
COS 318: Operating Systems

Storage and File Hierarchy

Kai Li and Andy Bavier
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Project 5

u  New extension to December 8, Sunday 11:55pm
u  Tonight: Q&A session in CS 105 7:30-830pm

2

3

Topics

u  Storage hierarchy
u  File system abstraction
u  File system protection

4

Traditional Data Center Storage Hierarchy

LAN SAN

Clients Server

…

Storage

Storage

Onsite
Backup

Offsite
backup

WAN

Remote
mirror

5

Evolved Data Center Storage Hierarchy

LAN

Clients

Storage

…

Onsite
Backup

Offsite
backup

WAN

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

6

New Data Center Storage Hierarchy

LAN

Clients

…

Onsite
Backup

WAN

Remote
mirror Network

Attached
Storage
(NAS)

w/ snapshots
to protect data

WAN

Remote
Backup

“Deduplication”
Capacity and

bandwidth
optimization

7

“Public Cloud” Storage Hierarchy

WAN

Clients

…

WAN
Interfaces Geo-plex

Examples: Google GFS, Spanner,
Apple icloud, Amazon S3,
Dropbox, Mozy, etc

Physical storage

8

Revisit File System Abstractions
u  Network file system

l  Map to local file systems
l  NFS, CIFS, etc

u  Local file system
l  Implement file system abstraction

on block block storage
u  Volume manager

l  Logical volume of block storage
l  Map to physical storage
l  RAID and reconstruction

u  Physical storage
l  Previous lectures

Volume Manager

Local File System

Network File System

Volume Manager

u  Group multiple storage partitions into a logical volume
l  Grow or shrink without affecting existing data
l  Virtualization of capacity and performance

u  Reliable block storage
l  Include RAID, tolerating device failures
l  Provide error detections at block level

u  Remote abstraction
l  Block storage in the cloud
l  Remote volumes for disaster recovery
l  Remote mirrors can be split or merged for backups

u  How to implement?
l  OS kernel: Windows, OSX, Linux, etc.
l  Storage subsystem: EMC, Hitachi, HP, IBM, NetApp

9

10

Block Storage vs. Files

Disk/Volume abstraction
u  Block oriented
u  Block numbers
u  No protection among users of

the system
u  Data might be corrupted if

machine crashes

u  Support file systems,
database systems, etc.

File abstraction
u  Byte oriented
u  Named files
u  Users protected from each

other
u  Robust to machine failures

u  Emulate block storage
interface

11

File Structures

u Byte sequence
l  Read or write N bytes
l  Unstructured or linear

u Record sequence
l  Fixed or variable length
l  Read or write a number of

records
u Tree

l  Records with keys
l  Read, insert, delete a record

(typically using B-tree) …

… … …

12

File Types

u ASCII
u Binary data

l  Record
l  Tree
l  An Unix executable file

•  header: magic number, sizes, entry point, flags
•  text
•  data
•  relocation bits
•  symbol table

u Devices
u Everything else in the system

13

File Operations

u  Operations for “sequence of bytes” files
l  Create: create a file (mapping from a name to a file)
l  Delete: delete a file
l  Open: authentication
l  Close: finish accessing a file
l  Seek: jump to a particular location in a file
l  Read: read some bytes from a file
l  Write: write some bytes to a file
l  A few more on directories: talk about this later

u  Implementation challenges
l  Few disk accesses
l  Minimal space overhead

Access Patterns

u Sequential (the common pattern)
l  File data processed sequentially
l  Example: Editor writes out a file

u Random access
l  Access a block in file directly
l  Example: Read a message in an inbox file

u Keyed access
l  Search for a record with particular values
l  Usually not provided by today’s file systems
l  Examples: Database search and indexing

14

15

VM Page Table vs. File System Metadata

Page table
u  Manage the mappings of

an address space
u  Map virtual page # to

physical page #
u  Check access permission

and illegal addressing
u  TLB does all in one cycle

File metadata
u  Manage the mappings of

files
u  Map byte offset to disk

block address
u  Check access permission

and illegal addressing
u  Implement in software,

may cause I/Os

16

File System vs. Virtual Memory

u  Similarity
l  Location transparency
l  Oblivious to size
l  Protection

u  File system is easier than VM
l  File system mappings can be slow
l  Files are dense and mostly sequential
l  Page tables deal with sparse address spaces and random

accesses
u  File system is more difficult than VM

l  Each layer of translation causes potential I/Os
l  Memory space for caching is never enough
l  File size range vary: many < 10k, some > GB
l  Implementation must be reliable

17

Protection Policy vs. Mechanism

u  Policy is about what
u  Mechanism is about how
u  A protection system is the mechanism to enforce a

security policy
l  Same set of choices, no matter what policies

u  A security policy defines acceptable behaviors and
unacceptable behaviors
l  Example security policies:

•  Each user can only allocate 4GB of disk storage
•  No one but root can write to the password file
•  A user is not allowed to read others’ mail files

18

Protection Mechanisms

u  Authentication
l  Identity check

•  Unix: password
•  Credit card: last 4 digits of credit card # + SSN + zipcode
•  Airport: driver’s license or passport

u  Authorization
l  Determine if x is allowed to do y
l  Need a simple database

u  Access enforcement
l  Enforce authorization decision
l  Must make sure there are no loopholes

19

Authentication

u Usually done with passwords
l  Relatively weak, because you must remember them

u Passwords are stored in an encrypted form
l  Use a “secure hash” (one way only)

u  Issues
l  Passwords should be obscure, to prevent “dictionary

attacks”
l  Each user has many passwords

u Alternatives?

20

Protection Domain

u  Once identity known, provides rules
l  E.g. what is Bob allowed to do?

u  Protection matrix: domains vs. resources

File A Printer B File C

Domain 1 R W RW

Domain 2 RW W …

Domain 3 R … RW

21

By Columns: Access Control Lists (ACLs)

u Each object has a list of
<user, privilege> pairs

u ACL is simple, implemented in most systems
l  Owner, group, world

u  Implementation considerations
l  Stores ACLs in each file
l  Use login authentication to identify
l  Kernel implements ACLs

u Any issues?

22

By Rows: Capabilities

u For each user, there is a capability list
l  A lists of <object, privilege> pairs

u Capabilities provide both naming and protection
l  Can only “see” an object if you have a capability

u  Implementation considerations
l  Architecture support
l  Capabilities stored in the kernel
l  Capabilities stored in the user space in encrypted format

u  Issues?

23

Access Enforcement

u  Use a trusted party to
l  Enforce access controls
l  Protect authorization information

u  Kernel is the trusted party
l  This part of the system can do anything it wants
l  If there is a bug, the entire system could be destroyed
l  Want it to be as small & simple as possible

u  Security is only as strong as the weakest link in the
protection system

24

Some Easy Attacks

u  Abuse of valid privilege
l  On Unix, super-user can do anything

•  Read your mail, send mail in your name, etc.
l  If you delete the code for COS318 project 5, your partner is

not happy
u  Spoiler/Denial of service (DoS)

l  Use up all resources and make system crash
l  Run shell script to: “while(1) { mkdir foo; cd foo; }”
l  Run C program: “while(1) { fork(); malloc(1000)[40] = 1; }”

u  Listener
l  Passively watch network traffic

No Perfect Protection System

u Only make it difficult to do bad things
l  It cannot prevent bad things

u There are always ways to defeat
l  burglary, bribery, blackmail, bludgeoning, etc.

u Every system has holes

25

26

Summary

u  Storage hierarchy can be complex
l  Reliability, security, performance and cost
l  Many things are hidden

u  Primary storage
l  Volume of block storage
l  Local file system
l  Network file system

u  Protection
l  ACL is the default in file systems
l  More protection is needed because we are in the cloud

