
COS 318: Operating Systems

Deadlocks

 Kai Li and Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/

2

Today’s Topics

u  Finish CPU scheduling algorithms
u  Conditions for a deadlock
u  Strategies to deal with deadlocks

3

4.3 BSD Scheduling with Multi-Queue

u  “1 sec” preemption
l  Preempt if a process doesn’t block or complete within 1

second
u  Priority is recomputed every second

l  Pi = base + (CPUi-1) / 2 + nice, where CPUi = (Ui + CPUi-1) / 2
l  Base is the base priority of the process
l  Ui is process utilization in interval i

u  Priorities
l  Swapper
l  Block I/O device control
l  File operations
l  Character I/O device control
l  User processes

4

Linux Scheduling

u  Time-sharing scheduling
l  Two priority arrays: active and expired
l  40 priority levels, lower number = higher priority
l  Priority = base (user-set) priority + “bonus”

•  Bonus between -5 and +5, derived from sleep_avg
•  Bonus decremented when task sleeps, incremented when it runs
•  Higher priority gets longer timeslice

l  Move process with expired quantum from active to expired
l  When active array empty, swap active and expired arrays

u  Real-time scheduling
l  100 static priorities, higher than time sharing priorities
l  Soft real-time

5

Windows Scheduling

u Classes and priorities
l  Real time: 16 static priorities
l  User: 16 variable priorities, start at a base priority

•  If a process has used up its quantum, lower its priority
•  If a process waits for an I/O event, raise its priority

u Priority-driven scheduler
l  For real-time class, do round robin within each priority
l  For user class, do multiple queue

u Multiprocessor scheduling
l  For N processors, normally run N highest priority threads
l  Threads have hard or soft affinity for specific processors
l  A thread will wait for processors in its affinity set, if there are

other threads available (for variable priorities)

6

Today’s Topics

u  Finish CPU scheduling algorithms
u  Conditions for a deadlock
u  Strategies to deal with deadlocks

7

Definitions

u  Use processes and threads interchangeably
u  Resources

l  Preemptable: CPU (can be taken away)
l  Non-preemptable: Disk, files, mutex, ... (can’t be taken away)

u  Use a resource
l  Request, Use, Release

u  Starvation
l  Processes wait indefinitely

u  Deadlocks
l  A set of processes have a deadlock if each process is waiting

for an event that only another process in the set can cause

8

Resource Allocation Graph

u  Process A is holding
resource R

u  Process B requests
resource S

u  A cycle in resource allocation
graph ⇒ deadlock

u  If A requests for S while
holding R, and B requests for
R while holding S, then

A R

B S

A S

B R

How do you deal with multiple instances of a resource?

9

Non-Resource Deadlock

Guns don’t cause deadlocks – people do

10

An Example

u  A utility program
l  Copy a file from tape to disk
l  Print the file to printer

u  Resources
l  Tape
l  Disk
l  Printer

u  A deadlock
l  A holds tape and disk, then

requests for a printer
l  B holds printer, then requests

for tape and disk

A

B

Tape

11

Conditions for Deadlock

u  Mutual exclusion condition
l  Each resource is assigned to exactly one process

u  Hold and Wait
l  Processes holding resources can request new resources

u  No preemption
l  Resources cannot be taken away

u  Circular chain of requests
l  One process waits for another in a circular fashion

u  Question
l  Are all conditions necessary?

12

Eliminate Competition for Resources?

u  If running A to completion and
then running B, there will be no
deadlock

u  Generalize this idea for all
processes?

u  Is it a good idea to develop a
CPU scheduling algorithm that
causes no deadlock?

A S

B R

Previous example

S

R R

S

13

Strategies

u  Ignore the problem
l  It is user’s fault

u  Detection and recovery
l  Fix the problem afterwards

u  Dynamic avoidance
l  Careful allocation

u  Prevention
l  Negate one of the four conditions

14

Ignore the Problem

u  The OS kernel locks up
l  Reboot

u  Device driver locks up
l  Remove the device
l  Restart

u  An application hangs (“not responding”)
l  Kill the application and restart
l  Familiar with this?

u  An application ran for a while and then hang
l  Checkpoint the application
l  Change the environment (reboot OS)
l  Restart from the previous checkpoint

15

Detection and Recovery

u  Detection
l  Scan resource graph
l  Detect cycles

u  Recovery (difficult)
l  Kill process/threads (can you always do this?)
l  Roll back actions of deadlocked threads

u  What about the tape-disk-printer example?

16

Avoidance

u  Safety Condition:
l  It is not deadlocked
l  There is some scheduling order in which every process can

run to completion (even if all request their max resources)

u  Banker’s algorithm (Dijkstra 65)
l  Single resource

•  Each process has a credit
•  Total resources may not satisfy all credits
•  Track resources assigned and needed
•  Check on each allocation for safety

l  Multiple resources
•  Two matrices: allocated and needed
•  See textbook for details

17

Examples (Single Resource)

Has Max
P1 2 6
P2 2 3
P3 3 5

Total: 8

Free: 1

Has Max
P1 4 6
P2 1 3
P3 2 5

Free: 1

Free: 0 Free: 3 Free: 1

Has Max
P1 2 6
P2 3 3
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 5 5

Has Max
P1 2 6
P2 0 0
P3 0 0

Free: 6

?

18

Prevention: Avoid Mutual Exclusion

u  Some resources are not physically
sharable
l  Printer, tape, etc

u  Some can be made sharable
l  Read-only files, memory, etc
l  Read/write locks

u  Some can be virtualized by spooling
l  Use storage to virtualize a resource into

multiple resources
l  Use a queue to schedule
l  Does this apply to all resources?

u  What about the tape-disk-printer
example?

A B

Spooling

19

Prevention: Avoid Hold and Wait

u  Two-phase locking
Phase I:
l  Try to lock all resources at the beginning
Phase II:
l  If successful, use the resources and release them
l  Otherwise, release all resources and start over

u  Application
l  Telephone company’s circuit switching

u  What about the tape-disk-printer example?

20

Prevention: No Preemption

u Make the scheduler be aware of resource allocation
u Method

l  If the system cannot satisfy a request from a process holding
resources, preempt the process and release all resources

l  Schedule it only if the system satisfies all resources
u Alternative

l  Preempt the process holding the requested resource
u What about the tape-disk-printer example?

21

Prevention: No Circular Wait

u  Impose an order of requests for all resources
u  Method

l  Assign a unique id to each resource
l  All requests must be in an ascending order of the ids

u  A variation
l  Assign a unique id to each resource
l  No process requests a resource lower than what it is holding

u  What about the tape-disk-printer example?
u  Can we prove that this method has no circular wait?

22

Tradeoffs and Applications

u  Ignore the problem for applications
l  It is application developers’ job to deal with their deadlocks
l  OS provides mechanisms to break applications’ deadlocks

u  Kernel should not have any deadlocks
l  Use prevention methods
l  Most popular is to apply no-circular-wait principle everywhere

OpenLDAP deadlock, bug #3494
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

23

OpenLDAP deadlock, fix #1
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 if (! try_lock(A)) break;
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

24

Changes the
algorithm, but
maybe that’s
OK

OpenLDAP deadlock, fix #2
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...

 ...

 ...
 }
 }
 unlock(A)

 unlock(B)
}

25

Apache bug #42031
http://issues.apache.org/bugzilla/show_bug.cgi?id=42031
Summary: EventMPM child process freeze
Product: Apache httpd-2 Version: 2.3-HEAD
Platform: PC
OS/Version: Linux
Status: NEW
Severity: critical
Priority: P2
Component: Event MPM
AssignedTo: bugs@httpd.apache.org
ReportedBy: serai@lans-tv.com
Child process freezes with many downloading against MaxClients.
How to reproduce:

(1) configuration to httpd.conf StartServers 1 MaxClients 3 MinSpareThreads 1
MaxSpareThreads 3 ThreadsPerChild 3 MaxRequestsPerChild 0 Timeout 10 KeepAlive On
MaxKeepAliveRequests 0 KeepAliveTimeout 5

(2) put a large file "test.mpg" (about 200MB) on DocumentRoot

(3) apachectl start

(4) execute many downloading simultaneously. e.g. bash and wget:

 $ for ((i=0 ; i<20 ; i++)); do wget -b http://localhost/test.mpg; done;

 Then the child process often freezes. If not, try to download more.

(5) terminate downloading e.g. bash and wget: $ killall wget

(6) access to any file from web browser. However long you wait, server won't response.

26

Apache deadlock, bug #42031
listener_thread(...) {
 lock(timeout)
 ...
 lock(idlers)
 ...
 cond_wait (wait_for_idler, idlers)
 ...
 unlock(idlers)
 ...
 unlock(timeout)
}

worker_thread(...) {
 lock(timeout)
 ...
 unlock(timeout)
 ...
 lock (idlers)
 ...
 signal (wait_for_idler)
 ...
 unlock(idler)
 ...
}

27

28

Interlude

u  Principle of Least Astonishment
l  People are part of the system. The design should match the

user’s experience, expectations, and mental models.
l  With this, system works intuitively
l  Without this, users get disoriented, confused, angry, …

u  Example: original iPad (2010)
l  Precursors: Newton, PalmPilot, Pocket PC, Tablet PC, etc.
l  Less capable than a PC yet more expensive
l  But it took off… why?

29

Summary

u  Deadlock conditions
l  Mutual exclusion
l  Hold and wait
l  No preemption
l  Circular chain of requests

u  Strategies to deal with deadlocks
l  Simpler ways are to negate one of the four conditions

