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Topics 

u  Journaling and LFS 
u  Network File System 
u  NetApp File System 



3 

Revisit Implementation of Transactions 
u  BeginTransaction 

l  Start using a “write-ahead” log on disk 
l  Log all updates 

u  Commit 
l  Write “commit” at the end of the log 
l  Then “write-behind” to disk by writing updates to disk 
l  Clear the log  

u  Rollback 
l  Clear the log 

u  Crash recovery 
l  If there is no “commit” in the log, do nothing 
l  If there is “commit,” replay the log and clear the log 

 
u  Issues 

l  All updates on the log must be idempotent 
l  Each transaction has an Id or TID 
l  Must have a way to confirm that a disk write completes 
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Journaling File System 

u  Example: Append a data block to a file on disk 
l  Allocate disk blocks for data and i-node (update bitmap) 
l  Update i-node and data blocks 

u  Journaling all updates 
l  Execute the following transaction: 
BeginTransaction 
Update i-node  
Update bitmap 
Write data block 
Commit 

u  Journaling only metadata 
l  Write data block 
l  Execute the following transaction: 

 BeginTransaction 
 Update i-node  
 Update bitmap 
 Commit  



About Journaling File System 

u  Consistent updates using transactions 
l  Recovery is simple 

u  Store the log on disk storage  
l  Overhead is high for journaling all updates 
l  SW for commodity hardware journaling only metadata 

(Microsoft NTFS and various Linux file systems) 
u  Store the log on NVRAM 

l  Efficient to journal all updates 
l  Can achieve fast writes (many IOPS) 

u  “Write behind” performs real updates 
l  Where to updates (i-nodes and data blocks)? 
l  File layout is critical to performance 
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Log-structured File System (LFS) 
u  Structure the entire file system as a log with segments 

l  A segment has i-nodes, indirect blocks, and data blocks 
l  An i-node map to map i-node number to i-node locations 
l  All writes are sequential 

u  Issues 
l  There will be holes when deleting files 
l  Need garbage collection to get rid of holes 
l  Read performance? 

u  Goal is to improve write performance 
l  Not to confuse with the log for transactions/journaling 
l  Also useful for write and wear-leveling with NAND Flash 

Unused 
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Network File System 

u  Multiple clients share a NFS server 
u  NFS v2 was introduced in early 80s 

Network NFS server Clients 
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NFS Protocols 

u  Mounting 
l  NFS server can export directories 

for remote accesses 
l  Client sends a path name to 

server to request for mounting 
l  Server returns a handle (file 

system type, disk, i-node of the 
directory, security info) 

l  Automount 

u  Directory and file accesses 
l  No open and close 
l  Use handles to read and write 
l  Stateless 
 

proj 
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NFS Protocol (v3) 
1.  NULL: Do nothing 
2.  GETATTR: Get file attributes 
3.  SETATTR: Set file attributes 
4.  LOOKUP: Lookup filename 
5.  ACCESS: Check Access Permission 
6.  READLINK: Read from symbolic link 
7.  READ: Read From file 
8.  WRITE: Write to file 
9.  CREATE: Create a file 
10.  MKDIR: Create a directory 
11.  SYMLINK: Create a symbolic link 
12.  MKNOD: Create a special device 
13.  REMOVE: Remove a File 
14.  RMDIR: Remove a Directory 
15.  RENAME: Rename a File or Directory 
16.  LINK: Create Link to an object 
17.  READDIR: Read From Directory 
18.  READDIRPLUS: Extended read from directory 
19.  FSSTAT: Get dynamic file system information 
20.  FSINFO: Get static file system Information 
21.  PATHCONF: Retrieve POSIX information 
22.  COMMIT: Commit cached data on a server to 

stable storage 
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NFS Architecture 

Virtual file system 

Client kernel 
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NFS 
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NFS Client Caching Issues 

u  Consistency among multiple client caches 
l  Client cache contents may not be up-to-date 
l  Multiple writes can happen simultaneously 

u  Solutions 
l  Expiration 

•  Read-only file and directory data (expire in 60 seconds) 
•  Data written by the client machine (write back in 30 seconds) 

l  No shared caching 
•  A file can be cached at only one client cache 

l  Network lock manager 
•  Sequential consistency (one writer or N readers) 
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NFS Protocol Development 
u  Version 2 issues 

l  18 operations 
l  Size: limit to 4GB file size 
l  Write performance: server writes data synchronously 
l  Several other issues 

u  Version 3 changes (most products still use this) 
l  22 operations 
l  Size: increase to 64 bit 
l  Write performance: WRITE and COMMIT 
l  Fixed several other issues 
l  Still stateless 

u  Version 4 changes 
l  42 operations 
l  Solve the consistency issues 
l  Security issues 
l  Stateful 
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NetApp’s NFS File Server 

u  WAFL: Write Anywhere File Layout 
l  The basic NetApp’s file system 

u  Design goals 
l  Fast services (more operations/sec and higher bandwidth) 
l  Support large file systems and allow growing smoothly 
l  High-performance software RAID 
l  Restart quickly after a crash 

u  Special features 
l  Introduce snapshots 
l  Journaling by using NVRAM to implement write-ahead log 
l  Layout inspired by LFS 
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Snapshots 

u  A snapshot is a read-only copy of the file system 
l  Introduced in 1993 
l  It has become a standard feature of today’s file server 

u  Use snapshots 
l  System administrator configures the number and frequency of snapshots 
l  An initial system can keep up to 20 snapshots 
l  Use snapshots to recover individual files 

u  An example 
phoenix% cd .snapshot 
phoenix% ls 
hourly.0 hourly.2 hourly.4 nightly.0 nightly.2 weekly.1 
hourly.1 hourly.3 hourly.5 nightly.1 weekly.0 
phoenix% 

u  How much space does a snapshot consume? 
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i-node, Indirect and Data Blocks 

u  WAFL uses 4KB blocks 
l  i-nodes (evolved from UNIX’s) 
l  Data blocks 

u  File size < 64 bytes 
l  i-node stores data directly 

u  File size < 64K bytes 
l  i-node stores 16 pointers to data 

u  File size < 64M bytes 
l  i-node stores 16 pointers to 

indirect blocks 
l  Each indirect pointer block stores 

1K pointers to data 
u  File size > 64M bytes 

l  i-node stores pointers to doubly 
indirect blocks 

Data Data Data 

Data Data 

Data 

Data Data Data 
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WAFL Layout 

u  A WAFL file system has 
l  A root i-node: root of everything 
l  An i-node file: contains all i-nodes 
l  A block map file: indicates free blocks 
l  An i-node map file: indicates free i-nodes 
l  Data files: real files that users can see 

Metadata 
in files 
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Why Keeping Metadata in Files 

u  Allow meta-data blocks to be written anywhere on disk 
l  This is the origin of “Write Anywhere File Layout” 
l  Any performance advantage? 

u  Easy to increase the size of the file system dynamically 
l  Add a disk can lead to adding i-nodes 
l  Integrate volume manager with WAFL 

u  Enable copy-on-write to create snapshots 
l  Copy-on-write new data and metadata on new disk locations 
l  Fixed metadata locations are cumbersome 
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Snapshot Implementation 
u  WAFL file system is a tree of 

blocks 
u  Snapshot step 1 

l  Replicate the root i-node 
l  New root i-node is the active file 

system 
l  Old root i-node is the snapshot 

u  Snapshot step 2…n 
l  Copy-on-write blocks to the root 
l  Active root i-node points to the new 

blocks 
l  Writes to the new block 
l  Future writes into the new blocks will 

not trigger copy-on-write 
u  An “add-on” snapshot mechanism 

for a traditional file system? 
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File System Consistency 

u  Create a snapshot 
l  Create a consistency point or snapshot every 10 seconds 
l  On a crash, revert the file system to this snapshot 
l  Not visible by users 

u  Many requests between consistency points 
l  Consistency point i 
l  Many writes 
l  Consistency point i+1 (advanced atomically) 
l  Many writes 
l  … 

 
u  What are these consistent points? 
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Non-Volatile RAM 

u  Non-Volatile RAM 
l  Flash memory (slower) 
l  Battery-backed DRAM (fast but battery lasts for only days) 

u  Use an NVRAM to buffer writes 
l  Buffer all write requests since the last consistency point 
l  A clean shutdown empties NVRAM, creates one more 

snapshot, and turns off NVRAM 
l  A crash recovery needs to recover data from NVRAM to the 

most recent snapshot and turn on the system 
u  Use two logs 

l  Buffer one while writing another 
u  Issues 

l  What is the main disadvantage of NVRAM? 
l  How large should the NVRAM be? 
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Write Allocation 

u  WAFL can write to any blocks on disk 
l  File metadata (i-node file, block map file and i-node map file) 

is in the file system 
u  WAFL can write blocks in any order 

l  Rely on consistency points to enforce file consistency 
l  NVRAM to buffer writes to implement ordering 

u  WAFL can allocate disk space for many NFS operations 
at once in a single write episode 
l  Reduce the number of disk I/Os 
l  Allocate space that is low latency 

u  Issue 
l  What about read performance? 
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Snapshot Data Structure 

u  WAFL uses 32-bit 
entries in the block 
map file 
l  32-bit for each 4KB 

disk block 
l  32-bit entry = 0: the 

block is free 
u  Bit 0 = 1: 

active file system 
references the block 

u  Bit 1 = 1: 
the most recent snapshot 

references the block 
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Snapshot Creation 

u  Problem 
l  Many NFS requests may arrive while creating a snapshot 
l  File cache may need replacements 
l  Undesirable to suspend the NFS request stream 

u  WAFL solution 
l  Before a creation, mark dirty cache data “in-snapshot” and 

suspend NFS request stream 
l  Defer all modifications to “in-snapshot” data 
l  Modify cache data not marked “in-snapshot” 
l  Do not flush cache data not marked “in-snapshot” 
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Algorithm 

u  Steps 
l  Allocate disk space for “in-snapshot” cached i-nodes 

•  Copy these i-nodes to disk buffer 
•  Clear “in-snapshot” bit of all cached i-nodes 

l  Update the block-map file 
•  For each entry, copy the bit for active FS to the new snapshot 

l  Flush 
•  Write all “in-snapshot” disk buffers to their new disk locations 
•  Restart NFS request stream 

l  Duplicate the root i-node 

u  Performance 
l  Typically it takes less than a second 
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Snapshot Deletion 

u  Delete a snapshot’s root i-node 
u  Clear bits in block-map file 

l  For each entry in block-map file, clear the bit representing the 
snapshot 
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Performance 

u  SPEC SFS benchmark shows 8X faster than others 
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Summary 

u  Journaling and LFS 
l  Journaling uses transactions to achieve consistency 
l  LFS improves write performance 

u  NFS 
l  Stateless network file system protocol 
l  Client and server caching 

u  WAFL 
l  Write anywhere layout (inspired by LFS) 
l  Snapshots have become a standard feature 
l  Journaling with NVRAM 


