C0OS226 Group Activity

1. Sorting

In class, we've discussed 4 sorting algorithms: Selection, insertion, merge, and quick-
sort. For each sort, give an example of a situation where that sort would be best from
among these four choices.

Give an example of a computational problem that can be solved using sorting.

2. 8puzzle

For puzzle07.txt, the PQ starts by containing only one node. This node is then deleted,
and a new node is created for each of its board’s three neighbors, linked to the parent
node, and then added to the priority queue. The links between each node are shown
below. The priority of the parent node is crossed out to indicate that the node is no
longer in the PQ.

Fill in the Hamming distances and priorities for the bottom two neighbors.

<]
Board

Priority

AR O
o O W

2
7
5
Moves 1

P Previous

Hamming: 5

B ' Board

Priority

HOBR
[+ B V3]

2
7
5
0

Moves

Previous Null |— Board

Priority

Hamming: 4
\ Moves

Previous

BNR
R o N
oo w

Hamming:

—

Board
Priority

opr R
[EENT NI
oo w

Moves

Previous

Hamming:

e Which node will be deleted from the priority queue next?

e Draw the search nodes after this node is removed from the PQ and its valid
neighbors are linked up and added to the PQ.

Why is one of the two neighbors invalid?

Does this technique guarantee that no board ever appears in the priority queue
twice?



3. LRU cache. (Spring 2012 midterm)

An LRU cache is a data structures that stores up to N distinct keys. If the data
structure is full when a key not already in the cache is added, the LRU cache first
removes the key that was least recently cached.

Design a data structure that supports the following API:

public class LRU<Key>

LRUCint N)

void cache(Key key)

boolean

For example,

LRU<String> lru = new LRU<String>(5);

inCache(Key key)

lru.cache("A");
lru.cache("B");
lru.cache("C");
lru.cache("D");
lru.cache("E");
lru.cache("F");

boolean bl
boolean b2

lru.inCache("C");
lru.inCache("A");

lru.cache("D");
lru.cache("C");
lru.cache("G");
lru.cache("H");
boolean b3 = lru.inCache("D");

create an empty LRU cache with capacity N

if there are N keys in the cache and the given key is

not already in the cache, (i) remove the key that

was least recently used as an argument to cache O
and (ii) add the given key to the LRU cache

is the key in the LRU cache?

//
//
//
//
//
//
//
//
//
//
//
//
//
//

LRU

j==Jg= sl o> BN @ Nl w e 5 L5 BLe 2 M 5 I o B M v v B+
QO QU NMM@EMEMNMmOQWE
Q QU mMMmoOUooaQwE
oMM QW=

2 B B o> B oo B v e il v e B o R v B

cache

(in order of when last cached)

(add A to front)

(add B to front)

(add C to front)

(add D to front)

(add E to front)

(remove A from back; add F to front)
(true)

(false)

(move D to front)

(move C to front)

(remove B from back; add G to front)
(remove E from back; add H to front)
(true)

You should design your data structure using the new collections discussed in class (Set,
Symbol Table, Priority Queue) as well as data structures we’ve discussed so far (arrays,
linked list, heap). You may assume that Set, Symbol Table, and PQ operations are all
fast. Try to craft a fast solution.



