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Quizzes 

  Quiz 1 
  Most of you did very well 

  Quiz 2: 
Mesa-style monitor: 
  Continue current thread after Signal() 
  Allows Signal() to wakeup more than 1 thread 
  After Wait(), the condition may not be true 

  Quiz 3: 
  Most of you did very well 
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Revisit Mesa-Style Monitor 
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Waiting for a resource 
Acquire( mutex ); 
while ( no resource ) 
 wait( mutex, cond ); 

... 

(use the resource) 
...  

Release( mutex); 

Make a resource available 
Acquire( mutex ); 
... 
(make resource available) 
... 

Signal( cond ); 
/* or Broadcast( cond ); 

Release( mutex); 



About Midterm Exam 

  Midterm may include these topics 
  OS structure, processes and threads  
  Synchronization 
  Scheduling 
  Deadlocks 
  I/O devices  

  Help? 
  Office hours today: 3pm-5pm, 7:30-8:30pm 

  Information 
  In class this Thursday, 80 minutes 
  No book, no notes, no cheat sheet 
  No devices and no online accesses 
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Today’s Topics 

  Message passing 
  Indirect communications 
  Examples 

  Mailbox 
  Socket 
  Message Passing Interface (MPI) 
  Remote Procedure Call (RPC) 

  Exceptions 
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Sending A Message 

Send() Recv() 

OS Kernel 

Within A System 

Network 
Send() 

OS 

Recv() 

OS 

Across A Network 

COS461 



Synchronous Message Passing 
(Within A System) 

Synchronous send: 
  Call send system call with M 
  send system call:  

  No buffer in kernel: block 
  Copy M to kernel buffer 

Synchronous recv: 
  Call recv system call 
  recv system call: 

  No M in kernel: block 
  Copy to user buffer 

How to manage kernel buffer? 
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send(     ) M 

M 

recv(     ) M 



API Issues 

  Message  
  Buffer and size 
  Message type, buffer 

and size 
  Destination or source 

  Direct address:  
node Id, process Id 

  Indirect address: 
mailbox, socket, 
channel, … 
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S 

R 
send(dest, msg) 

recv(src, msg) 



9 

Direct Addressing Example 

  Does this work? 
  Would it work with multiple producers and 1 consumer? 
  Would it work with 1 producer and multiple consumers? 
  What about multiple producers and multiple consumers? 

Producer(){ 
  ... 
  while (1) { 
    produce item; 
    recv(Consumer, &credit); 
    send(Consumer, item); 
  } 
} 

Consumer(){ 
  ... 
  for (i=0; i<N; i++) 
    send(Producer, credit); 
  while (1) { 
    recv(Producer, &item); 
    send(Producer, credit); 
    consume item; 
  } 
} 
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Indirect Addressing Example 

  Would it work with multiple producers and 1 consumer? 
  Would it work with 1 producer and multiple consumers? 
  What about multiple producers and multiple consumers? 

Producer(){ 
  ... 
  while (1) { 
    produce item; 
    recv(prodMbox, &credit); 
    send(consMbox, item); 
  } 
} 

Consumer(){ 
  ... 
  for (i=0; i<N; i++) 
    send(prodMbox, credit); 
  while (1) { 
    recv(consMbox, &item); 
    send(prodMbox, credit); 
    consume item; 
  } 
} 



Indirect Communication 

 Names 
  mailbox, socket, channel, … 

 Properties 
  Some allow one-to-one  

(e.g. pipe) 
  Some allow many-to-one or 

one-to-many communications 
(e.g. mailbox) 
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mbox 

pipe 



Mailbox Message Passing 

  Message-oriented 1-way communication 
  Like real mailbox: letters/messages, not sure about receiver 

  Data structure 
  Mutex, condition variable, buffer for messages 

  Operations 
  Init, open, close, send, receive, … 

  Does the sender know when receiver gets a message? 
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mbox_send(M) mbox_recv(M) 
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Example: Keyboard Input 

  Interrupt handler 
  Get the input characters and give to device thread 

 Device thread 
  Generate a message and send it a mailbox of an input process 

getchar() 

mbox 

V(s); 
… 

while (1) { 
  P(s); 
  Acquire(m); 
  convert … 
  Release(m); 
}; 

Interrupt 
handler 

Device 
thread 



Sockets 
  Sockets 

  Bidirectional (unlike mailbox) 
  Unix domain sockets (IPC) 
  Network sockets (over network) 
  Same APIs 

  Two types 
  Datagram Socket (UDP) 

•  Collection of messages 
•  Best effort 
•  Connectionless 

  Stream Socket (TCP) 
•  Stream of bytes (like pipe) 
•  Reliable 
•  Connection-oriented 
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send 
/recv 

send/ 
recv 

Kernel 

socket 

socket 



Network Socket Address Binding 

  A network socket binds to 
  Host: IP address 
  Protocol: UDP/TCP 
  Port:  

  Well known ports (0..1023), 
e.g. port 80 for Web 

  Unused ports available for 
clients Each (1025..65535) 

  Why ports (indirection again)? 
  No need to know which process 

to communicate with 
  Update software on one side 

won’t affect another side 

15 

ports 

UDP/TCP protocols 

128.112.9.1 address 



Communication with Stream Sockets 

16 

Server  Client 
Create a socket 

Bind to a port 

Listen on the port 

Receive request 

Create a socket 

Receive response 

Connect to server Accept connection 
Establish 

connection 

Send request 
request 

Send response 
reply 

…
 



Sockets API 

  Create and close a socket 
  sockid = socket(af, type, protocol); 
  Sockerr = close(sockid); 

  Bind a socket to a local address 
  sockerr = bind(sockid, localaddr, addrlength); 

  Negotiate the connection 
  listen(sockid, length); 
  accept(sockid, addr, length); 

  Connect a socket to destimation 
  connect(sockid, destaddr, addrlength); 

  Message passing 
  send(sockid, buf, size, flags); 
  Recv(sockid, buf, size, flags); 
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Message Passing Interface (MPI) 

  A message-passing library for parallel machines 
  Implemented at user-level for high-performance computing 
  Portable 

  MPI and MPI2 
  Basic (6 functions) 

  Works for most parallel programs 

  Large (125 functions) 
  Blocking (or synchronous) message passing 
  Non-blocking (or asynchronous) message passing 
  Collective communication 

  References 
  http://www.mpi-forum.org/ 
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Hello World using MPI 
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#include "mpi.h" 
#include <stdio.h> 

int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
}!

Initialize MPI  
environment 

Last call to 
clean up 

Return 
my rank 

Return # of 
processes   



Blocking Send 

  MPI_Send(buf, count, datatype, dest, tag, comm) 
  buf  address of send buffer 
  count # of elements in buffer 
  datatype data type of each send buffer element 
  dest rank of destination 
  tag message tag 
  comm communicator  

  This routine may block until the message is received by 
the destination process 
  Depending on implementation 

  More about message tag later 
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Blocking Receive 

  MPI_Recv(buf, count, datatype, source, tag, comm, 
status) 
  buf  address of receive buffer (output) 
  count maximum # of elements in receive buffer  
  datatype datatype of each receive buffer element 
  source rank of source 
  tag message tag  
  comm communicator 
  status status object (output) 

  Receive a message with the specified tag from the 
specified comm and specified source process 

  MPI_Get_count(status, datatype, count) returns the real 
count of the received data 
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More on Blocking Send & Recv 

  Can send from source to destination directly 
  Send can block until recv gets the message 
  Message passing must match 

  Source rank (can be MPI_ANY_SOURCE) 
  Tag (can be MPI_ANY_TAG) 
  Comm (can be MPI_COMM_WORLD) 
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Tag = 0 

Tag = 1 

Tag = … 

MPI_Send(…,  
dest=1, tag=1, comm=X…) 

MPI_Recv( …,  
Source=0,tag=1,comm=X…) 

Comm = X 



Buffered Send 

  MPI_Bsend(buf, count, datatype, dest, 
tag, comm) 
  buf address of send buffer 
  count # of elements in buffer 
  Datatype type of each send element 
  dest rank of destination 
  tag message tag 
  comm communicator  

  MPI_Buffer_attach(),  
MPI_Buffer_detach creates and destroy 
the buffer 

  MPI_Ssend: Use no buffer 
  MPI_Rsend: ready send (recv posts first) 
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MPI_Bsend(buf, …) 

Buffer 
Created by 
MPI_Buffer_attach() 



Non-Blocking Send 

  MPI_Isend(buf, count, datatype, 
dest, tag, comm, *request) 
  Same as MPI_Send except 

request, which is a handle 
  Return as soon as possible 

  Unsafe to use buf right away 
  MPI_Wait(*request, *status) 

  Block until send is done 
  MPI_Test(*request, *flag,*status) 

  Return the status without blocking 

24 

MPI_Isend(…) 

Work to do 

MPI_Wait(…) 

MPI_Isend(…) 

Work to do 

MPI_Test(…, flag,…); 
while ( flag == FALSE) { 

}  

More work 



Non-Blocking Recv 

  MPI_Irecv(buf, count, datatype, 
dest, tag, comm, *request, ierr) 

  Return right away 
  MPI_Wait() 

  Block until finishing receive 
  MPI_Test() 

  Return status 
  MPI_Probe(source, tag, comm, 

flag, status, ierror) 
  Is there a matching message? 
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MPI_Irecv(…) 

Work to do 

MPI_Wait(…) 

MPI_Probe(…) 
while ( flag == FALSE) { 

} 
MPI_Irecv(…)  
or MPI_recv(…)  

More work 



Remote Procedure Call (RPC) 

  Make remote procedure calls 
  Similar to local procedure calls 
  Examples: SunRPC, Java RMI 

  Restrictions 
  Call by value 
  Call by object reference (maintain consistency) 
  Not call by reference 

  Different from mailbox, socket or MPI 
  Remote execution, not just data transfer 

  References 
  B. J. Nelson, Remote Procedure Call, PhD Dissertation, 1981 
  A. D. Birrell and B. J. Nelson, Implementing Remote 

Procedure Calls, ACM Trans. on Computer Systems, 1984 
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RPC Model 

Winter, 2004 CSS490 RPC 27 

Caller (Client) Server 

RPC call Request message  including arguments 

Reply message 

Including a return value 

Return 
(same as 
local calls) 

Function execution 
w/ passed arguments 

Compile time type checking and interface generation  



RPC Mechanism 
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Return Return Call 

RPCId ClientId Call Args 

Call 

Encode/ 
marshall 

Send Receive 

Decode 
unmarshall 

Encode/ 
marshall 

Send 

Reply Results 

Receive 

Decode 
unmarshall 

Client program Server program 

Client 
stub 

RPC 
runtime 

RPC 
runtime 

Server 
stub 
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Message-Passing Implementation Issues 

 R waits for a message from S, 
but S has terminated 
  R may be blocked forever 

 S sends a message to R,  
but R has terminated 
  S has no buffer and will be 

blocked forever 

S R 

S R 



30 

Exception: Message Loss 

 Use ack and timeout to detect 
and retransmit a lost message 
  Receiver sends an ack for each msg 
  Sender blocks until an ack message 

is back or timeout  
status = send( dest, msg, timeout ); 

  If timeout happens and no ack, then 
retransmit the message 

  Issues 
  Duplicates 
  Losing ack messages 

S R 
send 
ack 
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Exception: Message Loss, cont’d 

  Retransmission must handle  
  Duplicate messages on receiver side 
  Out-of-sequence ack messages on 

sender side 
  Retransmission 

  Use sequence number for each 
message to identify duplicates 

  Remove duplicates on receiver side 
  Sender retransmits on an out-of-

sequence ack 
  Reduce ack messages 

  Bundle ack messages 
  Receiver sends noack messages: 

can be complex 
  Piggy-back acks in send messages 

S R 

send1 
ack1 

send2 
ack2 
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Exception: Message Corruption 

  Detection 
  Compute a checksum over the entire message and send 

the checksum (e.g. CRC code) as part of the message 
  Recompute a checksum on receive and compare with the 

checksum in the message 
  Correction 

  Trigger retransmission 
  Use correction codes to recover 

Data CRC 

Compute checksum 

x 
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Summary 

  Message passing 
  Move data between processes 
  Implicit synchronization 
  Many API design alternatives (Socket, MPI) 
  Indirections are helpful 

  RPC  
  Remote execution like local procedure calls 
  With constraints in terms of passing data 

  Issues 
  Synchronous method is most common 
  Asynchronous method provides overlapping 
  Exception needs to be carefully handled 


