
COS 318: Midterm Exam (October 23, 2012)

(80 Minutes)

Name:

This exam is closed-book, closed-notes. 1 single-sided 8.5x11” sheet of notes is
permitted.

No calculators, laptop, palmtop computers are allowed during the exam.

The points in the parenthesis at the beginning of each question indicate the
points given to that question; there are 40 points in all.

Write all your answers directly on this paper. Use the blue book only if you run
out of space. Make your answers as concise as possible.

Partial credit will be given if you can show your work in arriving at solutions.

1

2

3

4

5

Total

Pledge (please write out “I pledge my honor that I have not violated
the Honor Code during this examination” and then sign):

1 Short Questions (10 points)

Answer the following questions. Use exactly one or two sentences to describe why you
choose your answer. Without the reasoning, you will not receive any points.

a. (1 point) Intel Pentium processors have special instructions such as SSE
for multimedia processing. These instructions have their own registers.
Are the registers for such instructions part of the context of a process?

Yes. This is because any programs can use such instructions at any time.

b. (1 point) Are the registers for I/O devices part of the context of a process?

No. I/O devices are accessed via device driver calls in the kernel.

c. (2 point) Can Monitors deadlock?

Yes. A program inside a monitor can hold a resource and request for another while
another program can do similarly to form a circular chain.

d. (2 point) Provide two advantages of threads over multiple processes.

Lower overhead of context switch.

Easier to share data.

e. (2 points) Many operating systems designed to run only on uniproccessors
use disabling of interrupts to create critical sections in the code. Explain
briefly how the interrupt disabling prevents multiple threads from entering
the critical section.

Suppose two threads can enter a critical section simultaneously on a
uniprocessor. Thread A gets into the critical section first. Then the scheduler
suspends thread A and run thread B. Thread B gets into the critical section.
This is not possible because the scheduler can only be involved either by calling
Yield() or a timer interrupt. Thread A cannot call Yield() because it is in the
critical section. A timer interrupt is not possible because interrupts are disabled.

f. (2 points) Explain briefly why implementing critical sections by disabling
interrupts will not work on a multiprocessor.

Disabling interrupts will not work on a multiprocessor because disabling
interrupts only happens on the CPU it runs. Another thread can run on another
CPU and gets into the critical section.

2 CPU Scheduling (10 points)

a) (6 points) Suppose that the following processes arrive for execution at the
times indicated. Each process will run the listed amount of time. In answering
the questions, use non-preemptive scheduling and base all decisions on the
information you have at the time when the decision must be made.

Process Arrival Time (sec) Running Time (sec)
P1 0.0 16
P2 0.3 5
P3 1.0 3

• (2 points) What is the average turnaround time for these processes with the

FCFS scheduling algorithm?

(16 + (16 – 0.3 + 5) + (21 – 1 + 3)) / 3 = 19.9

• (2 points) What is the average turnaround time for these processes with the
STCF scheduling algorithm?

(16 + (16 – 1 + 3) + (19 – 0.3 + 5)) / 3 = 19.23

• (2 points) The STCF algorithm is supposed to improve performance, but
notice that we chose to run process P1 at time 0.0 second because we did not
know that shorter processes would arrive soon. Compute what the average
turnaround time will be if the CPU is left idle for the first 1 second and then
STCF is used.

(3 + (4 – 0.3 + 5) + (9 + 16)) / 3 = 12.23

b) (2 points) Suppose that there are n processes in the ready queue to be
scheduled on one processor. How many possible different schedules are there?
Give a formula in terms of n.

n (n-1) … (1) = n!

c) (2 points) Describe	 how	 a	 lottery	 scheduling	 algorithm	 could	 be	 made	 to	
approximate	 a	 non-‐preemptive	 CPU	 scheduling	 algorithm	 that	 achieves	 the	 shortest	
average	 turnaround	 time.	
	
To approximate SRTF, give short running jobs more tickets and long running jobs
fewer tickets.	
	

3 Input and Output (5 points)
Briefly list the steps of a blocked write system call in a typical monolithic operating
system (such as Unix) by a process. This system call uses DMA hardware to write to a
disk device.

• A process issues a write call which executes a system call
• System call code checks for correctness
• Make a device driver write call
• Device driver allocates a buffer and copy data from user buffer to kernel buffer
• Initiate a DMA write data transfer
• Block the current process and schedule a ready process
• Device generates an interrupt upon completion of the DMA transaction
• Interrupt handler makes the blocked process ready
• Scheduler wakes up blocked process at some point
• The write process continues when it is scheduled to run

4 Synchronization design (5 points)
Your colleague has designed a synchronization mechanism for editing multiple files.
The goal is to maintain consistency when a user applies edits to a number of files
simultaneously. Your colleague designed MultiLock() to be called once before an
editing session and MultiUnlock() to be called once with the same arguments after
the session:

 MultiLock(File *fileList[], int n) {
 int i;

 for (i = 0; i < n; i++)
 Acquire(fileList[i]->lock);
 }

 MultiUnlock(File *fileList[], int n) {
 int i;

 for (i = 0; i < n; i++)
 Release(fileList[i]->lock);
 }

where File is a structure that has lock as one of the field.

Your job is to review the design, figure out whether there are any issues with
MultiLock() and MultiUnlock(). If there are, please provide examples to show
the issues first, and then provide pseudo-code to fix the issues.

The following condition may cause a deadlock. User A calls:

 fileList[0] = file1; fileList[1] = file2;
 MultiLock(fileList, 2);

After user A successfully acquired the lock of file1 but before the lock of file2,
user B calls:
 fileList[0] = file2; fileList[1] = file1;
 MultiLock(fileList, 2);

The following fix the problem mentioned above:
 MultiLock(fileList[], int n) {
 int i; FILE sortedList[MAX];

 Sort(fileList, sortedList, n);
 for (i = 0; i < n; i++)
 Acquire(sortedList[i].lock);
 }
The primitive Sort() sorts fileList according to the value of each file descriptor
and stores the results to sortedList. There is no need to modify MultiUnlock().

5 Monitors (10 points)

At a job interview, you are asked to show how to implement an eventcount package with
Mesa-style monitor. An eventcount is an object that keeps a count of the number of
events that have occurred in a system. There are four primitives of the eventcount
abstraction:

• Init(EC ec): Initialize the eventcount object.
• Advance(EC ec): Increment the counter in the eventcount object by 1.
• Read(EC ec): Return the value of the counter in the eventcount object.

• Await(EC ec, int v): Block until the value of the counter in the
eventcount object reaches a specific value v.

Note that Advance, Read and Await primitives should be atomic. User programs
can use this set of primitives to implement synchronizations based on event occurrences
conveniently without using other synchronization primitives.

Your job is to first define the data structure of the eventcount and then show how to use
Mesa-style monitor to implement the primitives.

The data structure definition for EC is:
 struct EC {
 int counter;
 Mutex lock; /* mutex */
 Cond c; /* condition variable */
 };
The new code is:
 Init(EC ec) {
 ec.counter = 0;
 Cond_Init(ec.c);
 Mutex_Init(ec.lock);
 };

 Read(EC ec) {
 int r;
 Acquire(ec.lock);
 r = ec.counter;
 Release(ec.lock);

 return r;
 };

 Advance(EC ec) {
 Acquire(ec.lock);
 ec.counter++;
 Release(ec.lock);
 Broadcast(ec.c);
 };

 Await(EC ec, int v) {
 Acquire(ec.lock);
 while (ec.counter < v)
 Wait(ec.lock, ec.c);
 Release(ec.lock);
 };

