COS 318: Operating Systems

Storage and File Hierarchy

Kai Li and Andy Bavier
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Project 5

New extension to December 8, Sunday 11:55pm
Tonight: Q&A session in CS 105 7:30-830pm

Topics

Storage hierarchy
File system abstraction
File system protection

Traditional Data Center Storage Hierarchy

|

i

Remote
mirror

Evolved Data Center Storage Hierarchy
o0

.

Network = Remote

l[j Attached w/ snapshots mirror
/ to protect data
Clients Storage P
(NAS)

i

(i

New Data Center Storage Hierarchy

] : I
Network SI=US Remote
% Attached w/ snapshots mirror
/ to protect data
Clients Storage p
(NAS)
Onsite | i Remote
Backup ” Backup
“Deduplication” w .
Capacity and
bandwidth
optimization

“Public Cloud” Storage Hierarchy

Interfaces

(I

flmimmt =
ST

Clients Examples: Google GFS, Spanner,
Apple icloud, Amazon S3,
Dropbox, Mozy, etc

Revisit File System Abstractions

Network file system
e Map to local file systems
e NFS, CIFS, etc

Local file system Network File System

e Implement file system abstraction
on block block storage
Volume manager
e Logical volume of block storage
e Map to physical storage

° RAID and reconstruction Physical storage
Physical storage

e Previous lectures @ @ @ @ Ej

Local File System

Volume Manager

Volume Manager

Group multiple storage partitions into a logical volume
e Grow or shrink without affecting existing data
e Virtualization of capacity and performance

Reliable block storage
e Include RAID, tolerating device failures
e Provide error detections at block level

Remote abstraction
e Block storage in the cloud
e Remote volumes for disaster recovery
e Remote mirrors can be split or merged for backups

How to implement?
e OS kernel: Windows, OSX, Linux, etc.
e Storage subsystem: EMC, Hitachi, HP, IBM, NetApp

Block Storage vs. Files

Disk/Volume abstraction File abstraction
Block oriented Byte oriented
Block numbers Named files
No protection among users of Users protected from each
the system other
Data might be corrupted if Robust to machine failures

machine crashes

Support file systems, Emulate block storage
database systems, etc. interface

10

File Structures

Byte sequence
e Read or write N bytes
e Unstructured or linear

Record sequence

e Fixed or variable length
e Read or write a number of
records

Tree

e Records with keys

e Read, insert, delete a record
(typically using B-tree)

11

File Types

ASCII

Binary data
e Record
e [ree

e An Unix executable file
* header: magic number, sizes, entry point, flags
 text
« data
* relocation bits
« symbol table

Devices
Everything else in the system

[Ery (IGET)

TR

File Operations

Operations for “sequence of bytes” files

Create: create a file (mapping from a name to a file)
Delete: delete a file

Open: authentication

Close: finish accessing a file

Seek: jump to a particular location in a file

Read: read some bytes from a file

Write: write some bytes to a file

A few more on directories: talk about this later

Implementation challenges
e Few disk accesses
e Minimal space overhead

)c
[Ery IGET)

TR

13

Access Patterns

Sequential (the common pattern)

e File data processed sequentially

e Example: Editor writes out a file

Random access

e Access a block in file directly

e Example: Read a message in an inbox file

Keyed access

e Search for a record with particular values

e Usually not provided by today’ s file systems
e Examples: Database search and indexing

14

VM Page Table vs. File System Metadata

@

Page table File metadata

Manage the mappings of Manage the mappings of

an address space files

Map virtual page # to Map byte offset to disk

physical page # block address

Check access permission Check access permission

and illegal addressing and illegal addressing

TLB does all in one cycle Implement in software,

may cause |/Os

15

File System vs. Virtual Memory

Similarity

e Location transparency
e Oblivious to size

e Protection

File system is easier than VM
e File system mappings can be slow
e Files are dense and mostly sequential

e Page tables deal with sparse address spaces and random
accesses

File system is more difficult than VM

e Each layer of translation causes potential I/Os
e Memory space for caching is never enough

e File size range vary: many < 10k, some > GB
e Implementation must be reliable

16

Protection Policy vs. Mechanism

Policy is about what
Mechanism is about how
A protection system is the mechanism to enforce a
security policy

e Same set of choices, no matter what policies
A security policy defines acceptable behaviors and
unacceptable behaviors

e Example security policies:
« Each user can only allocate 4GB of disk storage
* No one but root can write to the password file
A user is not allowed to read others’ mail files

17

Protection Mechanisms

Authentication
e Identity check
« Unix: password
« Credit card: last 4 digits of credit card # + SSN + zipcode
« Airport: driver’ s license or passport
Authorization

e Determine if x is allowed to do y
e Need a simple database

Access enforcement
e Enforce authorization decision
e Must make sure there are no loopholes

18

Authentication

Usually done with passwords
e Relatively weak, because you must remember them

Passwords are stored in an encrypted form
e Use a “secure hash” (one way only)

Issues

e Passwords should be obscure, to prevent “dictionary
attacks”

e Each user has many passwords
Alternatives?

19

Protection Domain

Once identity known, provides rules
e E.g. what is Bob allowed to do?

Protection matrix: domains vs. resources

File A Printer B File C

Domain 1 R W RW

Domain 2 RW W

Domain 3 R RW

20

By Columns: Access Control Lists (ACLSs)

@
Each object has a list of
<user, privilege> pairs
ACL is simple, implemented in most systems
e Owner, group, world

Implementation considerations
e Stores ACLs in each file

e Use login authentication to identify
e Kernel implements ACLs

Any issues?

21

By Rows: Capabilities

For each user, there is a capabillity list
e A lists of <object, privilege> pairs

Capabilities provide both naming and protection
e Can only “see” an object if you have a capability

Implementation considerations

e Architecture support

e Capabilities stored in the kernel

e Capabilities stored in the user space in encrypted format

Issues?

22

Access Enforcement

Use a trusted party to
e Enforce access controls
e Protect authorization information

Kernel is the trusted party

e This part of the system can do anything it wants
e If there is a bug, the entire system could be destroyed
e Want it to be as small & simple as possible

Security is only as strong as the weakest link in the
protection system

23

Some Easy Attacks

Abuse of valid privilege

e On Unix, super-user can do anything
» Read your mail, send mail in your name, etc.

e If you delete the code for COS318 project 5, your partner is
not happy

Spoiler/Denial of service (DoS)
e Use up all resources and make system crash

e Run shell script to: “while(1) { mkdir foo; cd foo; }”
e Run C program: “while(1) { fork(); malloc(1000)[40] = 1; }”

Listener
e Passively watch network traffic

)c
[Ery IGET)

TR

24

No Perfect Protection System

Only make it difficult to do bad things
e |t cannot prevent bad things

There are always ways to defeat
e burglary, bribery, blackmail, bludgeoning, etc.

Every system has holes

25

Summary

Storage hierarchy can be complex
e Reliability, security, performance and cost
e Many things are hidden

Primary storage

e Volume of block storage
e Local file system
e Network file system

Protection

e ACL is the default in file systems
e More protection is needed because we are in the cloud

26

