
COS 318: Operating Systems

Mutex Implementation

Kai Li and Andy Bavier
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

  Mutex problem
  Interrupts for mutex
  Critical section with atomic reads and writes
  Mutex with atomic test-and-set instructions
  Spin locks

3

Revisit Mutual Exclusion (Mutex)

  Critical section

  Conditions of a good solution
  Only one process/thread inside a critical section
  No assumption about CPU speeds
  A process/thread inside a critical section should not be blocked by any

processes/threads outside the critical section
  No one waits forever

  Works for multiprocessors
  Same code for all processes/threads

Acquire(lock);
if (noMilk)
 buy milk;
Release(lock);

Critical section

Simple Lock Variables

4

Acquire(lock) {
while (lock.value == 1)
 ;
lock.value = 1;
}

Release(lock) {
 lock.value = 0;
}

lock.value = 1;
}

Thread 1:
Acquire(lock) {
while (lock.value == 1)
 ;
{context switch)

Thread 2:

Acquire(lock) {
while (lock.value == 1)
 ;
{context switch)

lock.value = 1;
}
{context switch)

Interrupt in A Simplified System

5

Interrupt

I/O devices can raise interrupts to CPU

Memory

I/O bus

Central
Processing

Unit

Instruction Execution with Interrupt

Fetch

Advance IP

Decode

Execute

Interrupt?

no

yes

User
Program

IP

ld
add
st

mul
ld

sub
bne
add
jmp
…

Save context

Get INTR ID

Lookup ISR

Execute ISR

Interrupt handler
{
.
.
.

iret
}

Most instructions can be interrupted in the middle

Exceptions: Similar to Interrupts

  Interrupts are asynchronous
  From external sources
  Examples: alarm clock, I/O bus signals from devices

  Exceptions are synchronous (more later)
  Processor-detected exceptions

•  Faults — correctable; offending instruction is retried
•  Traps — often for debugging; instruction is not retried
•  Aborts — errors when executing instructions

  Programmed exceptions
•  Requests for kernel intervention (intr/syscalls)

DisableInt()
.
.
.

EnableInt()

Uninterruptible
region

8

Use and Disable Interrupts
 Use interrupts

  Process I/O requests (e.g. keyboard)
  Implement preemptive CPU scheduling

 Disable interrupts
  Introduce uninterruptible code regions
  Think sequentially most of the time
  Delay handling of external events

9

Disabling Interrupts for Critical Section?

Issues
  Kernel cannot let users disable interrupts
  Critical sections can be arbitrarily long
  Used on uniprocessors, but does not work on

multiprocessors

Acquire() {
 disable interrupts;
}

Release() {
 enable interrupts;
}

Acquire()

 critical section?

Release()

10

“Disable Interrupts” to Implement Mutex

  Issues
  May wait forever
  Not designed for user code to use

Acquire(lock) {
 disable interrupts;
 while (lock.value != 0)

 ;
 lock.value = 1;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = 0;
 enable interrupts;
}

11

Fix “Wait Forever” problem?

Issues
  Consume CPU cycles
  Won’t work with multiprocessors

Acquire(lock) {
 disable interrupts;
 while (lock.value != 0){
 enable interrupts;
 disable interrupts;
 }
 lock.value = 1;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 lock.value = 0;
 enable interrupts;
}

12

Another Implementation

Questions
  Would this work for multiprocessors?

Acquire(lock) {
 disable interrupts;
 while (lock.value == 1)
 {
 Enqueue me for lock;
 Yield();
 }
 lock.value = 1;
 enable interrupts;
}

Release(lock) {
 disable interrupts;
 if (anyone in queue) {
 Dequeue a thread;
 make it ready;
 }
 lock.value = 0;
 enable interrupts;
}

13

Critical Section with Atomic Reads/Writes

  Peterson’s solution (see textbook pp. 123)

  L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM
Trans. on Computer Systems, 5(1):1-11, Feb 1987.
  5 writes and 2 reads

int turn;
int interested[N];

void enter_region(int process)
{
 int other;

 other = 1 – process;
 interested[process] = TRUE;
 turn = process;
 while(turn == process && interested[other] == TRUE);
}

14

Atomic Read-Modify-Write Instructions

  LOCK prefix in x86
  Make a specific set instructions atomic
  Together with BTS to implement Test&Set

  Exchange (xchg, x86 architecture)
  Swap register and memory
  Atomic (even without LOCK)

  Fetch&Add or Fetch&Op
  Atomic instructions for large shared memory multiprocessor

systems
  Load link and conditional store

  Read value in one instruction (load link)
 Do some operations;
  When store, check if value has been modified. If not, ok;

otherwise, jump back to start

15

A Simple Solution with Test&Set

  Define TAS(lock)
  If successfully set, return 1;
  Otherwise, return 0;

  Any issues with the following solution?

Acquire(lock) {
 while (!TAS(lock.value))
 ;
}

Release(lock.value) {
 lock.value = 0;
}

16

Mutex with Less Waiting?

 How long does the “busy wait” take?

Acquire(lock) {
 while (!TAS(lock.guard))
 ;
 if (lock.value) {
 enqueue the thread;
 block and lock.guard = 0;
 } else {
 lock.value = 1;
 lock.guard = 0;
 }
}

Release(lock) {
 while (!TAS(lock.guard))
 ;
 if (anyone in queue) {
 dequeue a thread;
 make it ready;
 } else
 lock.value = 0;
 lock.guard = 0;
}

17

Example: Protect a Shared Variable

  Acquire(mutex) system call
  Pushing parameter, sys call # onto stack
  Generating trap/interrupt to enter kernel
  Jump to appropriate function in kernel
  Verify process passed in valid pointer to mutex
  Minimal spinning
  Block and unblock process if needed
  Get the lock

  Executing “count++;”
  Release(mutex) system call

Acquire(lock); /* system call */
count++;
Release(lock) /* system call */

18

Available Primitives and Operations

 Test-and-set
  Works at either user or kernel

 System calls for block/unblock
  Block takes some token and goes to sleep
  Unblock “wakes up” a waiter on token

19

Block and Unblock System Calls

Block(lock)
  Spin on lock.guard
  Save the context to TCB
  Enqueue TCB to lock.q
  Clear lock.guard
  Call scheduler

Unblock(lock)
  Spin on lock.guard
  Dequeue a TCB from lock.q
  Put TCB in ready queue
  Clear lock.guard

Always Block

  Good
  Acquire won’t make a system call if TAS succeeds

  Bad
  TAS instruction locks the memory bus
  Block/Unblock still has substantial overhead

Acquire(lock) {
 while (!TAS(lock.value))
 Block(lock);
}

Release(lock) {
 lock.value = 0;
 Unblock(lock);
}

21

Always Spin

  Two spinning loops in Acquire()?

Acquire(lock) {
 while (!TAS(lock.value))
 while (lock.value)
 ;
}

Release(lock) {
 lock.value = 0;
}

CPU CPU

L1 $ L1 $

L2 $

Multicore

CPU

L1 $

L2 $

CPU

L1 $

L2 $

… …

Memory

SMP

TAS
TAS

22

Optimal Algorithms

  What is the optimal solution to spin vs. block?
  Know the future
  Exactly when to spin and when to block

  But, we don’t know the future
  There is no online optimal algorithm

  Offline optimal algorithm
  Afterwards, derive exactly when to block or spin (“what if”)
  Useful to compare against online algorithms

23

Competitive Algorithms

  An algorithm is c-competitive if
for every input sequence σ

 CA(σ) ≤ c × Copt(σ) + k

  c is a constant
  CA(σ) is the cost incurred by algorithm A in processing σ
  Copt(σ) is the cost incurred by the optimal algorithm in

processing σ

  What we want is to have c as small as possible
  Deterministic
  Randomized

Constant Competitive Algorithms

  Spin up to N times if the lock is held by another thread
  If the lock is still held after spinning N times, block

  If spinning N times is equal to the context-switch time, what is the
competitive factor of the algorithm?

Acquire(lock, N) {
 int i;

 while (!TAS(lock.value)) {
 i = N;
 while (!lock.value && i)
 i--;

 if (!i)
 Block(lock);
 }
}

25

Approximate Optimal Online Algorithms

  Main idea
  Use past to predict future

  Approach
  Random walk

•  Decrement N by a unit if the last Acquire() blocked
•  Increment N by a unit if the last Acquire() didn’t block

  Recompute N each time for each Acquire() based on some
lock-waiting distribution for each lock

  Theoretical results
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))

The competitive factor is about 1.58.

26

Empirical Results

A. Karlin, K. Li, M. Manasse, and S. Owicki,
“Empirical Studies of Competitive Spinning
for a Shared-Memory Multiprocessor,”
Proceedings of the 13th ACM Symposium
on Operating Systems Principle, 1991.

27

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

28

Summary

  Disabling interrupts for mutex
  There are many issues
  When making it work, it works for only uniprocessors

  Atomic instruction support for mutex
  Atomic load and stores are not good enough
  Test&set and other instructions are the way to go

  Competitive spinning
  Spin at the user level most of the time
  Make no system calls in the absence of contention
  Have more threads than processors

