after a crash

u  Special features
l  Introduce snapshots
l  Journaling by using NVRAM to implement write-ahead log
l  Layout inspired by LFS

14

Snapshots

u  A snapshot is a read-only copy of the file system
l  Introduced in 1993
l  It has become a standard feature of today’s file server

u  Use snapshots
l  System administrator configures the number and frequency of snapshots
l  An initial system can keep up to 20 snapshots
l  Use snapshots to recover individual files

u  An example
phoenix% cd .snapshot
phoenix% ls
hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.1
hourly.1 hourly.3 hourly.5 nightly.1 weekly.0
phoenix%

u  How much space does a snapshot consume?

15

i-node, Indirect and Data Blocks

u  WAFL uses 4KB blocks
l  i-nodes (evolved from UNIX’s)
l  Data blocks

u  File size < 64 bytes
l  i-node stores data directly

u  File size < 64K bytes
l  i-node stores 16 pointers to data

u  File size < 64M bytes
l  i-node stores 16 pointers to

indirect blocks
l  Each indirect pointer block stores

1K pointers to data
u  File size > 64M bytes

l  i-node stores pointers to doubly
indirect blocks

Data Data Data

Data Data

Data

Data Data Data

16

WAFL Layout

u  A WAFL file system has
l  A root i-node: root of everything
l  An i-node file: contains all i-nodes
l  A block map file: indicates free blocks
l  An i-node map file: indicates free i-nodes
l  Data files: real files that users can see

Metadata
in files

17

Why Keeping Metadata in Files

u  Allow meta-data blocks to be written anywhere on disk
l  This is the origin of “Write Anywhere File Layout”
l  Any performance advantage?

u  Easy to increase the size of the file system dynamically
l  Add a disk can lead to adding i-nodes
l  Integrate volume manager with WAFL

u  Enable copy-on-write to create snapshots
l  Copy-on-write new data and metadata on new disk locations
l  Fixed metadata locations are cumbersome

18

Snapshot Implementation
u  WAFL file system is a tree of

blocks
u  Snapshot step 1

l  Replicate the root i-node
l  New root i-node is the active file

system
l  Old root i-node is the snapshot

u  Snapshot step 2…n
l  Copy-on-write blocks to the root
l  Active root i-node points to the new

blocks
l  Writes to the new block
l  Future writes into the new blocks will

not trigger copy-on-write
u  An “add-on” snapshot mechanism

for a traditional file system?

C

1

Root Root

A F D B C

1 2

Modify

C’

Modify

1’

19

File System Consistency

u  Create a snapshot
l  Create a consistency point or snapshot every 10 seconds
l  On a crash, revert the file system to this snapshot
l  Not visible by users

u  Many requests between consistency points
l  Consistency point i
l  Many writes
l  Consistency point i+1 (advanced atomically)
l  Many writes
l  …

u  What are these consistent points?

20

Non-Volatile RAM

u  Non-Volatile RAM
l  Flash memory (slower)
l  Battery-backed DRAM (fast but battery lasts for only days)

u  Use an NVRAM to buffer writes
l  Buffer all write requests since the last consistency point
l  A clean shutdown empties NVRAM, creates one more

snapshot, and turns off NVRAM
l  A crash recovery needs to recover data from NVRAM to the

most recent snapshot and turn on the system
u  Use two logs

l  Buffer one while writing another
u  Issues

l  What is the main disadvantage of NVRAM?
l  How large should the NVRAM be?

21

Write Allocation

u  WAFL can write to any blocks on disk
l  File metadata (i-node file, block map file and i-node map file)

is in the file system
u  WAFL can write blocks in any order

l  Rely on consistency points to enforce file consistency
l  NVRAM to buffer writes to implement ordering

u  WAFL can allocate disk space for many NFS operations
at once in a single write episode
l  Reduce the number of disk I/Os
l  Allocate space that is low latency

u  Issue
l  What about read performance?

22

Snapshot Data Structure

u  WAFL uses 32-bit
entries in the block
map file
l  32-bit for each 4KB

disk block
l  32-bit entry = 0: the

block is free
u  Bit 0 = 1:

active file system
references the block

u  Bit 1 = 1:
the most recent snapshot

references the block

23

Snapshot Creation

u  Problem
l  Many NFS requests may arrive while creating a snapshot
l  File cache may need replacements
l  Undesirable to suspend the NFS request stream

u  WAFL solution
l  Before a creation, mark dirty cache data “in-snapshot” and

suspend NFS request stream
l  Defer all modifications to “in-snapshot” data
l  Modify cache data not marked “in-snapshot”
l  Do not flush cache data not marked “in-snapshot”

24

Algorithm

u  Steps
l  Allocate disk space for “in-snapshot” cached i-nodes

•  Copy these i-nodes to disk buffer
•  Clear “in-snapshot” bit of all cached i-nodes

l  Update the block-map file
•  For each entry, copy the bit for active FS to the new snapshot

l  Flush
•  Write all “in-snapshot” disk buffers to their new disk locations
•  Restart NFS request stream

l  Duplicate the root i-node

u  Performance
l  Typically it takes less than a second

25

Snapshot Deletion

u  Delete a snapshot’s root i-node
u  Clear bits in block-map file

l  For each entry in block-map file, clear the bit representing the
snapshot

26

Performance

u  SPEC SFS benchmark shows 8X faster than others

27

Summary

u  Journaling and LFS
l  Journaling uses transactions to achieve consistency
l  LFS improves write performance

u  NFS
l  Stateless network file system protocol
l  Client and server caching

u  WAFL
l  Write anywhere layout (inspired by LFS)
l  Snapshots have become a standard feature
l  Journaling with NVRAM

