COS 318: Operating Systems

Journaling, NFS and WAFL

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Topics

Journaling and LFS
Network File System
NetApp File System

Revisit Implementation of Transactions

BeginTransaction
e Start using a “write-ahead” log on disk
e Log all updates

Commit

e Write “commit” at the end of the log
e Then “write-behind” to disk by writing updates to disk
e Clear the log

Rollback
e Clear the log
Crash recovery

e If there is no “commit” in the log, do nothing
e If there is “commit,” replay the log and clear the log

Issues

e All updates on the log must be idempotent
e Each transaction has an Id or TID

@ e Must have a way to confirm that a disk write completes

L T

[}

Journaling File System

Example: Append a data block to a file on disk
e Allocate disk blocks for data and i-node (update bitmap)
e Update i-node and data blocks

Journaling all updates
e Execute the following transaction:
BeginTransaction
Update i-node
Update bitmap
Write data block
Commit

Journaling only metadata
e \Write data block
e Execute the following transaction:
BeginTransaction
Update i-node
Update bitmap

Commit
3 . 4

About Journaling File System

Consistent updates using transactions
e Recovery is simple

Store the log on disk storage
e Overhead is high for journaling all updates

e SW for commodity hardware journaling only metadata
(Microsoft NTFS and various Linux file systems)

Store the log on NVRAM

e Efficient to journal all updates
e Can achieve fast writes (many IOPS)
“Write behind” performs real updates

e \Where to updates (i-nodes and data blocks)?
e File layout is critical to performance

Log-structured File System (LFS)

Structure the entire file system as a log with segments
e A segment has i-nodes, indirect blocks, and data blocks
e An i-node map to map i-node number to i-node locations
e All writes are sequential

Issues
e There will be holes when deleting files
e Need garbage collection to get rid of holes
e Read performance?

Goal is to improve write performance
e Not to confuse with the log for transactions/journaling
e Also useful for write and wear-leveling with NAND Flash

P D |[iPDJiP D |iP DJiP D Unused
Inode Log structured >

~

Network File System

¢ Multiple clients share a NFS server
¢ NFS v2 was introduced in early 80s

NFS server ‘\“\\\“\lﬂ@ ~ Clients

NFS Protocols

e
¢ Mounting
e NFS server can export directories /
for remote accessez o /w .
e Client sends a path name to
server to request for mounting
e Server returns a handle (file
system type, disk, i-node of the /ulcos126 //U/COS318
directory, security info) Client /
e Automount

¢ Directory and file accesses
e No open and close
e Use handles to read and write
e Stateless 1 2 3

Server

)‘
[Ery IGET)

A G 4

NFS Protocol (v3)

NULL: Do nothing

GETATTR: Get file attributes

SETATTR: Set file attributes

LOOKUP: Lookup filename

ACCESS: Check Access Permission
READLINK: Read from symbolic link
READ: Read From file

WRITE: Write to file

CREATE: Create a file

MKDIR: Create a directory

SYMLINK: Create a symbolic link
MKNOD: Create a special device
REMOVE: Remove a File

RMDIR: Remove a Directory

RENAME: Rename a File or Directory
LINK: Create Link to an object

READDIR: Read From Directory
READDIRPLUS: Extended read from directory
FSSTAT: Get dynamic file system information
FSINFO: Get static file system Information
PATHCONF: Retrieve POSIX information

COMMIT: Commit cached data on a server to
stable storage 9

NFS Architecture

NES Server Client kernel

10

NFS Client Caching Issues

Consistency among multiple client caches
e Client cache contents may not be up-to-date
e Multiple writes can happen simultaneously

Solutions
e EXpiration
« Read-only file and directory data (expire in 60 seconds)
« Data written by the client machine (write back in 30 seconds)
e No shared caching
A file can be cached at only one client cache

e Network lock manager
« Sequential consistency (one writer or N readers)

11

NFS Protocol Development

Version 2 issues
e 18 operations
e Size: limit to 4GB file size
e Write performance: server writes data synchronously
e Several other issues

Version 3 changes (most products still use this)
e 22 operations
e Size: increase to 64 bit
e Write performance: WRITE and COMMIT
e Fixed several other issues
o Still stateless

Version 4 changes

42 operations

Solve the consistency issues
Security issues

Stateful

12

NetApp’ s NFS File Server

WAFL: Write Anywhere File Layout
e The basic NetApp’ s file system

Design goals

Fast services (more operations/sec and higher bandwidth)
Support large file systems and allow growing smoothly
High-performance software RAID

Restart quickly after a crash

Special features

e Introduce snapshots
e Journaling by using NVRAM to implement write-ahead log
e Layout inspired by LFS

)c
[Ery IGET)

TR

13

Snapshots

A snapshot is a read-only copy of the file system
e Introduced in 1993

e It has become a standard feature of today’ s file server
Use snapshots

e System administrator configures the number and frequency of snapshots
e An initial system can keep up to 20 snapshots
e Use snapshots to recover individual files

An example

phoenix% cd .snapshot

phoenix% 1s

hourly.0 hourly.Z2 hourly.4 nightly.0 nightly.2 weekly.1l

hourly.l hourly.3 hourly.5 nightly.1l weekly.O
phoenix%

How much space does a snapshot consume?

14

I-node, Indirect and Data Blocks

WAFL uses 4KB blocks

e i-nodes (evolved from UNIX’ s) Data | ||
e Data blocks \\.
File size < 64 bytes pal) DELE

e I-node stores data directly

File size < 64K bytes

e I-node stores 16 pointers to data

File size < 64M bytes

e I-node stores 16 pointers to
iIndirect blocks

e Each indirect pointer block stores
1K pointers to data

File size > 64M bytes i N
e I-node stores pointers to doubly
@ indirect blocks N

Data Data Data | 15

B

Data Data Data

Iﬂi!‘mm

WAFL Layout

+ A WAFL file system has

e A root i-node: root of everything

e An i-node file: contains all i-nodes | Vietadat

e Ablock map file: indicates free blocks b+ . Cooat
in files

o

An i-node map file: indicates free i-nodes

J

Root
I-node

bl

Block I-node Other files in the file system
map file map file

I-node
file

Other |
files

)‘
[Ery IGET)

A G 4

16

Why Keeping Metadata in Files

Allow meta-data blocks to be written anywhere on disk
e This is the origin of “Write Anywhere File Layout”
e Any performance advantage?

Easy to increase the size of the file system dynamically
e Add a disk can lead to adding i-nodes
e Integrate volume manager with WAFL

Enable copy-on-write to create snapshots
e Copy-on-write new data and metadata on new disk locations
e Fixed metadata locations are cumbersome

17

Snapshot Implementation

WAFL file system is a tree of
blocks

Snapshot step 1
e Replicate the root i-node

e New root i-node is the active file
system

e OlId root i-node is the snapshot

Snapshot step 2...n

e Copy-on-write blocks to the root

e Active root i-node points to the new
blocks

e \Writes to the new block

Root

Root

e Future writes into the new blocks will

not trigger copy-on-write A

An “add-on” snapshot mechanism
for a traditional file system?

18

File System Consistency

Create a snapshot
e Create a consistency point or snapshot every 10 seconds
e On a crash, revert the file system to this snapshot
e Not visible by users

Many requests between consistency points
e Consistency point i

e Many writes

e Consistency point i+1 (advanced atomically)

e Many writes
[

What are these consistent points?

19

Non-Volatile RAM

Non-Volatile RAM

e Flash memory (slower)
e Battery-backed DRAM (fast but battery lasts for only days)

Use an NVRAM to buffer writes

e Buffer all write requests since the last consistency point

e A clean shutdown empties NVRAM, creates one more
snapshot, and turns off NVRAM

e A crash recovery needs to recover data from NVRAM to the
most recent snapshot and turn on the system

Use two logs
e Buffer one while writing another

Issues
e \What is the main disadvantage of NVRAM?
e How large should the NVRAM be?

20

Write Allocation

WAFL can write to any blocks on disk

e File metadata (i-node file, block map file and i-node map file)
is in the file system

WAFL can write blocks in any order

e Rely on consistency points to enforce file consistency

e NVRAM to buffer writes to implement ordering
WAFL can allocate disk space for many NFS operations
at once in a single write episode

e Reduce the number of disk 1/Os

e Allocate space that is low latency

Issue
e \What about read performance?

21

Snapshot Data Structure

e
& WAEL uses 32-bit , Blockmap |o
entries in the block 'me entry escription
map file T1 00000000 |Block is free
e 32-bit for each 4KB T2 [00000001|Active FS uses it
disk block T3 |00000011|Create snapshot 1
e 32-bit entry = 0: the T4 (00000111 |Create snapshot 2
block is free ' T5 |00000 110 |Active FS deletes it
_ T6 (00000100 |Delete snapshot 1
¢ Bit0O=1: T7 100000000 |Delete snapshot 2
active file system Y L
references the block Set for active FS
¢ Bit1=1: — Set for snapshot 1
the most recent snapshot _— Set for snapshot 2
references the block
— Set for snapshot 3

[ZEr g (IGET)

A G 4

Snapshot Creation

Problem

e Many NFS requests may arrive while creating a snapshot
e File cache may need replacements

e Undesirable to suspend the NFS request stream

WAFL solution

e Before a creation, mark dirty cache data “in-snapshot” and
suspend NFS request stream

e Defer all modifications to “in-snapshot” data
e Modify cache data not marked “in-snapshot”
e Do not flush cache data not marked “in-snapshot”

23

Algorithm

Steps
e Allocate disk space for “in-snapshot” cached i-nodes

« Copy these i-nodes to disk buffer
 Clear “in-snapshot” bit of all cached i-nodes

e Update the block-map file
« For each entry, copy the bit for active FS to the new snapshot
e Flush
« Write all “in-snapshot” disk buffers to their new disk locations
« Restart NFS request stream

e Duplicate the root i-node

Performance
e Typically it takes less than a second

(2D IGET)

TR

Snapshot Deletion

Delete a snapshot’ s root i-node

Clear bits in block-map file

e For each entry in block-map file, clear the bit representing the
snhapshot

25

Performance
0O
¢ SPEC SFS benchmark shows 8X faster than others

50T s FAServer BX Cluster
Auspex NS 8000
w—Gun SPARCcIuster 1
407 | === Sun SPARCenter 2000
s Sun SPARCserver 1000

Average response time (msec)
BJ
(4}

0 500 1000 1500 2000 2500 J000 as00

NFS operations/second

26

Summary

Journaling and LFS
e Journaling uses transactions to achieve consistency
e LFS improves write performance

NFS

e Stateless network file system protocol
e Client and server caching

WAFL

e \Write anywhere layout (inspired by LFS)
e Snapshots have become a standard feature
e Journaling with NVRAM

27

