
Suppose...

An alien species is traveling towards Earth and wishes to avoid bloodshed

before they arrive.

They want to send a light speed transmission of a proof of their scientific

and technological superiority:

・They can only send binary data.

・They do not know our language.

What sequence of bits would prove their superiority?

1

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

REDUCTIONS AND TRACTABILITY

‣ linear reductions

‣ theoretical uses of linear reductions

‣ tractability, P, and NP

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ linear reductions

‣ theoretical uses of linear reductions

‣ tractability, P, and NP

REDUCTIONS AND TRACTABILITY

Overview: introduction to advanced topics

Main topics.

・Most of our problems so far have been easy.

– Sorting, symbol table operations (array, LLRB, hash table, tries), graph

search, MSTs, SPTs, substring matching, regex simulation, etc.

・Some have been hard.

– 8puzzle.

– Hamilton path.

4

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K

ti
m

e
ti

m
e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

5

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, element distinctness,

convex hull, closest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?

6

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.

Suppose we could (could not) solve problem X efficiently.

What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to
 place it, and I shall move the world. ” — Archimedes

7

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y

on problems of different sizes

(though, typically only one call)

preprocessing and postprocessing

(typically less than cost of solving Y)

instance I

(of X)

solution to I
Algorithm

for Y

Algorithm for X

Can also think of as “Y solves X”

8

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Ex 1. [finding the median reduces to sorting]

To find the median of N items:

・Sort N items.

・Return item in the middle.

Cost of solving finding the median. N log N + 1 .

cost of sorting

cost of reduction

instance I

(of X)

solution to I
Algorithm

for Y

Algorithm for X

Can also think of as “Y solves X”

9

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Ex 2. [element distinctness reduces to sorting]

To solve element distinctness on N items:

・Sort N items.

・Check adjacent pairs for equality.

Cost of solving element distinctness. N log N + N .

cost of sorting
cost of reduction

instance I

(of X)

solution to I
Algorithm

for Y

Algorithm for X

10

Reduction

Def. Problem X linear-time reduces to problem Y if X reduces to Y with

linear reduction cost and constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far. [Which ones weren't?]

Also common: polynomial-time reduction.

instance I

(of X)

solution to I
Algorithm

for Y

Algorithm for X

linearlinear
constant # calls

11

Polynomial-time reductions

Problem X poly-time (Cook) reduces to problem Y if X can be solved with:

・Polynomial number of standard computational steps.

・Polynomial number of calls to Y.

instance I

(of X)

solution to I
Algorithm

for Y

Algorithm for X

poly
poly

poly

Some reductions involving familiar problems

12

element
distinctness sorting

convex hull
median

Delaunay
triangulation

2d closest
pair

2d Euclidean
MST

2d farthest
pair

computational geometry

linear
programming

directed shortest paths
(nonnegative)

bipartite
matching

 maximum flow

arbitrage

directed shortest paths
(no neg cycles)

undirected shortest paths
(nonnegative)

baseball
elimination

combinatorial optimization

Can bound a problem above and below.

・Develop an algorithm (big O).

・Prove a lower bound (big Ω).

Gap?

・Lower the upper bound (discover a new algorithm).

・Raise the lower bound (more difficult).

Example: Sorting.

・Insertion sort tells us that sorting is O(N2).

・Decision tree argument tells us that sorting is Ω(N log N).

Example: Hamilton Path.

・Brute force: O(N!) different permutations to check.

Big O and Big Omega reminders

13

Worst case performance

for optimal algorithm

Ω

O

Uses of Reduction

Proving a problem Π is O(f(N))

・Prove linear-time reduction to a problem that is O(f(N)).

・Examples:

– Convex hull reduces to sorting (Graham scan).

– Bipartite matching reduces to max-flow.

– Baseball elimination reduces to max-flow.

– Currency arbitrage reduces to negative cycle detection.

– Wordnet’s shortest ancestral path reduces to directed shortest paths.

– Seam carving reduces to directed shortest paths.

Developing code to solve problems

・Write a translation routine from Π.

Proving a problem Π is Ω(f(N))

・Stay tuned!

14

N log N N log N

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ linear reductions

‣ theoretical uses of linear reductions

‣ tractability, P, and NP

REDUCTIONS AND TRACTABILITY

16

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.

Ex. In decision tree model, any compare-based sorting algorithm

requires Ω(N log N) compares in the worst case.

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high

argument must apply to all

conceivable algorithms

b < c

yes no

a < c

yes

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

a < b

yes no

no

Simple lower bound through reductions example

Goal. Construct a BST in linear time from a set of N randomly ordered

elements using compare operations.

Proposition. Linear time BST construction on random elements is impossible.

Q. How to convince yourself no linear time algorithm exists?

A1. [hard way] Long futile search for a linear time algorithm.

A2. [easy way] Linear-time reduction from sorting.

Proposition. Sorting linear-time reduces to BST construction.

Pf. Construct BST from elements. Perform an in-order traversal.

Contradiction. If construction is linear, the reduction provides a linear time

sorting algorithm, which is impossible to do only using compares.

17

A bit counter-intuitive at first.

model of computation: compares

Linear time?? Linear time

18

Linear-time reductions

Suppose problem X linear-time reduces to problem Y, i.e. solvable with:

・Linear number of standard computational steps.

・Constant number of calls to Y.

Establish lower bound:

・Example: If X takes Ω(N log N) steps, then so does Y.

Mentality.

・If I could easily solve Y, then I could easily solve X.

・I can’t easily solve X.

・Therefore, I can’t easily solve Y.

Example:

X: Sorting

Y: BST Construction

X reduces to Y.

or any other function of N

Uses of Reduction

Proving a problem Π is O(f(N))

・Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

・Write a translation routine from Π.

Proving a problem Π is Ω(f(N))

・Prove linear-time reduction from a known Ω(f(N)) problem.

19

20

Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting

N integers requires Ω(N log N) steps.

Proposition. Sorting linear-time reduces to convex hull.

Pf. [see next slide]

Implication. Any ccw-based convex hull algorithm requires Ω(N log N) ops.

allows linear or quadratic tests:

 xi < xj or (xj – xi) (xk – xi) – (xj) (xj – xi) < 0

linear or

quadratic tests

lower-bound mentality:

I can't sort in linear time,

so I can't solve convex hull

in linear time either

sorting

1251432
2861534
3988818
4190745
8111033
13546464
89885444
43434213
34435312

convex hull

Proposition. Sorting linear-time reduces to convex hull.

・Sorting instance: x1, x2, ... , xN.

・Convex hull instance: (x1 , x12), (x2, x22), ... , (xN , xN2).

Pf.

・Region { x : x2 ≥ x } is convex ⇒ all N points are on hull.

・Starting at point with most negative x, counterclockwise order of hull

points yields integers in ascending order.

21

Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2)

x

y

Uses of Reduction

Proving a problem Π is O(f(N))

・Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

・Write a translation routine from Π.

Proving a problem Π is Ω(f(N))

・Prove linear-time reduction from a known Ω(f(N)) problem.

Suggest that a problem Π is Ω(f(N))

・Prove linear-time reduction from a problem suspected to be Ω(f(N)).

22

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,

are there 3 that all lie on the same line?

23

Lower bound for 3-COLLINEAR

3-collinear3-sum

590584
-23439854

1251432
-2861534
3988818
-4190745

333255
13546464
89885444
-43434213
11998833

24

Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane,

are there 3 that all lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

Pf. [next two slides]

Conjecture. Any algorithm for 3-SUM requires Ω(N 2) steps.

Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

your N2 log N algorithm was pretty good

lower-bound mentality:

if I can't solve 3-sum in N1.99 time,

I can't solve 3-collinear

in N1.99 time either(Not covered in class)

25

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

・3-SUM instance: x1, x2, ... , xN .

・3-COLLINEAR instance: (x1 , x13), (x2, x23), ... , (xN , xN3).

Lemma. If a, b, and c are distinct, then a + b + c = 0
if and only if (a, a3), (b, b3), and (c, c3) are collinear.

(1, 1)

(2, 8)

(-3, -27) -3 + 2 + 1 = 0

f (x) = x3

26

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

・3-SUM instance: x1, x2, ... , xN .

・3-COLLINEAR instance: (x1 , x13), (x2, x23), ... , (xN , xN3).

Lemma. If a, b, and c are distinct, then a + b + c = 0
if and only if (a, a3), (b, b3), and (c, c3) are collinear.

Pf. Three distinct points (a, a3), (b, b3), and (c, c3) are collinear iff:

0 =

������

a a3 1
b b3 1
c c3 1

������

= a(b3 � c3)� b(a3 � c3) + c(a3 � b3)

= (a� b)(b� c)(c� a)(a + b + c)

Uses of Reduction

Proving a problem Π is O(f(N))

・Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

・Write a translation routine from Π.

Proving a problem Π is Ω(f(N))

・Prove linear-time reduction from a known Ω(f(N)) problem.

Suggest that a problem Π is Ω(f(N))

・Prove linear-time reduction from a problem suspected to be Ω(f(N)).

Prove that two problems Π and X have the same complexity, i.e. are Θ(f(N))

・Prove that Π linear-time reduces to X

・Prove that X linear-time reduces to Π

27

Have same worst case

order of growth, given by

unknown function!

Desiderata'. Prove that two problems X and Y have the same complexity.

・First, show that problem X linear-time reduces to Y.

・Second, show that Y linear-time reduces to X.

・Conclude that X and Y have the same complexity.

Classifying problems: summary

28

even if we don't know what it is!

sorting

convex hull

29

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.

Brute force. N 3 flops.

0.1 0.2 0.8 0.1

0.5 0.3 0.9 0.6

0.1 0.0 0.7 0.4

0.0 0.3 0.3 0.1

×

0.4 0.3 0.1 0.1

0.2 0.2 0.0 0.6

0.0 0.0 0.4 0.5

0.8 0.4 0.1 0.9

=

0.16 0.11 0.34 0.62

0.74 0.45 0.47 1.22

0.36 0.19 0.33 0.72

0.14 0.10 0.13 0.42

row i

column j j

i

0.5 · 0.1 + 0.3 · 0.0 + 0.9 · 0.4 + 0.6 · 0.1 = 0.47

30

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.

Brute force. N 3 flops.

Q. Is brute-force algorithm optimal?

problem linear algebra order of growth

matrix multiplication A × B MM(N)

matrix inversion A–1 MM(N)

determinant | A | MM(N)

system of linear equations Ax = b MM(N)

LU decomposition A = L U MM(N)

least squares min ||Ax – b||2 MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

31

History of complexity of matrix multiplication

year algorithm order of growth

? brute force N 3

1969 Strassen N 2.808

1978 Pan N 2.796

1979 Bini N 2.780

1981 Schönhage N 2.522

1982 Romani N 2.517

1982 Coppersmith-Winograd N 2.496

1986 Strassen N 2.479

1989 Coppersmith-Winograd N 2.376

2010 Strother N 2.3737

2011 Williams N 2.3727

? ? N 2 + ε

number of floating-point operations to multiply two N-by-N matrices

Uses of reduction

Proving a problem Π is O(f(N))

・Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

・Write a translation routine from Π.

Proving a problem Π is Ω(f(N))

・Prove linear-time reduction from a known Ω(f(N)) problem.

Suggest that a problem Π is Ω(f(N))

・Prove linear-time reduction from a problem suspected to be Ω(f(N)).

Prove that two problems Π and X have the same complexity, i.e. are Θ(f(N))

・Prove that Π linear-time reduces to X

・Prove that X linear-time reduces to Π

32

Unknown function!

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ linear reductions

‣ theoretical uses of linear reductions

‣ tractability, P, and NP

REDUCTIONS AND TRACTABILITY

34

Intractability

Desiderata. Understand which problems are easy, and which are hard.

Def. A problem is intractable if it can't be solved in polynomial time.

・Run-time grows faster than Nk.

Tractable.

・Comparison sorting: O(N2)

・Collinear: O(N3)

Intractable.

・Given a constant-size program, does it halt in at most K steps?

・Given N-by-N checkers board position, can the first player force a win?

input size = c + lg K

using forced capture rule

Unknown difficulty

Decision problems of unknown difficulty.

・Does there exist a Hamilton path in a graph?

・Does there exist a path a traveling salesman can take that is of total

weight less than W?

・Does there exist a set of inputs for a circuit such that the output is true?

・Given a set of axioms, can we prove mathematical theorem X?

Optimization problems of unknown difficulty.

・What is the minimum weight path for a traveling salesman?

・Given a set of basic axioms, what is the shortest proof?

Amazing fact:

・A solution to ANY of these problems provides a solution to all of them.

– Every one of these problems reduces to every other problem.

– Nobody knows whether or not these problems can be solved in

polynomial time. Does P = NP?

35

Decision problems vs. function problems

Decision Problem

・Given some input, gives “yes” or “no” as answer.

Function problem

・Given some input, give some output as an answer.

Examples:

・Decision problems

– Does a TSP tour exist of length < M?

– Is N the product of two primes?

・Function problems

– What is the minimal weight TSP tour?

– What are the factors of N?

– What is the sorted version of X?

36

TSP Tour of Italy’s Cities

Easier to reason about, output is only 1 bit.

Solving function problems via decision problems

TSP

・What is the minimal weight TSP tour?

・Does a TSP tour exist of length < M?

・Example

– Does a TSP tour exist of length < 20000?

– Yes. What about < 10000?

– Yes. What about < 5000?

– No. What about < 7500?

– ...

Full discussion beyond the scope of our course.

37

The class P

A problem is in P if

・It is a decision problem.

・It can be solved in O(Nk) time.

– O(Nk) - Worst case order of growth is ≤ Nk.

– N is number of bits needed to specify input.

Example

・Is vertex X reachable from vertex S?

– Total bits used for adjacency list representation: N = c1E + c2V

– DFS, worst case order of growth: E+V

– In terms of big O: O(E+V) = O(N)

38

All problems in P are tractable!

Classic definition. Book defines P as a class of “search problems”.

Easy as P

Why O(Nk)?

・P seems rather generous.

・O(Nk) closed under addition, multiplication and polynomial reduction.

– Consecutively run two algorithms in P, still in P.

– Run an algorithm N times, still in P.

– Reduce to a problem Π in P, then Π is in P.

・Exponents for practical problems are typically small.

39

The class NP

A problem is in NP if

・It is a decision problem.

・If answer is “Yes”, a proof exists that can be verified in polynomial time.

– NP: Does a TSP tour exist of length less than 1000?

– Not NP: Is a given TSP tour optimal?

– Not NP: What is the optimal TSP tour?

・Stands for “non-deterministic polynomial”

– Name is a bit confusing. Don’t worry about it.

・Most important detail: Verifiable in Polynomial Time.

– “In an ideal world it would be renamed P vs VP” - Clyde Kruskal

40

“Joseph Kruskal [inventor of Kruskal’s algorithm] should not be confused with his
two brothers Martin Kruskal(1925–2006; co-inventor of solitons and of surreal
numbers) and William Kruskal(1919–2005; developed the Kruskal-Wallis one-way
analysis of variance), or his nephew Clyde Kruskal.” -Dbenbenn

http://en.wikipedia.org/wiki/Joseph_Kruskal

This is in a class called co-NP.

Defining NP in terms of “search

problems” puts this problem into NP.

Also called a certificate.

Verification example

Verifiable in polynomial time

・Circuit satisfiability: Do there exist x1, x2, x3 such that x10 is true?

– If true, easy proof is x1=true, x2=true, x3=false.

– Linear time simulation with this input yields x10=true.

Not verifiable in polynomial time

・Checkers: From a given checkerboard position, is there some sequence

of moves such that player 1 wins?

– Certificate cannot be easily verified.

41

Verification takes

polynomial time.

Solving the circuit satisfiability problem

Solving circuit satisfiability

・2N possible inputs.

・Brute force solution is exponential.

・Best known solution is exponential.

42

NP

NP includes a vast number of interesting problems.

・Hand-wavy reason: Many (most?) practical problems can be analyzed in

terms of interesting NP decision problems.

・Example: Managing an airline

– Can we assign planes to our routes such that we use < N gallons/year?

・Example: Destroying the global e-commerce system.

– Given Z, are there two primes such that X*Y = Z.

・Counter-example?

– Is move X better than move Y in this chess game on N2 board?

43

See COS432

Completeness (short detour)

Completeness

・Let Q be a class of problems and let π be a specific problem.

・π is Q-Complete if

– π is in Q.

– Everything in Q time reduces to π [π solves any problem in Q].

・If a solution is known, can use π as a tool to solve any problem in Q.

44

many glossed over details!

NP-complete

NP-complete

・A problem π is NP-complete if:

– π is in NP.

– All problems in NP poly-time reduce to π.

・Solution to an NP-complete problem would be a key to the universe!

Two questions

・Are there any NP-complete problems?

・Do we know how to solve any of them?

45

many glossed over details!

Existence of an NP complete problem

3SAT

・Cook (71), Levin (73) proved every NP problem poly-time reduces to 3SAT.

– 3SAT is at least as hard as every other problem in NP.

– A solution to 3SAT provides a solution to every problem in NP.

– Every problem in NP is O(F3SAT(N)).

・Does there exist a truth value for boolean variables that obeys a set of

3-variable disjunctive constraints: (x1 || x2 || !x3) && (x1 || !x1 || x1)

46

Stephen

Cook

Leonid

Levin

Also in NP!

Existence of an NP complete problem

Rough idea of Cook-Levin theorem

・Create giant (!!) boolean logic expression that represents entire state of

your computer at every time step.

・If solution takes polynomial time, boolean logic circuit is polynomial in size.

・Example boolean logic variable: True if 57173rd bit of memory is true and

we’re on line 38 of code during cycle 7591872 of execution.

47

Stephen

Cook

Leonid

Levin

48

Implications of Cook-Levin theorem

3-SAT

IND-SET VERTEX COVER

HAM-CYCLECLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems (and many, many more)

poly-time reduce to 3-SAT.

Stephen Cook
'82 Turing award

Leonid Levin

3SAT

Great, 3SAT solves most well defined problems of general interest!

Can we solve 3SAT efficiently?

・Nobody knows how to solve 3SAT efficiently.

・Nobody knows if an efficient solution exists.

– Unknown if 3SAT is in P.

Other NP Complete problems?

・Are there other keys to this magic kingdom?

49

NP Complete

There are more

・Dick Karp (72) proved that 3SAT reduces to 21 important NP problems.

– Example: A solution to TSP provides a solution to 3SAT.

– All of these problems join 3SAT in the NP Complete club.

– These 21 problems are Ω(F3SAT(N)).

・Proof applies only to these 21 problems. Each was its own special case.

50

Dick Karp

51

More poly-time reductions from 3-satisfiability

3-SAT

VERTEX COVER

HAM-CYCLECLIQUE

IND-SET3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

ILP

KNAPSACK

Dick Karp
'85 Turing award

3
-SA

T
 red

u
ces to

 ILP

TSP

BIN-PACKING

Conjecture. 3-SAT is intractable.

Implication. All of these problems are intractable.

something interesting to say about big o or big omega here?

52

Implications of Karp + Cook-Levin

3-SAT

VERTEX COVER

CLIQUE

3-COLOR

EXACT COVER

HAM-PATHSUBSET-SUM

PARTITION

KNAPSACK

3-SAT

reduces to 3-COLOR

TSP

BIN-PACKING

3-COLOR

reduces to 3-SAT

All of these problems are NP-complete; they are

manifestations of the same really hard

problem.

IND-SET

ILP

HAM-CYCLE

+

Summary

Cook and Levin

・Every NP problem is O(F3SAT(N)).

・3SAT is in NP and solves every NP problem, i.e. it is NP-Complete.

Karp

・21 specific NP problems are Ω(F3SAT(N)).

・These 21 problems solve 3SAT.

・All of these problems are also therefore NP-Complete.

Later work

・Thousands of practical NP problems are also Ω(F3SAT(N)).

・All of these problems are also therefore NP-Complete.

53

How to tell if your problem is NP Complete?

・Prove that it is in NP [easy].

・Prove that some NP Complete problem reduces to your problem

[tricky!]

54

An independent set is a set of vertices, no two of which are adjacent.

IND-SET. Given graph G and an integer k, find an independent set of size k.

Applications. Scheduling, computer vision, clustering, ...

55

Independent set

k = 9

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

・For each clause in Φ, create 3 vertices in a triangle.

・Add an edge between each literal and its negation.

56

3-satisfiability reduces to independent set

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

Φ = (x1 or x2 or x3) and (¬x1 or ¬x2 or x4) and (¬x1 or x3 or ¬x4) and (x1 or x3 or x4)

k = 4

lower-bound mentality:

if I could solve IND-SET efficiently,

I could solve 3-SAT efficiently

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

・For each clause in Φ, create 3 vertices in a triangle.

・Add an edge between each literal and its negation.

・Φ satisfiable ⇒ G has independent set of size k.

57

3-satisfiability reduces to independent set

for each of k clauses, include in independent set one vertex corresponding to a true literal

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Φ = (x1 or x2 or x3) and (¬x1 or ¬x2 or x4) and (¬x1 or x3 or ¬x4) and (x1 or x3 or x4)

Proposition. 3-SAT poly-time reduces to IND-SET.

Pf. Given an instance Φ of 3-SAT, create an instance G of IND-SET:

・For each clause in Φ, create 3 vertices in a triangle.

・Add an edge between each literal and its negation.

・Φ satisfiable ⇒ G has independent set of size k.

・G has independent set of size k ⇒ Φ satisfiable.

58

3-satisfiability reduces to independent set

set literals corresponding to k vertices in independent set to true

(set remaining literals in any consistent manner)

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Φ = (x1 or x2 or x3) and (¬x1 or ¬x2 or x4) and (¬x1 or x3 or ¬x4) and (x1 or x3 or x4)

Proposition. 3-SAT poly-time reduces to IND-SET.

Implication. Assuming 3-SAT is intractable, so is IND-SET.

59

3-satisfiability reduces to independent set

x3x2 x4¬x2 x3¬x4 x4x3

¬x1 x1x1 ¬x1

k = 4

Φ = (x1 or x2 or x3) and (¬x1 or ¬x2 or x4) and (¬x1 or x3 or ¬x4) and (x1 or x3 or x4)

P = NP?

Does P = NP?

・Equivalently: Is any NP Complete problem also in P?

・Equivalently: Efficiently verifiable ⇒ efficiently solvable?

60

NP

P NPC

P ≠ NP

P = NP

P = NP

Hardest problems in NP

Reminder: NP may as well have been called VP for “Verifiable in Polynomial Time”

61

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, element distinctness,

convex hull, closest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?

62

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

Good news. Can put many problems into equivalence classes.

complexity order of growth examples

linear N min, max, median,

linearithmic N log N sorting, convex hull,

M(N) ?
integer multiplication,

division, square root, ...

MM(N) ?
matrix multiplication, Ax = b,

least square, determinant, ...

⋮ ⋮ ⋮

NP-complete probably not Nb 3-SAT, IND-SET, ILP, ...

63

Complexity zoo

Complexity class. Set of problems sharing some computational property.

Bad news. Lots of complexity classes.

Text

http://qwiki.stanford.edu/index.php/Complexity_Zoo

