
COS 318: Operating Systems

Introduction

Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/

2

Today

  Course information and logistics
  What is an operating system?
  Evolution of operating systems
  Why study operating systems?

Information and Staff

  Website
  http://www.cs.princeton.edu/courses/archive/fall13/cos318/

  Textbooks
  Modern Operating Systems, 3rd Edition, A. S. Tanenbaum

  Instructors
  Kai Li, Office: 321 CS, Hours: Tue 3-5pm
  Andy Bavier, Office: 321 CS, Hours: Tue 3-5pm

  Teaching assistants
  Scott Erickson (2, 4, 6), Office: 003 CS, hours: TBD
  Marcela Melara (1, 3, 5), Office: 003 CS, hours: TBD

  Lab teaching assistants
  David Durst, Anna Simpson, Catherine Wu, Harvest Zhang*
  Location: Friends 010, Hours: TBD

3

Grading

Last year
 Projects 45%
 Final project 15%
 Midterm 15%
 Final exam 15%
 Participation 10%
  24 quizzes 0%

This semester
 Projects 50%
 Final project 15%
 Midterm 15%
 No final exam
 Participation 10%
  6 quizzes 10%

4

5

Projects
  Projects

  Bootloader (150-300 lines)
  Non-preemptive kernel (200-250 lines)
  Preemptive kernel (100-150 lines)
  Inter-process communication and device driver (300-350 lines)
  Virtual memory (300-450 lines)
  File system (500+ lines)

  How
  Pair with a partner for project 1, 2 and 3
  Pair with a different partner for project 4 and 5
  Do yourself for final project
  Design review at the end of week one
  All projects due Sundays 11:55pm

  The Lab aka “The Fishbowl”
  Linux cluster in 010 Friends Center, a good place to be
  On your laptop, using “VirtualBox”

6

Project Grading

  Design Review
  Requirements will be specified for each project
  Signup online for making appointments
  10 minutes with the TA in charge
  0-5 points for each design review
  10% deduction for missing an appointment

  Project completion
  10 points plus possible extra points

  Late policy of grading projects
  1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
  3 days: 36.8%, 7 days: 9.7%

7

Logistics

  Precepts
  Time: Tue 7:30pm – 8:20pm in CS building 105
  No second session

  Project 1
  A tutorial on assembly programming

and kernel debugging
•  9/17: 7:30-8:30pm in CS building 105

  Precept
•  9/24: 7:30-8:30pm in CS building 105

  Design review
•  9/23 (Monday) 1:30pm – evening (Friend 010)
•  Sign up online (1 slot per team)

  Due: 9/29 (Sunday) 11:55pm

Piazza for Discussions

  Piazza is convenient
  Most of you love it

  Search, ask and answer questions
  Students are encouraged to answer questions
  Staff will try to answer in a timely manner

  Only use email if your question is personal/private
  Project grading questions send to the TA in charge
  Other questions send to instructors

8

Ethics and Other Issues

  Follow Honor System
  Ask teaching staff if you are not sure
  Asking each other questions is okay
  Work must be your own (or your team’s)

  If you discover any solutions online
  Tell teaching staff

  Do not put your code or design on the web
  Other schools are using similar projects

9

10

COS318 in Systems Course Sequence

  Prerequisites
  COS 217: Introduction to Programming Systems
  COS 226: Algorithms and Data Structures

  300-400 courses in systems
  COS318: Operating Systems
  COS320: Compiler Techniques
  COS333: Advanced Programming Techniques
  COS432: Information Security
  COS475: Computer Architecture

  Courses needing COS318
  COS 461: Computer Networks
  COS 518: Advanced Operating Systems
  COS 561: Advanced Computer Networks

11

What Is Operating System?

  Software between applications and hardware
  Make finite resources “infinite”
  Provide protection and security

Hardware

Operating System

editor gcc Browser DVD Player

12

What Do Operating Systems Do?

  Provide a layer of abstraction
  User programs can deal with simpler, high-level concepts
  Hide complex and unreliable hardware
  Protect application software from crashing a system

  Implement the OS abstraction: manage resources
  Manage application interaction with hardware resources
  Make finite CPU, memory and I/O “infinite”
  Allow multiple users to share resources without hurting each other

13

Some Examples

  System example
  What if a user tries to access disk blocks?
  What if a network link is noisy?

  Protection example
  What if a program starts randomly accessing memory?
  What if a user tries to

 int main() {
 while(1)
 fork();
 }

  Resource management example
  What if many programs are running infinite loops?

 while (1);

14

A Typical Academic Computer (1981 vs. 2011)

1981 2011 Ratio

Intel CPU transistors 0.1M 1.9B ~20000x

Intel CPU core x clock 10Mhz 10×2.4Ghz ~2,400x

DRAM 1MB 64GB 64,000x

Disk 5MB 1TB 200,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $1.5K 1/20x

$/Mhz $30,000 $1,500/24,000 1/4,800x

15

Computing and Communications
Exponential Growth! (Courtesy Jim Gray)

  Performance/Price doubles every 18 months
  100x per decade
  Progress in next 18 months

 = ALL previous progress
  New storage = sum of all old storage (ever)
  New processing = sum of all old processing.

15 years ago

16

Phase 1: Hardware Expensive, Human Cheap

  User at console, OS as subroutine library
  Batch monitor (no protection): load, run, print
  Development

  Data channels, interrupts; overlap I/O and CPU
  Direct Memory Access (DMA)
  Memory protection: keep bugs to individual programs
  Multics: designed in 1963 and run in 1969

  Assumption: No bad people. No bad programs. Minimum
interactions

hardware Hardware

Application
OS

17

Phase 2: Hardware Cheap, Human Expensive

  Use cheap terminals to share a computer
  Time-sharing OS
  Unix enters the mainstream
  Problems: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2 . . .

18

Phase 3: HW Cheaper, Human More Expensive

  Personal computer
  Altos OS, Ethernet, Bitmap display, laser printer (79)
  Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
  Eventually >200M units per year

  PC operating system
  Memory protection
  Multiprogramming
  Networking

First PC at Xerox PARC

19

Now: > 1 Machines per User

  Pervasive computers
  Wearable computers
  Communication devices
  Entertainment equipment
  Computerized vehicle
  Phones ~2B units /year

  OS are specialized
  Embedded OS
  Specially general-purpose OS

(e.g. iOS, Android)

20

Now: Multiple Processors per “Machine”

  Multiprocessors
  SMP: Symmetric MultiProcessor
  ccNUMA: Cache-Coherent Non-Uniform

Memory Access
  General-purpose, single-image OS with

multiproccesor support
  Multicomputers

  Supercomputer with many CPUs and high-
speed communication

  Specialized OS with special message-
passing support

  Clusters
  A network of PCs
  Server OS w/ cluster

abstraction (e.g. MapReduce)

21

Trend: Multiple “Cores” per Processor
  Multicore or Manycore transition

  Intel Xeon processor has 10 cores / 20 threads
  New Intel Xeon Phi has 60 cores
  nVidia GPUs has 3000 FPUs

  Accelerated need for software support
  OS support for manycores
  Parallel programming of applications

22

Trend: Datacenter as A Computer

  Cloud computing
  Hosting data in the cloud
  Software as services
  Examples:

•  Google, Microsoft, Salesforce,
Yahoo, …

  Utility computing
  Pay as you go for computing resources
  Outsourced warehouse-scale hardware and software
  Examples:

•  Amazon, Nirvanix

23

Why Study OS?

  OS is a key part of a computer system
  It makes our life better (or worse)
  It is “magic” to realize what we want
  It gives us “power” (reduce fear factor)

  Learn about concurrency
  Parallel programs run on OS
  OS runs on parallel hardware
  Best way to learn concurrent programming

  Understand how a system works
  How many procedures does a key stroke invoke?
  What happens when your application references 0 as a pointer?
  Real OS is huge and impossible to read everything, but building a

small OS will go a long way

Why Study OS?

  Basic knowledge for many areas
  Networking, distributed systems, security, …

  More employable
  Become someone who understand “systems”
  Become the top group of “athletes”
  Ability to build things from ground up

  Question:
  Why shouldn’t you study OS?

24

Does COS318 Require A Lot of Time?

  Yes
  But, we will try to reduce your efforts, comparing with

last year
  To become a top athlete, you want to know the entire

HW/SW stack, and spend 10,000 hours programming
  “Practice isn't the thing you do once you're good. It's the

thing you do that makes you good.”
  “In fact, researchers have settled on what they believe is

the magic number for true expertise: ten thousand
hours.”
― Malcolm Gladwell, Outliers: The Story of Success

25

26

Things to Do

  Today’s material
  Read MOS 1.1-1.3
  Lecture available online

  Next lecture
  Read MOS 1.4-1.5

  Make “tent” with your name
  Use next time

  Use piazza to find a partner
  Find a partner before the end of next lecture for projects

1, 2 and 3

