
COS 318: Operating Systems

File Layout and Directories

Kai Li
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Topics

! File system structure
! Disk allocation and i-nodes
! Directory and link implementations
! Physical layout for performance

Typical Physical Layout

!  Boot block
"  Code to boot OS

!  Super-block defines a file system
"  File system info
"  Free blocks, file metadata, root directory
"  File metadata area
"  Permission, etc

!  File metadata
"  Each descriptor describes a file

!  Directories
"  Directory data (directory and file names)

!  File data
"  Data blocks

3

File metadata
(i-node in Unix)

Superblock

Directories

File data

Boot block

4

Software Components

!  Naming
"  File name and directory

!  File access
"  Read, write, other operations

!  Buffer cache
"  Reduce client/server disk I/Os

!  Disk allocation
"  Layout, mapping files to blocks

!  Volume manager
"  Storage layer including RAID
"  Block storage interface

!  Management
"  Tools for system administrators

to manage file systems

File naming

File access

Buffer cache

Disk allocation M
an

ag
em

en
t

Volume manager

5

Open A File: Open(fd, name, access)
!  Various checking (directory and file name lookup, authenticate)
!  Copy the file descriptors into the in-memory data structure
!  Create an entry in the open file table (system wide)
!  Create an entry in PCB
!  Return user a pointer to “file descriptor”

Open-file table
(system-wide)

File
metadata

File system
info

Directories

File data

File
descriptors
(Metadata)

Process
control
block

. . .

Open
file

pointer
array

6

Data Structures for Storage Allocation

!  A file
"  Metadata
"  A list of data blocks

!  Free space data structure
"  Bit map indicating the status

of disk blocks
"  Linked list that chains free

blocks together
"  Buddy system
"  …

11111111111111111000000000000000
…

00000111111110000000000111111111

11000001111000111100000000000000

link
addr
size

link
addr
size

…

Free

7

Contiguous Allocation
!  Allocate contiguous blocks on storage

"  Bitmap: find N contiguous 0’s
"  Linked list: find a region (size >= N)

!  File metadata
"  First block in file
"  Number of blocks

!  Pros
"  Fast sequential access
"  Easy random access

!  Cons
"  External fragmentation

(what if file C needs 3 blocks)
"  Hard to grow files

3

File A File B

8

Linked Files (Alto)

!  File structure
"  File metadata points to 1st

block on storage
"  A block points to the next
"  Last block has a NULL

pointer
!  Pros

"  Can grow files dynamically
"  Free list is similar to a file

!  Cons
"  Random access: bad
"  Unreliable: losing a block

means losing the rest

File header

null

. . .

9

File Allocation Table (FAT)

!  Allocation table at the beginning
of each volume
!  N entries for N blocks

!  File structure
"  A file is a linked list of blocks
"  File metadata points to the first

block of the file
"  The entry of first block points to the

next, …
!  Pros

"  Simple
!  Cons

"  Random access: bad
"  Waste space

217 619

399

foo 217

EOF

FAT Allocation Table

0

399

619

10

Single-Level Indexed Files

!  File structure
"  User declares max size
"  A file header holds an array of

pointers to point to disk blocks
!  Pros

"  Can grow up to a limit
"  Random access is fast

!  Cons
"  Clumsy to grow beyond the

limit

File header
Disk
blocks

11

DEMOS (Cray-1)

!  Idea
"  Using contiguous allocation
"  Allow non-contiguous

!  File structure
"  Small file metadata has 10

(base,size) pointers
"  Big file has 10 indirect

pointers
!  Pros & cons

"  Can grow (max 10GB)
"  fragmentation

File metadata

size9

size1
size0

size9

size1
size0

size9

size1
size0

size9

size1
size0

12

Multi-Level Indexed Files (Unix)

!  13 Pointers in a header
"  10 direct pointers
"  11: 1-level indirect
"  12: 2-level indirect
"  13: 3-level indirect

!  Pros & Cons
"  In favor of small files
"  Can grow
"  Limit is 16G and lots of

seek
!  How to reach block 23,

5, 340?

1
2

data

data
. . .
11
12
13

data
. . .

. . . data
. . .

. . . data
. . .

. . .

13

Original Unix i-node

!  Mode: file type, protection bits, setuid, setgid bits
!  Link count: number of directory entries pointing to this
!  Uid: uid of the file owner
!  Gid: gid of the file owner
!  File size
!  Times (access, modify, change)

!  10 pointers to data blocks
!  Single indirect pointer
!  Double indirect pointer
!  Triple indirect pointer

14

Extents

!  An extent is a variable
number of blocks

!  Main idea
"  A file is a number of extents
"  XFS uses 8Kbyte blocks
"  Max extent size is 2M blocks

!  Index nodes need to have
"  Block offset
"  Length
"  Starting block

!  Pros and Cons?

Block offset
length

Starting block

 . . .

15

Naming

! Text name
"  Need to map it to index

!  Index (i-node number)
"  Ask users to specify i-node number

!  Icon
"  Need to map it to index or map it to text then to index

16

Directory Organization Examples

!  Flat (CP/M)
"  All files are in one directory

!  Hierarchical (Unix)
"  /u/cos318/foo
"  Directory is stored in a file containing (name, i-node) pairs
"  The name can be either a file or a directory

!  Hierarchical (Windows)
"  C:\windows\temp\foo
"  Use the extension to indicate whether the entry is a directory

17

Mapping File Names to i-nodes

!  Create/delete
"  Create/delete a directory

!  Open/close
"  Open/close a directory for read and write
"  Should this be the same or different from file open/close?

!  Link/unlink
"  Link/unlink a file

!  Rename
"  Rename the directory

18

Linear List

!  Method
"  <FileName, i-node> pairs are

linearly stored in a file
"  Create a file

•  Append <FileName, i-node>
"  Delete a file

•  Search for FileName
•  Remove its pair from the

directory
•  Compact by moving the rest

!  Pros
"  Space efficient

!  Cons
"  Linear search
"  Need to deal with fragmentation

/u/li/
 foo bar …
 veryLongFileName

<foo,1234> <bar,
 1235> … <very
LongFileName,
4567>

19

Tree Data Structure

! Method
"  Store <fileName, i-node> a tree data

structure such as B-tree
"  Create/delete/search in the tree data

structure
! Pros

"  Good for a large number of files
! Cons

"  Inefficient for a small number of files
"  More space
"  Complex

…

20

Hashing

!  Method
"  Use a hash table to map

FileName to i-node
"  Space for name and

metadata is variable sized
"  Create/delete will trigger

space allocation and free
!  Pros

"  Fast searching and relatively
simple

!  Cons
"  Not as efficient as trees for

very large directory (wasting
space for the hash table)

…

foo
bar

1234
1235

foobar 4567

21

I/Os for Read/Write A File

!  I/Os to access a byte of /u/cos318/foo
"  Read the i-node and first data block of “/”
"  Read the i-node and first data block of “u”
"  Read the i-node and first data block of “cos318”
"  Read the i-node and first data block of “foo”

!  I/Os to write a file
"  Read the i-node of the directory and the directory file.
"  Read or create the i-node of the file
"  Read or create the file itself
"  Write back the directory and the file

!  Too many I/Os to traverse the directory
"  Solution is to use Current Working Directory

22

Hard Links

! Approach
"  A link to a file with the same i-node
ln source target

"  Delete may or may not remove the
target depending on whether it is the
last one (link reference count)

! Why hard links?
! How would you implement them?
! Main issue with hard links?

Directory

23

Symbolic Links

! Approach
"  A symbolic link is a pointer to a file
"  Use a new i-node for the link
ln –s source target

! Why symbolic links?
! How would you implement them?
! Main issue with symbolic links?

Directory

Link

24

Original Unix File System

!  Simple disk layout
"  Block size is sector size (512 bytes)
"  i-nodes are on outermost cylinders
"  Data blocks are on inner cylinders
"  Use linked list for free blocks

!  Issues
"  Index is large
"  Fixed max number of files
"  i-nodes far from data blocks
"  i-nodes for directory not close together
"  Consecutive blocks can be anywhere
"  Poor bandwidth (20Kbytes/sec even for

sequential access!)

i-node array

25

BSD FFS (Fast File System)

!  Use a larger block size: 4KB or 8KB
"  Allow large blocks to be chopped into

fragments
"  Used for little files and pieces at the

ends of files
!  Use bitmap instead of a free list

"  Try to allocate contiguously
"  10% reserved disk space

foo

bar

26

FFS Disk Layout

!  i-nodes are grouped together
"  A portion of the i-node array on each

cylinder

!  Do you ever read i-nodes without
reading any file blocks?
"  4 times more often than reading

together
"  examples: ls, make

!  Overcome rotational delays
"  Skip sector positioning to avoid the

context switch delay
"  Read ahead: read next block right

after the first

i-node subarray

27

What Has FFS Achieved?

!  Performance improvements
"  20-40% of disk bandwidth for large files (10-20x original)
"  Better small file performance (why?)

!  We can do better
"  Extent based instead of block based

•  Use a pointer and size for all contiguous blocks (XFS, Veritas
file system, etc)

"  Synchronous metadata writes hurt small file performance
•  Asynchronous writes with certain ordering (“soft updates”)
•  Logging (talk about this later)
•  Play with semantics (/tmp file systems)

28

Summary

!  File system structure
"  Boot block, super block, file metadata, file data

!  File metadata
"  Consider efficiency, space and fragmentation

!  Directories
"  Consider the number of files

!  Links
"  Soft vs. hard

!  Physical layout
"  Where to put metadata and data

