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Topics 

  I/O devices 
  Device drivers 
  Synchronous and asynchronous I/O 
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Input and Output 

  A computer’s job is to process data 
  Computation (CPU, cache, and memory) 
  Move data into and out of a system (between I/O devices 

and memory) 
  Challenges with I/O devices 

  Different categories: storage, networking, displays, etc. 
  Large number of device drivers to support 
  Device drivers run in kernel mode and can crash systems 

  Goals of the OS 
  Provide a generic, consistent, convenient and reliable way to 

access I/O devices 
  Achieve potential I/O performance in a system 
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Revisit Hardware 

  Compute hardware 
  CPU cores and caches 
  Memory controller 
  I/O bus logic 
  Memory 

  I/O Hardware 
  I/O bus or interconnect 
  I/O controller or adaptor 
  I/O device 

  Interact with devices 
  Programmed I/O (PIO) 
  Interrupts 
  Direct Memory Access (DMA) 

I/O bus 

Network 

CPU 

Memory I/O bridge 

CPU CPU CPU 
$ 

CPU 
Chip 
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Latency, Bandwidth, and Abstraction 

  Overhead 
  CPU time to initiate an operation 

  Latency 
  Time to transfer one byte 
  Overhead + 1 byte reaches 

destination 
  Bandwidth 

  Rate of I/O transfer, once initiated 
  Bytes/sec 

  General method 
  Different transfer rates 
  Abstraction of byte transfers 
  Block of bytes as a transfer unit to 

prorate overhead 

Data transfer 

Device Transfer rate 
Keyboard 10Bytes/sec 

Mouse 100Bytes/sec 
… … 

10GE NIC 1.2GBytes/sec 

Initiate 

Time 
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Programmed I/O 

  Example 
  RS-232 serial port 

  Simple serial controller 
  Status registers (ready, busy, … ) 
  Data register 

  Output 
CPU: 
  Wait until device is not “busy” 
  Write data to “data” register 
  Tell device “ready” 
Device 
  Wait until “ready” 
  Clear “ready” and set “busy” 
  Take data from “data” register 
  Clear “busy” 

CPU 

Memory 

Serial 
controller 

I/O Bus 

Busy Ready … 
Data 



Polling in Program I/O  

  Wait until device is not “busy” 
  A polling loop! 

  Advantages 
  Simple 

  Disadvantage 
  Slow 
  Waste CPU cycles 

  Example 
  If a device runs 100 operations / second, CPU may need to 

wait for 10 msec or 10,000,000 CPU cycles (1Ghz CPU) 
  Interrupt mechanism will allow CPU to avoid polling 
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Interrupt-Driven Device 
  Example 

  Mouse 
  Simple mouse controller 

  Status registers (done, int, …) 
  Data registers (ΔX, ΔY, button) 

  Input 
Mouse: 
  Wait until “done” 
  Store ΔX, ΔY, and button into 

data registers 
  Raise interrupt 
CPU (interrupt handler) 
  Clear “done” 
  Move ΔX, ΔY, and button into 

kernel buffer 
  Set “done” 
  Call scheduler 

CPU 

Memory 

Mouse 
controller 

I/O Bus 

Done … 
ΔX 

ΔY 

Int 

Button 
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Direct Memory Access (DMA) 
  Example 

  Disk 
  A simple disk adaptor 

  Status register (done, interrupt, …) 
  DMA command 
  DMA memory address and size 
  DMA data buffer 

  DMA Write 
CPU: 
  Wait until DMA device is “ready” 
  Clear “ready” 
  Set DMAWrite, address, size 
  Set “start” 
  Block current thread/process 
Disk adaptor: 
  DMA data to device 

(size--; address++) 
  Interrupt when “size == 0” 
CPU (interrupt handler): 
  Put the blocked thread/process into 

ready queue 
Disk: Move data to disk 

CPU 

Memory 

Disk 
adaptor 

I/O Bus 

Ready … 

address size 

Int 

DMA buffer 

DMA Command 

Start 

Data 

Kernel  

Data Data 



Where Are I/O Registers? 

  Memory mapped I/O 
  A portion of physical memory 

for each device 
  Advantages 

  Simple and uniform 
  CPU instructions can access 

these registers as memory 
  Issues 

  These “memory locations” 
should not be cached 

  Mark them not cacheable 
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I/O device 
I/O device 
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I/O Software Stack 

User-Level I/O Software 

Device-Independent 
OS software 

Device Drivers 

Interrupt handlers 

Hardware 
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Recall Interrupt Handling 

  Save context 
  Mask interrupts 
  Set up a context for interrupt service 
  Set up a stack for interrupt service 
  Acknowledge the interrupt controller, enable it if needed 
  Save entire context to PCB 
  Run the interrupt service 
  Unmask interrupts if needed 
  Possibly change the priority of the process 
  Run the scheduler 
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Drivers 

Device Drivers 
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What Does A Device Driver Do? 

  Provide “the rest of the OS” with APIs  
  Init, Open, Close, Read, Write, … 

  Interface with controllers 
  Commands and data transfers with hardware controllers 

  Driver operations 
  Initialize devices 
  Interpreting commands from OS 
  Schedule multiple outstanding requests 
  Manage data transfers 
  Accept and process interrupts 
  Maintain the integrity of driver and kernel data structures 
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Device Driver Operations  

  Init ( deviceNumber ) 
  Initialize hardware 

  Open( deviceNumber ) 
  Initialize driver and allocate resources 

  Close( deviceNumber ) 
  Cleanup, deallocate, and possibly turnoff 

  Device driver types 
  Character:  variable sized data transfer 
  Block: fixed sized block data transfer  
  Terminal: character driver with terminal control 
  Network: streams for networking 
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Character and Block Interfaces 

  Character device interface 
  read( deviceNumber, bufferAddr, size ) 

•  Reads “size” bytes from a byte stream device to “bufferAddr” 
  write( deviceNumber, bufferAddr, size ) 

•  Write “size” bytes from “bufferAddr” to a byte stream device 

  Block device interface 
  read( deviceNumber, deviceAddr, bufferAddr ) 

•  Transfer a block of data from “deviceAddr” to “bufferAddr” 
  write( deviceNumber, deviceAddr, bufferAddr ) 

•  Transfer a block of data from “bufferAddr” to “deviceAddr” 
  seek( deviceNumber, deviceAddress ) 

•  Move the head to the correct position 
•  Usually not necessary 
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Unix Device Driver Entry Points 
  init() 

  Initialize hardware 
  start() 

  Boot time initialization (require system services) 
  open(dev, flag, id)and close(dev, flag, id) 

  Initialization resources for read or write and release resources 
  halt() 

  Call before the system is shutdown 
  intr(vector) 

  Called by the kernel on a hardware interrupt 
  read(…) and write() calls 

  Data transfer 
  poll(pri) 

  Called by the kernel 25 to 100 times a second 
  ioctl(dev, cmd, arg, mode) 

  special request processing 
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Synchronous vs. Asynchronous I/O 

  Synchronous I/O 
  read() or write() will block a user process until its completion 
  OS overlaps synchronous I/O with another process 

  Asynchronous I/O 
  read() or write() will not block a user process 
  Let user process do other things before I/O completion 
  I/O completion will notify the user process 



Synchronous Read 
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Application  Kernel  

syscall 
Switch to Kernel context 

block 

HW Device  

DMA 
read 

Driver Initiates 
DMA read 

Copy to 
User buf 

Interrupt 

returnl 

Switch to 
user context 

Unblock 
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Synchronous Read 

  A process issues a read call which executes a system call 
  System call code checks for correctness and buffer cache 
  If it needs to perform I/O, it will issues a device driver call 
  Device driver allocates a buffer for read and schedules I/O 
  Initiate DMA read transfer 
  Block the current process and schedule a ready process 
  Device controller performs DMA read transfer 
  Device sends an interrupt on completion 
  Interrupt handler wakes up blocked process (make it ready) 
  Move data from kernel buffer to user buffer 
  System call returns to user code 
  User process continues 



Asynchronous I/O 

POSIX P1003.4 Asynchronous I/O interface functions: 
(available in Solaris, AIX, Tru64 Unix, Linux 2.6,…) 

  aio_cancel: cancel asynchronous read/write requests  
  aio_error: retrieve Asynchronous I/O error status  
  aio_fsync: asynchronously force I/O completion, and sets 

errno to ENOSYS  
  aio_read: begin asynchronous read  
  aio_return: retrieve status of Asynchronous I/O operation  
  aio_suspend: suspend until Asynchronous I/O completes  
  aio_write: begin asynchronous write  
  lio_listio: issue list of I/O requests  
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Asynchronous Read 
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Application  Kernel  

aio_read 
Switch to Kernel context 

HW Device  
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Why Buffering in Kernel? 

  Speed mismatch between the producer and consumer 
  Character device and block device, for example 
  Adapt different data transfer sizes (packets vs. streams) 

  DMA requires contiguous physical memory 
  I/O devices see physical memory 
  User programs use virtual memory 

  Spooling 
  Avoid deadlock problems 

  Caching 
  Serve for same requests of the same data 
  Reduce I/O operations 
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Design Issues 

 Statically install device drivers 
  Reboot OS to install a new device driver 

 Dynamically download device drivers 
  No reboot, but use an indirection 
  Load drivers into kernel memory 
  Install entry points and maintain related data structures 
  Initialize the device drivers 



Dynamic Binding of Device Drivers 

  Indirection 
  Indirect table for all 

device driver entry points 
  Download a driver 

  Allocate kernel memory 
  Store driver code 
  Link up all entry points 

  Delete a driver 
  Unlink entry points 
  Deallocate kernel memory 
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Driver (dev 0) 
Open: 
Read: 
Write: 

Driver (dev 1) 
Open: 
Read: 
Write: 

open 
read 
write 

open 
read 
write 

Driver (dev 1) 
Open: 
Read: 
Write: 

Open(1,…) 
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Issues with Device Drivers 

  Flexible for users, ISVs and IHVs 
  Users can download and install device drivers 
  Vendors can work with open hardware platforms 

  Dangerous 
  Device drivers run in kernel mode 
  Bad device drivers can cause kernel crashes and introduce 

security holes 

  Progress on making device driver more secure 
  Checking device driver codes  
  Build state machines for device drivers 
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Summary 

  IO Devices 
  Programmed I/O is simple but inefficient 
  Interrupt mechanism supports overlap CPU with I/O 
  DMA is efficient, but requires sophisticated software 

  Device drivers 
  Dominate the code size of OS 
  Dynamic binding is desirable for many devices 
  Device drivers can introduce security holes  
  Progress on secure code for device drivers but completely 

removing device driver security is still an open problem 
  Asynchronous I/O 

  Asynchronous I/O allows user code to perform overlapping 


