C0OS226 Week 9 Group Activity Soultion

charAt() calls (typical case)

: : search . space
implementation : insert
miss (references)
red-black BST L+IgZN IgZN Ig2 N 4N
hashing
) . I, L L 4Ntol16N
(linear probing) Just prassonce fust pressonce fust press once
R-way trie L Ig N L R+1)N 1 2abc | 3def
4 ghi jkl
TST L+IgN lg N L+IgN 4N - 5 m
7w B

The values in this table only apply for a very specific string model and model of
computation. They should be used as a rough guide only! Do not memorize or write on a

www.t9.com

cheat sheet. VWhat matters is which entries are linear and which are sublinear.

1. Tries

(a)

(b)

Design problem

i. Sequences of decimal digits, e.g. 77447”.

ii. A set of words, e.g. "SHIV”, "PIGT” Even better is an ordered set of word
where more common words go up top.

iii. An R-way trie, where the alphabet is the numbers 2 through 9. R-way tries
will probably outperform TSTs in this case since R is mall, but experiments
would be needed to validate this.

iv.

The alphabet would have been the standard ASCII alphabet. One could also
optimize a bit and include only english letters, but the ASCII alphabet would be
fine. We’d expect the performance to be a bit better than an LLRB or a hash

table. Again, experiments would be needed to validate this. In this case, we’'d
probably use a TST instead of an R-way trie.

In this case, we’d need to make a choice about the alphabet. Natural choices
include binary digits and hex digits. At any rate, it’s certainly a very awkward
thing to do.

Interesting followup question: What data structure does our Trie devolve into if
we chose an alphabet where R = 4 billion (i.e. all ints are just a single character
in our alphabet).

Support for character based operations, for example keysWithPrefix. This is the
main reason we care about tries!

Short answer: When the data isn’t a string.

Using tries on things that aren’t really strings is very awkward. Getting access
to a compact string representation of a complex object is a nontrivial task. For
example, imagine trying to build a trie of Picture objects. It can be done, but it
will be awkward.

Another example is if we have long strings and want to minimize the number of
memory accesses. With a trie, we have to follow W links, which might require
going to hard-drive or even offsite storage, causing lots of latency. With a hash
table, we compute a single hash value and have to follow only a constant number
of links (e.g. usually less than 5 or so if we resize our hash table so that the
number of items is never more than 5 times the number of buckets).

2. Sorting

(a) MSD will use fewer compares. For example, the O in HORSE is never considered.

ZORSE
HORSE
BLERG
BLARG
ZERGS

orig

ZORSE
HORSE
BLERG
BLARG
ZERGS

LSD 1

-> ZERGS
-> BLERG
-> BLARG
-> ZORSE
-> HORSE

LSD 2

(b) Fill in the tables below.

algorithm

BLERG BLERG
BLARG BLARG
HORSE -> HORSE
ZORSE ZERGS
ZERGS ZORSE

MSD 1 MSD 2

total #charAt() calls

random string

algorithm worst case
case
LSD WN WN
MSD WN WigN

mergesort

string
compares

NlIlgN

#charAt() calls / compare

worst case

random
string case

worst case

IgN NWIgN

overall run time

random
string case

N 1gZz N

(¢) MSD and mergesort like radically different strings, particularly in the most sig-
nificant digit. They both perform particularly poorly (relative to their best case)
on all-equal strings. For mergesort this is NOT because it performs extra string
compares, but because each string compare takes longer!

(d) For all equal strings, we expect LSD to perform better. This is because MSD has
to go and create a bunch of extraneous count arrays. For very long strings (say
megabytes), MSD is going to use a huge amount of memory.

1. Legume grime pop.

a.

A hash table originals that maps strings to Bags of strings.

Also acceptable: any symbol table with string keys that can be constructed in time linear in the
number of strings, e.g., an R-way trie. A red-black tree or TST would take O(N log N) time to
construct.

Key idea: avoid generating every permutation of each word (which is O(L!)). We can do this by
creating a canonical representation for each anagram, namely the sorted version of the word.

¢ Build a symbol table mapping the sorted version of each word to a bag of all words that sort
to that same string. We take each word word from input, insertion sort it to generate dorw,
and add dorw to the Bagoriginals[w] (create the Bag if it doesn’t exist). Keep track of
the maximum Bag length. O(NL2).

* [terate through originals and print the max.

Note: Sorting each word using key-indexed counting is asymptotically faster at O(NLR), where
Ris the alphabet size, but insertion sort which is O(NL?) is likely faster in practice for typical

English words.

Key idea: avoid an exponential search for all possible word ladders. Here are two solutions with
varying tradeoffs between simplicity, speed and generalizability.

Both solutions use a subroutine neighbors(dorw) that assumesoriginals already exists —
Given a dorw of length k, generate the k dorws of length k-1 and return the ones that are valid

(i.e., those that are keysinoriginals). O(L?).

Solution 1. (Josh approved solution)
Create a DAG where nodes are dorws and there is an edge from each dorw to each of its
neighbors. Ninvocations of neighbors, O(NL?).
Find the longest path in this DAG.
o This can be done by creating a virtual root node with an edge to every root (finding the
roots is O(N)), assigning a weight of -1 to each edge, and computing the shortest paths
from the virtual root using topological sort. O(N).
Look up the dorws on this longest path (in reverse) inoriginals and print a sequence of

original words.

Solution 2. Less elegant but still perfectly fine solution.

Initialize a hash table rung_height from dorws to ints with all values set to 0. The
rung_height of dorw is the max rung height of dorw in any anagram ladder that it can appear
in. Lowest rung is 0.

Create a sorted array of dorws in increasing order of length. O(N) by key-indexed counting.

For each dorw dorw In this array:

rung_height[dorw] = max(rung_height[nbr] for nbr in
neighbors[dorw])

//ifneighbors[dorw] is empty do nothing, as dorw must be the bottom rung in any
ladder. Note that the neighbors have already been processed because of sortedness.
Ninvocations of neighbors, O(NL2).
Find the dorw with maximum rung_height, and iteratively find a sequence of neighbors with
rung_height of each neighbor one less than the previous. O(N + poly(L)).
Look up the dorws in this ladder (in reverse) in originals and print a sequence of original

words.

Solution 1 is more elegant is but probably slower in practice (and consumes more memory) due

to graph creation, despite having the same asymptotic runtime as Solution 2.

