
COS 318: Operating Systems 

Mutex Implementation 

Kai Li and Andy Bavier 
Computer Science Department 
Princeton University 

(http://www.cs.princeton.edu/courses/cos318/) 



2 

Today’s Topics 

  Mutex problem  
  Interrupts for mutex 
  Critical section with atomic reads and writes 
  Mutex with atomic test-and-set instructions 
  Spin locks 
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Revisit Mutual Exclusion (Mutex) 

  Critical section 

  Conditions of a good solution 
  Only one process/thread inside a critical section 
  No assumption about CPU speeds 
  A process/thread inside a critical section should not be blocked by any 

processes/threads outside the critical section 
  No one waits forever 

  Works for multiprocessors 
  Same code for all processes/threads 

Acquire(lock); 
if (noMilk) 
  buy milk; 
Release(lock); 

Critical section 



Simple Lock Variables 
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Acquire(lock) { 
while (lock.value == 1) 
   ; 
lock.value = 1; 
} 

Release(lock) { 
   lock.value = 0; 
} 

lock.value = 1; 
} 

Thread 1: 
Acquire(lock) { 
while (lock.value == 1) 
   ; 
{context switch) 

Thread 2: 

Acquire(lock) { 
while (lock.value == 1) 
   ; 
{context switch) 

lock.value = 1; 
} 
{context switch) 



Interrupt in A Simplified System 
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Instruction Execution with Interrupt  
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Most instructions can be interrupted in the middle 



Exceptions: Similar to Interrupts 

  Interrupts are asynchronous 
  From external sources 
  Examples: alarm clock, I/O bus signals from devices 

  Exceptions are synchronous (more later) 
  Processor-detected exceptions 

•  Faults — correctable; offending instruction is retried 
•  Traps — often for debugging; instruction is not retried 
•  Aborts — errors when executing instructions 

  Programmed exceptions 
•  Requests for kernel intervention (intr/syscalls) 
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Use and Disable Interrupts 
 Use interrupts  

  Process I/O requests (e.g. keyboard) 
  Implement preemptive CPU scheduling 

 Disable interrupts 
  Introduce uninterruptible code regions 
  Think sequentially most of the time 
  Delay handling of external events 
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Disabling Interrupts for Critical Section? 

Issues 
  Kernel cannot let users disable interrupts 
  Critical sections can be arbitrarily long 
  Used on uniprocessors, but does not work on 

multiprocessors 

Acquire() { 
    disable interrupts; 
} 

Release() { 
    enable interrupts; 
} 

Acquire() 

  critical section? 

Release() 
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“Disable Interrupts” to Implement Mutex 

  Issues 
  May wait forever 
  Not designed for user code to use 

Acquire(lock) { 
  disable interrupts; 
  while (lock.value != 0) 

 ; 
  lock.value = 1; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  lock.value = 0; 
  enable interrupts; 
} 
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Fix “Wait Forever” problem? 

Issues 
  Consume CPU cycles 
  Won’t work with multiprocessors  

Acquire(lock) { 
  disable interrupts; 
  while (lock.value != 0){ 
    enable interrupts; 
    disable interrupts; 
    } 
  lock.value = 1; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  lock.value = 0; 
  enable interrupts; 
} 
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Another Implementation 

Questions 
  Would this work for multiprocessors? 

Acquire(lock) { 
  disable interrupts; 
  while (lock.value == 1) 
  { 
    Enqueue me for lock; 
    Yield(); 
  }  
  lock.value = 1; 
  enable interrupts; 
} 

Release(lock) { 
  disable interrupts; 
  if (anyone in queue) { 
    Dequeue a thread; 
    make it ready; 
  }  
  lock.value = 0; 
  enable interrupts; 
} 
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Critical Section with Atomic Reads/Writes 

  Peterson’s solution (see textbook pp. 123) 

  L. Lamport, “A Fast Mutual Exclusion Algorithm,” ACM 
Trans. on Computer Systems, 5(1):1-11, Feb 1987. 
  5 writes and 2 reads 

int turn; 
int interested[N]; 

void enter_region(int process) 
{ 
    int other; 

    other = 1 – process; 
    interested[process] = TRUE; 
    turn = process; 
    while(turn == process && interested[other] == TRUE); 
} 
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Atomic Read-Modify-Write Instructions 

  LOCK prefix in x86 
  Make a specific set instructions atomic 
  Together with BTS to implement Test&Set 

  Exchange (xchg, x86 architecture) 
  Swap register and memory 
  Atomic (even without LOCK) 

  Fetch&Add or Fetch&Op 
  Atomic instructions for large shared memory multiprocessor 

systems 
  Load link and conditional store  

  Read value in one instruction (load link) 
     Do some operations; 
  When store, check if value has been modified.  If not, ok; 

otherwise, jump back to start 
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A Simple Solution with Test&Set 

  Define TAS(lock) 
  If successfully set, return 1; 
  Otherwise, return 0; 

  Any issues with the following solution? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    ; 
} 

Release(lock.value) { 
  lock.value = 0; 
} 
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Mutex with Less Waiting? 

 How long does the “busy wait” take? 

Acquire(lock) { 
  while (!TAS(lock.guard)) 
    ; 
  if (lock.value) { 
    enqueue the thread; 
    block and lock.guard = 0; 
  } else { 
    lock.value = 1; 
    lock.guard = 0; 
  } 
} 

Release(lock) { 
  while (!TAS(lock.guard)) 
    ; 
  if (anyone in queue) { 
    dequeue a thread; 
    make it ready; 
  } else 
    lock.value = 0; 
  lock.guard = 0; 
} 
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Example: Protect a Shared Variable 

  Acquire(mutex) system call 
  Pushing parameter, sys call # onto stack 
  Generating trap/interrupt to enter kernel 
  Jump to appropriate function in kernel 
  Verify process passed in valid pointer to mutex 
  Minimal spinning 
  Block and unblock process if needed 
  Get the lock 

  Executing “count++;” 
  Release(mutex) system call 

Acquire(lock);  /* system call */ 
count++; 
Release(lock)   /* system call */ 
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Available Primitives and Operations 

 Test-and-set 
  Works at either user or kernel 

 System calls for block/unblock 
  Block takes some token and goes to sleep 
  Unblock “wakes up” a waiter on token 
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Block and Unblock System Calls 

Block( lock ) 
  Spin on lock.guard 
  Save the context to TCB 
  Enqueue TCB to lock.q 
  Clear lock.guard 
  Call scheduler 

Unblock( lock ) 
  Spin on lock.guard 
  Dequeue a TCB from lock.q 
  Put TCB in ready queue 
  Clear lock.guard 



Always Block 

  Good 
  Acquire won’t make a system call if TAS succeeds 

  Bad 
  TAS instruction locks the memory bus 
  Block/Unblock still has substantial overhead 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    Block( lock ); 
} 

Release(lock) { 
  lock.value = 0; 
  Unblock( lock ); 
} 
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Always Spin 

  Two spinning loops in Acquire()? 

Acquire(lock) { 
  while (!TAS(lock.value)) 
    while (lock.value) 
    ; 
} 

Release(lock) { 
  lock.value = 0; 
} 
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Optimal Algorithms 

  What is the optimal solution to spin vs. block? 
  Know the future 
  Exactly when to spin and when to block 

  But, we don’t know the future 
  There is no online optimal algorithm 

  Offline optimal algorithm 
  Afterwards, derive exactly when to block or spin (“what if”) 
  Useful to compare against online algorithms 
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Competitive Algorithms 

  An algorithm is c-competitive if  
for every input sequence σ 

                           CA(σ) ≤ c × Copt(σ) + k 

  c is a constant 
  CA(σ) is the cost incurred by algorithm A in processing σ 
  Copt(σ) is the cost incurred by the optimal algorithm in 

processing σ 

  What we want is to have c as small as possible 
  Deterministic 
  Randomized 



Constant Competitive Algorithms 

  Spin up to N times if the lock is held by another thread 
  If the lock is still held after spinning N times, block 

  If spinning N times is equal to the context-switch time, what is the 
competitive factor of the algorithm? 

Acquire(lock, N) { 
  int i; 

  while (!TAS(lock.value)) { 
    i = N; 
    while (!lock.value && i) 
      i--; 

    if (!i)  
      Block(lock); 
  } 
} 
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Approximate Optimal Online Algorithms 

  Main idea 
  Use past to predict future 

  Approach 
  Random walk 

•  Decrement N by a unit if the last Acquire() blocked 
•  Increment N by a unit if the last Acquire() didn’t block 

  Recompute N each time for each Acquire() based on some 
lock-waiting distribution for each lock 

  Theoretical results 
E CA(σ (P)) ≤ (e/(e-1)) × E Copt(σ(P))  

The competitive factor is about 1.58. 
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Empirical Results 

A. Karlin, K. Li, M. Manasse, and S. Owicki, 
“Empirical Studies of Competitive Spinning 
for a Shared-Memory Multiprocessor,” 
Proceedings of the 13th ACM Symposium 
on Operating Systems Principle, 1991. 
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The Big Picture 

OS codes and concurrent applications 
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Summary 

  Disabling interrupts for mutex 
  There are many issues 
  When making it work, it works for only uniprocessors 

  Atomic instruction support for mutex 
  Atomic load and stores are not good enough 
  Test&set and other instructions are the way to go 

  Competitive spinning 
  Spin at the user level most of the time 
  Make no system calls in the absence of contention 
  Have more threads than processors 


