
COS 318: Operating Systems

File Caching and Reliability

Kai Li and Andy Bavier
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Topics

u  File buffer cache
u  File system recovery
u  Consistent updates
u  Transactions

3

File Buffer Cache

u  A large cache in kernel
u  Read: check if the block is in

l  Yes: Copy block to user buffer
l  No: Read from storage to buffer

cache and copy to user buffer
u  Write: check if the block is in

l  Yes: Update it with user buffer
l  No: Copy to buffer cache (may

replace a block)
l  Write the block to storage

u  Usual questions
l  What to cache?
l  How to size the cache?
l  What to prefetch?
l  How and what to replace?
l  Which write policies?

User buffer User

Buffer
cache

Storage

Kernel

4

What to Cache?

u  For kinds of blocks
l  i-nodes
l  indirect blocks
l  Directories
l  Data blocks

u  Issues
l  All blocks are equal?

5

Buffer Cache Size

u  Competitions
l  Completes with VM and the rest of the system for memory

u  Two approaches
l  Fixed size
l  Variable size

u  How to adjust buffer cache size?
l  Users make decisions
l  Working set idea with dynamic adjustments within thresholds

Buffer cache
(90MB)

VM
(110MB)

Buffer cache
(120MB)

VM
(80MB)

6

Why in the Kernel?

u DMA
l  DMA works with “pinned”

physical memory
u Multiple user processes

l  Share the buffer cache
u Typical replacement strategy

l  Global LRU
l  Working set for each process

u Questions
l  Move buffer cache to the user

level?

User1

User2

Userk
 ...

Buffer cache

Storage

DMA

7

What to Prefetch?

u  Optimal
l  Prefetch in just enough time to use them

u  Good news: files have localities
l  Temporal locality
l  Spatial locality

u  Common strategies
l  Prefetch next k blocks together
l  Discard unreferenced blocks
l  Layout consecutive blocks to the same cylinder group
l  Fetch directory and i-nodes together

u  Advanced strategy
l  Prefetch all small files of a directory

8

How and What to Replace?

u  Theory
l  Use past to predict future
l  LRU is good

u  LRU replacement
l  double linked list

with a hash table
l  If b is in buffer cache, move

it to front and return b
l  Otherwise, replace the tail

block, get b from storage,
insert b to the front

u  Questions
l  Why a hash table?

…

LRU
(front)

…

Hash
table

9

Which Write Policies?

u  Write through
l  Write to storage immediately
l  Cache is consistent
l  Simple, but cause more I/Os

u  Write back

l  Update a block in buffer cache
and mark it as dirty
write to storage later

l  Fast writes, absorbs writes,
and enables batching

l  So, what’s the problem?

User buffer User

Buffer
cache

Disk

Kernel

10

Write Back Complications

u  Tension
l  On crash, all modified data in cache is lost.
l  Postpone writes ⇒ better performance but more damage

u  When to write back
l  When a block is evicted
l  When a file is closed
l  On an explicit flush
l  When a time interval elapses (30 seconds in Unix)

u  Issues
l  These options have no guarantees

11

File Recovery Tools

u  Physical backup (dump) and recovery
l  Dump disk blocks by blocks to a backup system
l  Backup only changed blocks since the last backup

as an incremental
l  Recovery tool is made accordingly

u  Logical backup (dump) and recovery
l  Traverse the logical structure from the root
l  Selectively dump what you want to backup
l  Verify logical structures as you backup
l  Recovery tool selectively move files back

u  Consistency check (e.g. fsck)
l  Start from the root i-node
l  Traverse the whole tree and mark reachable files
l  Verify the logical structure
l  Unreachable blocks are free

/

u

cos318

man

12

Recovery from Disk Block Failures

u  Boot block
l  Create a utility to replace the boot block
l  Use a flash memory to duplicate the

boot block and kernel

u  Super block
l  If there is a duplicate, remake the file

system
l  Otherwise, what would you do?

u  Free block data structure
l  Search all reachable files from the root
l  Unreachable blocks are free

u  i-node blocks
l  How to recover?

u  Indirect or data blocks
l  How to recover?

bitmap

i-node

Indirect Indirect

Data Data Data

13

Persistency and Crashes

u  File system promise: Persistency
l  Store them until explicitly deletes
l  Backups can recover your file beyond

the deletion point
u  Why is this hard?

l  Systems can crash anytime
l  A crash will destroy memory content
l  Cache more ⇒ better performance
l  Cache more ⇒ lose more on a crash
l  A write may modify multiple blocks

but the system can only atomically
modify one at a time

Memory

?

14

What Is A Crash?

u  Crash is like a context switch
l  Think about a file system as a

thread before the context switch
and another after the context
switch

l  Two threads read or write same
shared state?

u  Crash is like time travel
l  Current volatile state lost; suddenly

go back to old state
l  Example: move a file

•  Place it in a directory
•  Delete it from old
•  Crash happens and both

directories have problems

Before Crash After

Crash

Time

15

Approaches

u  Throw everything away and start over
l  Done for most things (e.g., make again)

u  Reconstruction
l  Try to fix things after a crash (“fsck”)

u  Make consistent updates
l  Either new data or old data, but not garbage data

u  Make multiple updates appear atomic
l  Build large atomic units from smaller atomic ones

16

i-node
“cos318”

Write Metadata First

u  Modify /u/cos318/foo

l  Traverse to /u/cos318/

l  Allocate data block

l  Write pointer into i-node

l  Write new data to foo

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Inconsistent

Crash Consistent

Writing metadata first can cause inconsistency

17

i-node
“cos318”

Write Data First

u  Modify /u/cos318/foo

l  Traverse to /u/cos318/

l  Allocate data block

l  Write new data to foo

l  Write pointer into i-node

i-node
“/”

dir
file

i-node
“u”

dir
file

dir
file

i-node
“foo”

Old
data

New
data

Crash Consistent

Crash Consistent

Crash Consistent

Crash Consistent

18

Consistent Updates: Bottom-Up Order

u  The general approach is to use a “bottom up” order
l  File data blocks, file i-node, directory file, directory i-node, …

u  What about file buffer cache
l  Write back all data blocks
l  Update file i-node and write it to disk
l  Update directory file and write it to disk
l  Update directory i-node and write it to disk (if necessary)
l  Continue until no directory update exists

u  Solve the write back problem?
l  Updates are consistent but leave garbage blocks around
l  May need to run fsck to clean up once a while

u  Ideal approach: consistent update without leaving garbage

19

Transaction Properties

u  Group multiple operations to have “ACID” property
l  Atomicity

•  It either happens or doesn’t (no partial operations)
l  Consistency

•  A transaction is a correct transformation of the state
l  Isolation (serializability)

•  Transactions appear to happen one after the other
l  Durability (persistency)

•  Once it happens, stays happened

u  Question
l  Do critical sections have ACID property?

20

Transactions

u  Bundle many operations into a transaction
u  Primitives

l  BeginTransaction
•  Mark the beginning of the transaction

l  Commit (End transaction)
•  When transaction is done

l  Rollback (Abort transaction)
•  Undo all the actions since “Begin transaction.”

u  Rules
l  Transactions can run concurrently
l  Rollback can execute anytime
l  Sophisticated transaction systems allow nested transactions

21

Implementation
u  BeginTransaction

l  Start using a “write-ahead” log on disk
l  Log all updates

u  Commit
l  Write “commit” at the end of the log
l  Then “write-behind” to disk by writing updates to disk
l  Clear the log

u  Rollback
l  Clear the log

u  Crash recovery
l  If there is no “commit” in the log, do nothing
l  If there is “commit,” replay the log and clear the log

u  Assumptions
l  Writing to disk is correct (recall the error detection and correction)
l  Disk is in a good state before we start

22

An Example: Atomic Money Transfer
u  Move $100 from account S to C (1 thread):

BeginTransaction
S = S - $100;
C = C + $100;

Commit
u  Steps:

1: Write new value of S to log
2: Write new value of C to log
3: Write commit
4: Write S to disk
5: Write C to disk
6: Clear the log

u  Possible crashes
l  After 1
l  After 2
l  After 3 before 4 and 5

u  Questions
l  Can we swap 3 with 4?
l  Can we swap 4 and 5?

C = 110
S = 700

C = 10
S = 800
C = 110
S = 700

S=700 C=110 Commit

23

Revisit The Implementation
u  BeginTransaction

l  Start using a “write-ahead” log on disk
l  Log all updates

u  Commit
l  Write “commit” at the end of the log
l  Then “write-behind” to disk by writing updates to disk
l  Clear the log

u  Rollback
l  Clear the log

u  Crash recovery
l  If there is no “commit” in the log, do nothing
l  If there is “commit,” replay the log and clear the log

u  Questions
l  What if there is a crash during the recovery?

24

Two-Phase Locking for Transactions

u  First phase
l  Acquire all locks

u  Second phase
l  Commit operation release all locks

(no individual release operations)

l  Rollback operation always undo the changes first and then
release all locks

25

Use Transactions in File Systems

u  Make a file operation a transaction
l  Create a file
l  Move a file
l  Write a chunk of data
l  …
l  Would this eliminate any need to run fsck after a crash?

u  Make arbitrary number of file operations a transaction
l  Make sure logging are idempotent
l  Recovery by replaying the log
l  Called “logging file system” or “journaling file system”

26

Performance Issue with Logging

u For every disk write, we now have two disk writes
l  They are on different parts of the disk!

u Performance tricks
l  Changes made in memory and then logged to disk
l  Log writes are sequential
l  Merge multiple writes to the log with one write
l  Use NVRAM (Non-Volatile RAM) to keep the log

27

Log Management

u  How big is the log?
u  Observation

l  Log what’s needed for crash recovery

u  Method
l  Checkpoint operation: flush the buffer cache to disk
l  After a checkpoint, we can truncate log and start again
l  Log needs to be big enough to hold changes in memory

u  Question
l  If you only log metadata (file descriptors and directories) and

not data blocks, are there any problems?

28

Summary

u  File buffer cache
l  True LRU is possible
l  Simple write back is volnerable to crashes

u  Disk block failures and file system recovery tools
l  Individual recovery tools
l  Top down traversal tools

u  Consistent updates
l  Transactions and ACID properties
l  Logging or Journaling file systems

