
Flipped Lectures

JOSH HUG

SPTs and MSTs

Dijkstra's Algorithm:

- Give a simple example of a graph where Dijkstra's algorithm will fail.
- Run Dijkstra's on this graph and explain why the SPT is wrong.

MST on directed graphs:

• Will Dijkstra's algorithm compute the MST on a undirected graph?

SPT on undirected graphs:

• See week8-precept worksheet.

More MSTs and SPTs

MST vs. SPT

- T/F: Adding c to every weight can change the undirected MST.
- T/F: Adding c to every weight can change the directed SPT.

Prim's vs. Dijkstra's:

- Lazy Prim's algorithm:
 - Maintain a PQ of edges seen so far.
 - Remove the edge of minimum weight from the PQ, and if it does not create a cycle, add that edge to the MST.
- Dijkstra's algorithm
 - Maintain a PQ of vertices, ordered by distance from the source.
 - Remove the min distance vertex from the PQ. For each outgoing edge, if it gives a shorter path from source, add that edge to the SPT.
- Why do we have to check for a cycle in Lazy Prim's before adding an edge, but not Dijkstra's?

Dijkstra's algorithm

	edge	weight			
	$0 \rightarrow 2$	3.0			
	$0 \rightarrow 3$	1.0		44 - 47 - 57	L a d a a T a C T
	$1 \rightarrow 3$	1.0	V	distTo[]	edgeTo[]
	$1 \rightarrow 6$	5.0	0	00	null
			1	7.0	5
	$2 \rightarrow 1$	2.0	-		
	$3 \rightarrow 1$	17.0	2	13.0	3
	$3 \rightarrow 2$	13.0	3	0.0	null
	$3 \rightarrow 5$	3.0	4	10.0	7
	$3 \rightarrow 7$	8.0	5	3.0	3
	$4 \rightarrow 7$	1.0	6	12.0	1
	$5 \rightarrow 1$	4.0	7	8.0	3
e‼ →	$6 \rightarrow 4$	-11.0			

 $7 \rightarrow 4$

2.0

The table above gives the SPT immediately after vertex 4 has been relaxed.

- Give the order in which the first 5 vertices were relaxed.
- Which vertex will be relaxed next and how will the SPT table change?
- Suppose we create a new graph that is the same except that the weight for the edge $3\rightarrow7$ is different. Give a new weight for $3\rightarrow7$ such that Dijkstra's will work correctly.

Design problem: Longest paths on DAGs

Longest paths on a graph:

- Design an algorithm for finding the longest path in a DAG.
- Followup: Why is this problem so hard for general graphs?

Design problem: Cycle detection as Max-flow

Ford-Fulkerson

• Does Ford-Fulkerson work if our FlowNetwork graph contains cycles?

Specific cycle-detection

- How do we detect a cycle in an undirected graph?
- Suppose we want to find a cycle that involves two specific vertices s and
 - t. Design a linear time algorithm to find ANY cycle involving s and t.

Heteronormative dystopian mate assignment problem

Bottleneck assignment problem (tough!)

- Suppose we have N men and N women.
- Each person has M binary attributes (tall vs. short, hirsute vs. hairless, etc.)
- Each person specifies their desire for each attribute.
- Design an algorithm to find a perfect matching such that the most unlucky person is matched with the fewest number of attributes.