
COS 318: Operating Systems

Message Passing

Kai Li and Andy Bavier
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Quizzes

  Quiz 1
  Most of you did very well

  Quiz 2:
Mesa-style monitor:
  Continue current thread after Signal()
  Allows Signal() to wakeup more than 1 thread
  After Wait(), the condition may not be true

  Quiz 3:
  Most of you did very well

2

Revisit Mesa-Style Monitor

3

Waiting for a resource
Acquire(mutex);
while (no resource)
 wait(mutex, cond);

...

(use the resource)
...

Release(mutex);

Make a resource available
Acquire(mutex);
...
(make resource available)
...

Signal(cond);
/* or Broadcast(cond);

Release(mutex);

About Midterm Exam

  Midterm may include these topics
  OS structure, processes and threads
  Synchronization
  Scheduling
  Deadlocks
  I/O devices

  Help?
  Office hours today: 3pm-5pm, 7:30-8:30pm

  Information
  In class this Thursday, 80 minutes
  No book, no notes, no cheat sheet
  No devices and no online accesses

4

5

Today’s Topics

  Message passing
  Indirect communications
  Examples

  Mailbox
  Socket
  Message Passing Interface (MPI)
  Remote Procedure Call (RPC)

  Exceptions

6

Sending A Message

Send() Recv()

OS Kernel

Within A System

Network
Send()

OS

Recv()

OS

Across A Network

COS461

Synchronous Message Passing
(Within A System)

Synchronous send:
  Call send system call with M
  send system call:

  No buffer in kernel: block
  Copy M to kernel buffer

Synchronous recv:
  Call recv system call
  recv system call:

  No M in kernel: block
  Copy to user buffer

How to manage kernel buffer?

7

send() M

M

recv() M

API Issues

  Message
  Buffer and size
  Message type, buffer

and size
  Destination or source

  Direct address:
node Id, process Id

  Indirect address:
mailbox, socket,
channel, …

8

S

R
send(dest, msg)

recv(src, msg)

9

Direct Addressing Example

  Does this work?
  Would it work with multiple producers and 1 consumer?
  Would it work with 1 producer and multiple consumers?
  What about multiple producers and multiple consumers?

Producer(){
 ...
 while (1) {
 produce item;
 recv(Consumer, &credit);
 send(Consumer, item);
 }
}

Consumer(){
 ...
 for (i=0; i<N; i++)
 send(Producer, credit);
 while (1) {
 recv(Producer, &item);
 send(Producer, credit);
 consume item;
 }
}

10

Indirect Addressing Example

  Would it work with multiple producers and 1 consumer?
  Would it work with 1 producer and multiple consumers?
  What about multiple producers and multiple consumers?

Producer(){
 ...
 while (1) {
 produce item;
 recv(prodMbox, &credit);
 send(consMbox, item);
 }
}

Consumer(){
 ...
 for (i=0; i<N; i++)
 send(prodMbox, credit);
 while (1) {
 recv(consMbox, &item);
 send(prodMbox, credit);
 consume item;
 }
}

Indirect Communication

 Names
  mailbox, socket, channel, …

 Properties
  Some allow one-to-one

(e.g. pipe)
  Some allow many-to-one or

one-to-many communications
(e.g. mailbox)

11

mbox

pipe

Mailbox Message Passing

  Message-oriented 1-way communication
  Like real mailbox: letters/messages, not sure about receiver

  Data structure
  Mutex, condition variable, buffer for messages

  Operations
  Init, open, close, send, receive, …

  Does the sender know when receiver gets a message?

12

mbox_send(M) mbox_recv(M)

13

Example: Keyboard Input

  Interrupt handler
  Get the input characters and give to device thread

 Device thread
  Generate a message and send it a mailbox of an input process

getchar()

mbox

V(s);
…

while (1) {
 P(s);
 Acquire(m);
 convert …
 Release(m);
};

Interrupt
handler

Device
thread

Sockets
  Sockets

  Bidirectional (unlike mailbox)
  Unix domain sockets (IPC)
  Network sockets (over network)
  Same APIs

  Two types
  Datagram Socket (UDP)

•  Collection of messages
•  Best effort
•  Connectionless

  Stream Socket (TCP)
•  Stream of bytes (like pipe)
•  Reliable
•  Connection-oriented

14

send
/recv

send/
recv

Kernel

socket

socket

Network Socket Address Binding

  A network socket binds to
  Host: IP address
  Protocol: UDP/TCP
  Port:

  Well known ports (0..1023),
e.g. port 80 for Web

  Unused ports available for
clients Each (1025..65535)

  Why ports (indirection again)?
  No need to know which process

to communicate with
  Update software on one side

won’t affect another side

15

ports

UDP/TCP protocols

128.112.9.1 address

Communication with Stream Sockets

16

Server Client
Create a socket

Bind to a port

Listen on the port

Receive request

Create a socket

Receive response

Connect to server Accept connection
Establish

connection

Send request
request

Send response
reply

…

Sockets API

  Create and close a socket
  sockid = socket(af, type, protocol);
  Sockerr = close(sockid);

  Bind a socket to a local address
  sockerr = bind(sockid, localaddr, addrlength);

  Negotiate the connection
  listen(sockid, length);
  accept(sockid, addr, length);

  Connect a socket to destimation
  connect(sockid, destaddr, addrlength);

  Message passing
  send(sockid, buf, size, flags);
  Recv(sockid, buf, size, flags);

17

Message Passing Interface (MPI)

  A message-passing library for parallel machines
  Implemented at user-level for high-performance computing
  Portable

  MPI and MPI2
  Basic (6 functions)

  Works for most parallel programs

  Large (125 functions)
  Blocking (or synchronous) message passing
  Non-blocking (or asynchronous) message passing
  Collective communication

  References
  http://www.mpi-forum.org/

18

Hello World using MPI

19

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}!

Initialize MPI
environment

Last call to
clean up

Return
my rank

Return # of
processes

Blocking Send

  MPI_Send(buf, count, datatype, dest, tag, comm)
  buf address of send buffer
  count # of elements in buffer
  datatype data type of each send buffer element
  dest rank of destination
  tag message tag
  comm communicator

  This routine may block until the message is received by
the destination process
  Depending on implementation

  More about message tag later

20

Blocking Receive

  MPI_Recv(buf, count, datatype, source, tag, comm,
status)
  buf address of receive buffer (output)
  count maximum # of elements in receive buffer
  datatype datatype of each receive buffer element
  source rank of source
  tag message tag
  comm communicator
  status status object (output)

  Receive a message with the specified tag from the
specified comm and specified source process

  MPI_Get_count(status, datatype, count) returns the real
count of the received data

21

More on Blocking Send & Recv

  Can send from source to destination directly
  Send can block until recv gets the message
  Message passing must match

  Source rank (can be MPI_ANY_SOURCE)
  Tag (can be MPI_ANY_TAG)
  Comm (can be MPI_COMM_WORLD)

22

Tag = 0

Tag = 1

Tag = …

MPI_Send(…,
dest=1, tag=1, comm=X…)

MPI_Recv(…,
Source=0,tag=1,comm=X…)

Comm = X

Buffered Send

  MPI_Bsend(buf, count, datatype, dest,
tag, comm)
  buf address of send buffer
  count # of elements in buffer
  Datatype type of each send element
  dest rank of destination
  tag message tag
  comm communicator

  MPI_Buffer_attach(),
MPI_Buffer_detach creates and destroy
the buffer

  MPI_Ssend: Use no buffer
  MPI_Rsend: ready send (recv posts first)

23

MPI_Bsend(buf, …)

Buffer
Created by
MPI_Buffer_attach()

Non-Blocking Send

  MPI_Isend(buf, count, datatype,
dest, tag, comm, *request)
  Same as MPI_Send except

request, which is a handle
  Return as soon as possible

  Unsafe to use buf right away
  MPI_Wait(*request, *status)

  Block until send is done
  MPI_Test(*request, *flag,*status)

  Return the status without blocking

24

MPI_Isend(…)

Work to do

MPI_Wait(…)

MPI_Isend(…)

Work to do

MPI_Test(…, flag,…);
while (flag == FALSE) {

}

More work

Non-Blocking Recv

  MPI_Irecv(buf, count, datatype,
dest, tag, comm, *request, ierr)

  Return right away
  MPI_Wait()

  Block until finishing receive
  MPI_Test()

  Return status
  MPI_Probe(source, tag, comm,

flag, status, ierror)
  Is there a matching message?

25

MPI_Irecv(…)

Work to do

MPI_Wait(…)

MPI_Probe(…)
while (flag == FALSE) {

}
MPI_Irecv(…)
or MPI_recv(…)

More work

Remote Procedure Call (RPC)

  Make remote procedure calls
  Similar to local procedure calls
  Examples: SunRPC, Java RMI

  Restrictions
  Call by value
  Call by object reference (maintain consistency)
  Not call by reference

  Different from mailbox, socket or MPI
  Remote execution, not just data transfer

  References
  B. J. Nelson, Remote Procedure Call, PhD Dissertation, 1981
  A. D. Birrell and B. J. Nelson, Implementing Remote

Procedure Calls, ACM Trans. on Computer Systems, 1984
26

RPC Model

Winter, 2004 CSS490 RPC 27

Caller (Client) Server

RPC call Request message including arguments

Reply message

Including a return value

Return
(same as
local calls)

Function execution
w/ passed arguments

Compile time type checking and interface generation

RPC Mechanism

28

Return Return Call

RPCId ClientId Call Args

Call

Encode/
marshall

Send Receive

Decode
unmarshall

Encode/
marshall

Send

Reply Results

Receive

Decode
unmarshall

Client program Server program

Client
stub

RPC
runtime

RPC
runtime

Server
stub

29

Message-Passing Implementation Issues

 R waits for a message from S,
but S has terminated
  R may be blocked forever

 S sends a message to R,
but R has terminated
  S has no buffer and will be

blocked forever

S R

S R

30

Exception: Message Loss

 Use ack and timeout to detect
and retransmit a lost message
  Receiver sends an ack for each msg
  Sender blocks until an ack message

is back or timeout
status = send(dest, msg, timeout);

  If timeout happens and no ack, then
retransmit the message

  Issues
  Duplicates
  Losing ack messages

S R
send
ack

31

Exception: Message Loss, cont’d

  Retransmission must handle
  Duplicate messages on receiver side
  Out-of-sequence ack messages on

sender side
  Retransmission

  Use sequence number for each
message to identify duplicates

  Remove duplicates on receiver side
  Sender retransmits on an out-of-

sequence ack
  Reduce ack messages

  Bundle ack messages
  Receiver sends noack messages:

can be complex
  Piggy-back acks in send messages

S R

send1
ack1

send2
ack2

32

Exception: Message Corruption

  Detection
  Compute a checksum over the entire message and send

the checksum (e.g. CRC code) as part of the message
  Recompute a checksum on receive and compare with the

checksum in the message
  Correction

  Trigger retransmission
  Use correction codes to recover

Data CRC

Compute checksum

x

33

Summary

  Message passing
  Move data between processes
  Implicit synchronization
  Many API design alternatives (Socket, MPI)
  Indirections are helpful

  RPC
  Remote execution like local procedure calls
  With constraints in terms of passing data

  Issues
  Synchronous method is most common
  Asynchronous method provides overlapping
  Exception needs to be carefully handled

