
COS 318: Operating Systems

Introduction

Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/

2

Today

  Course information and logistics
  What is an operating system?
  Evolution of operating systems
  Why study operating systems?

Information and Staff

  Website
  http://www.cs.princeton.edu/courses/archive/fall13/cos318/

  Textbooks
  Modern Operating Systems, 3rd Edition, A. S. Tanenbaum

  Instructors
  Kai Li, Office: 321 CS, Hours: Tue 3-5pm
  Andy Bavier, Office: 321 CS, Hours: Tue 3-5pm

  Teaching assistants
  Scott Erickson (2, 4, 6), Office: 003 CS, hours: TBD
  Marcela Melara (1, 3, 5), Office: 003 CS, hours: TBD

  Lab teaching assistants
  David Durst, Anna Simpson, Catherine Wu, Harvest Zhang*
  Location: Friends 010, Hours: TBD

3

Grading

Last year
 Projects 45%
 Final project 15%
 Midterm 15%
 Final exam 15%
 Participation 10%
  24 quizzes 0%

This semester
 Projects 50%
 Final project 15%
 Midterm 15%
 No final exam
 Participation 10%
  6 quizzes 10%

4

5

Projects
  Projects

  Bootloader (150-300 lines)
  Non-preemptive kernel (200-250 lines)
  Preemptive kernel (100-150 lines)
  Inter-process communication and device driver (300-350 lines)
  Virtual memory (300-450 lines)
  File system (500+ lines)

  How
  Pair with a partner for project 1, 2 and 3
  Pair with a different partner for project 4 and 5
  Do yourself for final project
  Design review at the end of week one
  All projects due Sundays 11:55pm

  The Lab aka “The Fishbowl”
  Linux cluster in 010 Friends Center, a good place to be
  On your laptop, using “VirtualBox”

6

Project Grading

  Design Review
  Requirements will be specified for each project
  Signup online for making appointments
  10 minutes with the TA in charge
  0-5 points for each design review
  10% deduction for missing an appointment

  Project completion
  10 points plus possible extra points

  Late policy of grading projects
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
  3 days: 36.8%, 7 days: 9.7%

7

Logistics

  Precepts
  Time: Tue 7:30pm – 8:20pm in CS building 105
  No second session

  Project 1
  A tutorial on assembly programming

and kernel debugging
•  9/17: 7:30-8:30pm in CS building 105

  Precept
•  9/24: 7:30-8:30pm in CS building 105

  Design review
•  9/23 (Monday) 1:30pm – evening (Friend 010)
•  Sign up online (1 slot per team)

  Due: 9/29 (Sunday) 11:55pm

Piazza for Discussions

  Piazza is convenient
  Most of you love it

  Search, ask and answer questions
  Students are encouraged to answer questions
  Staff will try to answer in a timely manner

  Only use email if your question is personal/private
  Project grading questions send to the TA in charge
  Other questions send to instructors

8

Ethics and Other Issues

  Follow Honor System
  Ask teaching staff if you are not sure
  Asking each other questions is okay
  Work must be your own (or your team’s)

  If you discover any solutions online
  Tell teaching staff

  Do not put your code or design on the web
  Other schools are using similar projects

9

10

COS318 in Systems Course Sequence

  Prerequisites
  COS 217: Introduction to Programming Systems
  COS 226: Algorithms and Data Structures

  300-400 courses in systems
  COS318: Operating Systems
  COS320: Compiler Techniques
  COS333: Advanced Programming Techniques
  COS432: Information Security
  COS475: Computer Architecture

  Courses needing COS318
  COS 461: Computer Networks
  COS 518: Advanced Operating Systems
  COS 561: Advanced Computer Networks

11

What Is Operating System?

  Software between applications and hardware
  Make finite resources “infinite”
  Provide protection and security

Hardware

Operating System

editor gcc Browser DVD Player

12

What Do Operating Systems Do?

  Provide a layer of abstraction
  User programs can deal with simpler, high-level concepts
  Hide complex and unreliable hardware
  Protect application software from crashing a system

  Implement the OS abstraction: manage resources
  Manage application interaction with hardware resources
  Make finite CPU, memory and I/O “infinite”
  Allow multiple users to share resources without hurting each other

13

Some Examples

  System example
  What if a user tries to access disk blocks?
  What if a network link is noisy?

  Protection example
  What if a program starts randomly accessing memory?
  What if a user tries to

 int main() {
 while(1)
 fork();
 }

  Resource management example
  What if many programs are running infinite loops?

 while (1);

14

A Typical Academic Computer (1981 vs. 2011)

1981 2011 Ratio

Intel CPU transistors 0.1M 1.9B ~20000x

Intel CPU core x clock 10Mhz 10×2.4Ghz ~2,400x

DRAM 1MB 64GB 64,000x

Disk 5MB 1TB 200,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $1.5K 1/20x

$/Mhz $30,000 $1,500/24,000 1/4,800x

15

Computing and Communications
Exponential Growth! (Courtesy Jim Gray)

  Performance/Price doubles every 18 months
  100x per decade
  Progress in next 18 months

 = ALL previous progress
  New storage = sum of all old storage (ever)
  New processing = sum of all old processing.

15 years ago

16

Phase 1: Hardware Expensive, Human Cheap

  User at console, OS as subroutine library
  Batch monitor (no protection): load, run, print
  Development

  Data channels, interrupts; overlap I/O and CPU
  Direct Memory Access (DMA)
  Memory protection: keep bugs to individual programs
  Multics: designed in 1963 and run in 1969

  Assumption: No bad people. No bad programs. Minimum
interactions

hardware Hardware

Application
OS

17

Phase 2: Hardware Cheap, Human Expensive

  Use cheap terminals to share a computer
  Time-sharing OS
  Unix enters the mainstream
  Problems: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2 . . .

18

Phase 3: HW Cheaper, Human More Expensive

  Personal computer
  Altos OS, Ethernet, Bitmap display, laser printer (79)
  Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
  Eventually >200M units per year

  PC operating system
  Memory protection
  Multiprogramming
  Networking

First PC at Xerox PARC

19

Now: > 1 Machines per User

  Pervasive computers
  Wearable computers
  Communication devices
  Entertainment equipment
  Computerized vehicle
  Phones ~2B units /year

  OS are specialized
  Embedded OS
  Specially general-purpose OS

(e.g. iOS, Android)

20

Now: Multiple Processors per “Machine”

  Multiprocessors
  SMP: Symmetric MultiProcessor
  ccNUMA: Cache-Coherent Non-Uniform

Memory Access
  General-purpose, single-image OS with

multiproccesor support
  Multicomputers

  Supercomputer with many CPUs and high-
speed communication

  Specialized OS with special message-
passing support

  Clusters
  A network of PCs
  Server OS w/ cluster

abstraction (e.g. MapReduce)

21

Trend: Multiple “Cores” per Processor
  Multicore or Manycore transition

  Intel Xeon processor has 10 cores / 20 threads
  New Intel Xeon Phi has 60 cores
  nVidia GPUs has 3000 FPUs

  Accelerated need for software support
  OS support for manycores
  Parallel programming of applications

22

Trend: Datacenter as A Computer

  Cloud computing
  Hosting data in the cloud
  Software as services
  Examples:

•  Google, Microsoft, Salesforce,
Yahoo, …

  Utility computing
  Pay as you go for computing resources
  Outsourced warehouse-scale hardware and software
  Examples:

•  Amazon, Nirvanix

23

Why Study OS?

  OS is a key part of a computer system
  It makes our life better (or worse)
  It is “magic” to realize what we want
  It gives us “power” (reduce fear factor)

  Learn about concurrency
  Parallel programs run on OS
  OS runs on parallel hardware
  Best way to learn concurrent programming

  Understand how a system works
  How many procedures does a key stroke invoke?
  What happens when your application references 0 as a pointer?
  Real OS is huge and impossible to read everything, but building a

small OS will go a long way

Why Study OS?

  Basic knowledge for many areas
  Networking, distributed systems, security, …

  More employable
  Become someone who understand “systems”
  Become the top group of “athletes”
  Ability to build things from ground up

  Question:
  Why shouldn’t you study OS?

24

Does COS318 Require A Lot of Time?

  Yes
  But, we will try to reduce your efforts, comparing with

last year
  To become a top athlete, you want to know the entire

HW/SW stack, and spend 10,000 hours programming
  “Practice isn't the thing you do once you're good. It's the

thing you do that makes you good.”
  “In fact, researchers have settled on what they believe is

the magic number for true expertise: ten thousand
hours.”
― Malcolm Gladwell, Outliers: The Story of Success

25

26

Things to Do

  Today’s material
  Read MOS 1.1-1.3
  Lecture available online

  Next lecture
  Read MOS 1.4-1.5

  Make “tent” with your name
  Use next time

  Use piazza to find a partner
  Find a partner before the end of next lecture for projects

1, 2 and 3

