
COS 318: Operating Systems

I/O Device and Drivers

Kai Li and Andy Bavier
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

Topics

  I/O devices
  Device drivers
  Synchronous and asynchronous I/O

2

3

Input and Output

  A computer’s job is to process data
  Computation (CPU, cache, and memory)
  Move data into and out of a system (between I/O devices

and memory)
  Challenges with I/O devices

  Different categories: storage, networking, displays, etc.
  Large number of device drivers to support
  Device drivers run in kernel mode and can crash systems

  Goals of the OS
  Provide a generic, consistent, convenient and reliable way to

access I/O devices
  Achieve potential I/O performance in a system

4

Revisit Hardware

  Compute hardware
  CPU cores and caches
  Memory controller
  I/O bus logic
  Memory

  I/O Hardware
  I/O bus or interconnect
  I/O controller or adaptor
  I/O device

  Interact with devices
  Programmed I/O (PIO)
  Interrupts
  Direct Memory Access (DMA)

I/O bus

Network

CPU

Memory I/O bridge

CPU CPU CPU
$

CPU
Chip

5

Latency, Bandwidth, and Abstraction

  Overhead
  CPU time to initiate an operation

  Latency
  Time to transfer one byte
  Overhead + 1 byte reaches

destination
  Bandwidth

  Rate of I/O transfer, once initiated
  Bytes/sec

  General method
  Different transfer rates
  Abstraction of byte transfers
  Block of bytes as a transfer unit to

prorate overhead

Data transfer

Device Transfer rate
Keyboard 10Bytes/sec

Mouse 100Bytes/sec
… …

10GE NIC 1.2GBytes/sec

Initiate

Time

6

Programmed I/O

  Example
  RS-232 serial port

  Simple serial controller
  Status registers (ready, busy, …)
  Data register

  Output
CPU:
  Wait until device is not “busy”
  Write data to “data” register
  Tell device “ready”
Device
  Wait until “ready”
  Clear “ready” and set “busy”
  Take data from “data” register
  Clear “busy”

CPU

Memory

Serial
controller

I/O Bus

Busy Ready …
Data

Polling in Program I/O

  Wait until device is not “busy”
  A polling loop!

  Advantages
  Simple

  Disadvantage
  Slow
  Waste CPU cycles

  Example
  If a device runs 100 operations / second, CPU may need to

wait for 10 msec or 10,000,000 CPU cycles (1Ghz CPU)
  Interrupt mechanism will allow CPU to avoid polling

7

8

Interrupt-Driven Device
  Example

  Mouse
  Simple mouse controller

  Status registers (done, int, …)
  Data registers (ΔX, ΔY, button)

  Input
Mouse:
  Wait until “done”
  Store ΔX, ΔY, and button into

data registers
  Raise interrupt
CPU (interrupt handler)
  Clear “done”
  Move ΔX, ΔY, and button into

kernel buffer
  Set “done”
  Call scheduler

CPU

Memory

Mouse
controller

I/O Bus

Done …
ΔX

ΔY

Int

Button

9

Direct Memory Access (DMA)
  Example

  Disk
  A simple disk adaptor

  Status register (done, interrupt, …)
  DMA command
  DMA memory address and size
  DMA data buffer

  DMA Write
CPU:
  Wait until DMA device is “ready”
  Clear “ready”
  Set DMAWrite, address, size
  Set “start”
  Block current thread/process
Disk adaptor:
  DMA data to device

(size--; address++)
  Interrupt when “size == 0”
CPU (interrupt handler):
  Put the blocked thread/process into

ready queue
Disk: Move data to disk

CPU

Memory

Disk
adaptor

I/O Bus

Ready …

address size

Int

DMA buffer

DMA Command

Start

Data

Kernel

Data Data

Where Are I/O Registers?

  Memory mapped I/O
  A portion of physical memory

for each device
  Advantages

  Simple and uniform
  CPU instructions can access

these registers as memory
  Issues

  These “memory locations”
should not be cached

  Mark them not cacheable

10

I/O device
I/O device

…

Kernel
memory

User
memory

ALU/FPU

registers

Caches

Memory

Memory
Mapped

I/O

11

I/O Software Stack

User-Level I/O Software

Device-Independent
OS software

Device Drivers

Interrupt handlers

Hardware

12

Recall Interrupt Handling

  Save context
  Mask interrupts
  Set up a context for interrupt service
  Set up a stack for interrupt service
  Acknowledge the interrupt controller, enable it if needed
  Save entire context to PCB
  Run the interrupt service
  Unmask interrupts if needed
  Possibly change the priority of the process
  Run the scheduler

13

Drivers

Device Drivers

Rest of the
operating
system

Device
driver

Device
driver

. . .

Device
driver

Device
controller

Device
controller

. . .
Device

controller

Device

Device

Device

Device

Hardware Operating System

In
te

rr
up

t H
an

dl
in

g

14

What Does A Device Driver Do?

  Provide “the rest of the OS” with APIs
  Init, Open, Close, Read, Write, …

  Interface with controllers
  Commands and data transfers with hardware controllers

  Driver operations
  Initialize devices
  Interpreting commands from OS
  Schedule multiple outstanding requests
  Manage data transfers
  Accept and process interrupts
  Maintain the integrity of driver and kernel data structures

15

Device Driver Operations

  Init (deviceNumber)
  Initialize hardware

  Open(deviceNumber)
  Initialize driver and allocate resources

  Close(deviceNumber)
  Cleanup, deallocate, and possibly turnoff

  Device driver types
  Character: variable sized data transfer
  Block: fixed sized block data transfer
  Terminal: character driver with terminal control
  Network: streams for networking

16

Character and Block Interfaces

  Character device interface
  read(deviceNumber, bufferAddr, size)

•  Reads “size” bytes from a byte stream device to “bufferAddr”
  write(deviceNumber, bufferAddr, size)

•  Write “size” bytes from “bufferAddr” to a byte stream device

  Block device interface
  read(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “deviceAddr” to “bufferAddr”
  write(deviceNumber, deviceAddr, bufferAddr)

•  Transfer a block of data from “bufferAddr” to “deviceAddr”
  seek(deviceNumber, deviceAddress)

•  Move the head to the correct position
•  Usually not necessary

17

Unix Device Driver Entry Points
  init()

  Initialize hardware
  start()

  Boot time initialization (require system services)
  open(dev, flag, id)and close(dev, flag, id)

  Initialization resources for read or write and release resources
  halt()

  Call before the system is shutdown
  intr(vector)

  Called by the kernel on a hardware interrupt
  read(…) and write() calls

  Data transfer
  poll(pri)

  Called by the kernel 25 to 100 times a second
  ioctl(dev, cmd, arg, mode)

  special request processing

18

Synchronous vs. Asynchronous I/O

  Synchronous I/O
  read() or write() will block a user process until its completion
  OS overlaps synchronous I/O with another process

  Asynchronous I/O
  read() or write() will not block a user process
  Let user process do other things before I/O completion
  I/O completion will notify the user process

Synchronous Read

19

Application Kernel

syscall
Switch to Kernel context

block

HW Device

DMA
read

Driver Initiates
DMA read

Copy to
User buf

Interrupt

returnl

Switch to
user context

Unblock

20

Synchronous Read

  A process issues a read call which executes a system call
  System call code checks for correctness and buffer cache
  If it needs to perform I/O, it will issues a device driver call
  Device driver allocates a buffer for read and schedules I/O
  Initiate DMA read transfer
  Block the current process and schedule a ready process
  Device controller performs DMA read transfer
  Device sends an interrupt on completion
  Interrupt handler wakes up blocked process (make it ready)
  Move data from kernel buffer to user buffer
  System call returns to user code
  User process continues

Asynchronous I/O

POSIX P1003.4 Asynchronous I/O interface functions:
(available in Solaris, AIX, Tru64 Unix, Linux 2.6,…)

  aio_cancel: cancel asynchronous read/write requests
  aio_error: retrieve Asynchronous I/O error status
  aio_fsync: asynchronously force I/O completion, and sets

errno to ENOSYS
  aio_read: begin asynchronous read
  aio_return: retrieve status of Asynchronous I/O operation
  aio_suspend: suspend until Asynchronous I/O completes
  aio_write: begin asynchronous write
  lio_listio: issue list of I/O requests

21

Asynchronous Read

22

Application Kernel

aio_read
Switch to Kernel context

HW Device

DMA
read

Driver initiates
DMA read

Copy to
User buf

Interrupt

Do
other
work

aio_return

incomplete

aio_return

Complete

Complete

23

Why Buffering in Kernel?

  Speed mismatch between the producer and consumer
  Character device and block device, for example
  Adapt different data transfer sizes (packets vs. streams)

  DMA requires contiguous physical memory
  I/O devices see physical memory
  User programs use virtual memory

  Spooling
  Avoid deadlock problems

  Caching
  Serve for same requests of the same data
  Reduce I/O operations

24

Design Issues

 Statically install device drivers
  Reboot OS to install a new device driver

 Dynamically download device drivers
  No reboot, but use an indirection
  Load drivers into kernel memory
  Install entry points and maintain related data structures
  Initialize the device drivers

Dynamic Binding of Device Drivers

  Indirection
  Indirect table for all

device driver entry points
  Download a driver

  Allocate kernel memory
  Store driver code
  Link up all entry points

  Delete a driver
  Unlink entry points
  Deallocate kernel memory

25

Driver (dev 0)
Open:
Read:
Write:

Driver (dev 1)
Open:
Read:
Write:

open
read
write

open
read
write

Driver (dev 1)
Open:
Read:
Write:

Open(1,…)

26

Issues with Device Drivers

  Flexible for users, ISVs and IHVs
  Users can download and install device drivers
  Vendors can work with open hardware platforms

  Dangerous
  Device drivers run in kernel mode
  Bad device drivers can cause kernel crashes and introduce

security holes

  Progress on making device driver more secure
  Checking device driver codes
  Build state machines for device drivers

27

Summary

  IO Devices
  Programmed I/O is simple but inefficient
  Interrupt mechanism supports overlap CPU with I/O
  DMA is efficient, but requires sophisticated software

  Device drivers
  Dominate the code size of OS
  Dynamic binding is desirable for many devices
  Device drivers can introduce security holes
  Progress on secure code for device drivers but completely

removing device driver security is still an open problem
  Asynchronous I/O

  Asynchronous I/O allows user code to perform overlapping

