Suppose...

An alien species is traveling towards Earth and wishes to avoid bloodshed before they arrive.

They want to send a light speed transmission of a proof of their scientific and technological superiority:

- They can only send binary data.
- They do not know our language.

What sequence of bits would prove their superiority?

Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

REDUCTIONS AND TRACTABILITY

Inear reductions

theoretical uses of linear reductions
tractability, P, and NP

Robert Sedgewick | Kevin Wayne

Algorithms

http://algs4.cs.princeton.edu

REDUCTIONS AND TRACTABILITY

theoretical uses of linear reductions

Inear reductions

tractability, P, and NP

Algorithms

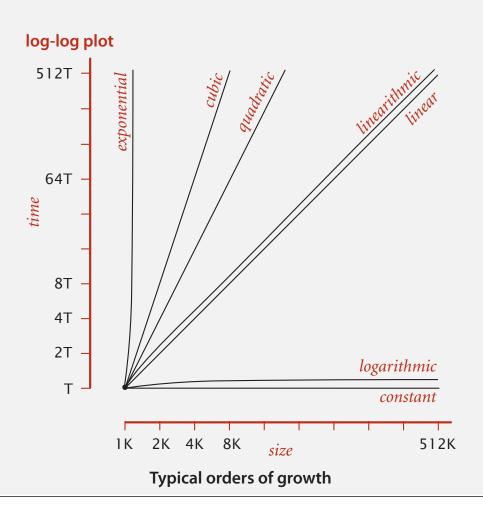
Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Overview: introduction to advanced topics

Main topics.

- Most of our problems so far have been easy.
 - Sorting, symbol table operations (array, LLRB, hash table, tries), graph search, MSTs, SPTs, substring matching, regex simulation, etc.
- Some have been hard.
 - 8puzzle.
 - Hamilton path.



Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	Ν	min, max, median, Burrows-Wheeler transform,
linearithmic	N log N	sorting, element distinctness, convex hull, closest pair,
quadratic	N ²	?
÷	÷	:
exponential	CN	?

Frustrating news. Huge number of problems have defied classification.

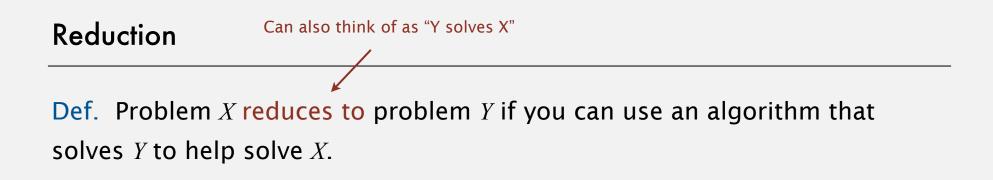
Desiderata. Classify problems according to computational requirements.

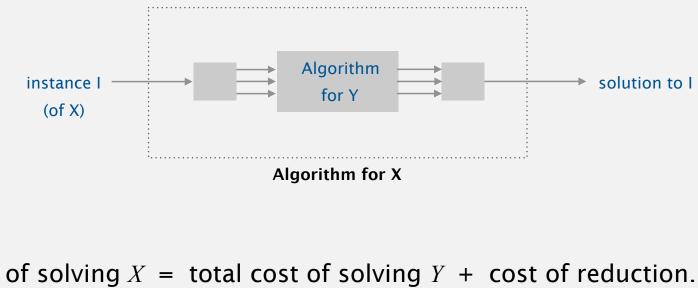
Desiderata'.

Suppose we could (could not) solve problem *X* efficiently.

What else could (could not) we solve efficiently?

"Give me a lever long enough and a fulcrum on which to place it, and I shall move the world. " — Archimedes

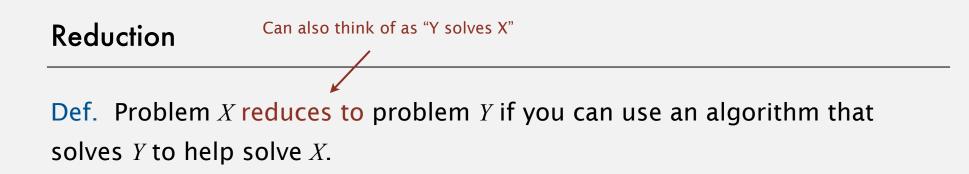


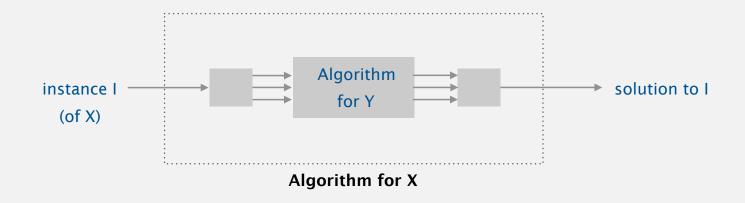


Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y preprocessing and postprocessing on problems of different sizes (though, typically only one call)

(typically less than cost of solving Y)





cost of sorting

cost of reduction

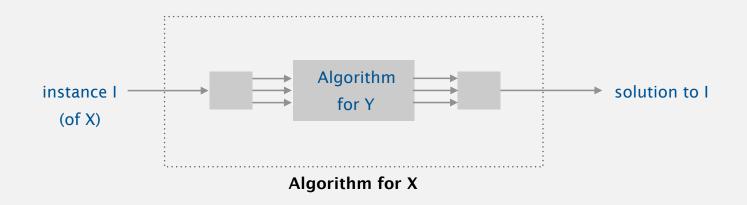
Ex 1. [finding the median reduces to sorting]

To find the median of *N* items:

- Sort *N* items.
- Return item in the middle.

Cost of solving finding the median. $N \log N + 1$.

Def. Problem *X* reduces to problem *Y* if you can use an algorithm that solves *Y* to help solve *X*.



Ex 2. [element distinctness reduces to sorting]

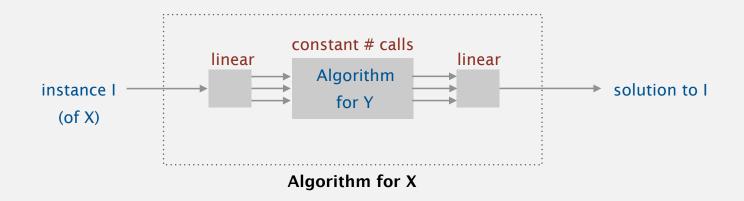
To solve element distinctness on N items:

- Sort *N* items.
- Check adjacent pairs for equality.

Cost of solving element distinctness. $N \log N + N$.

9

Def. Problem *X* linear-time reduces to problem *Y* if *X* reduces to *Y* with linear reduction cost and constant number of calls to Y.



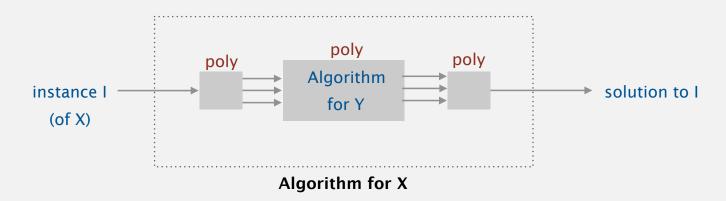
Ex. Almost all of the reductions we've seen so far. [Which ones weren't?]

Also common: polynomial-time reduction.

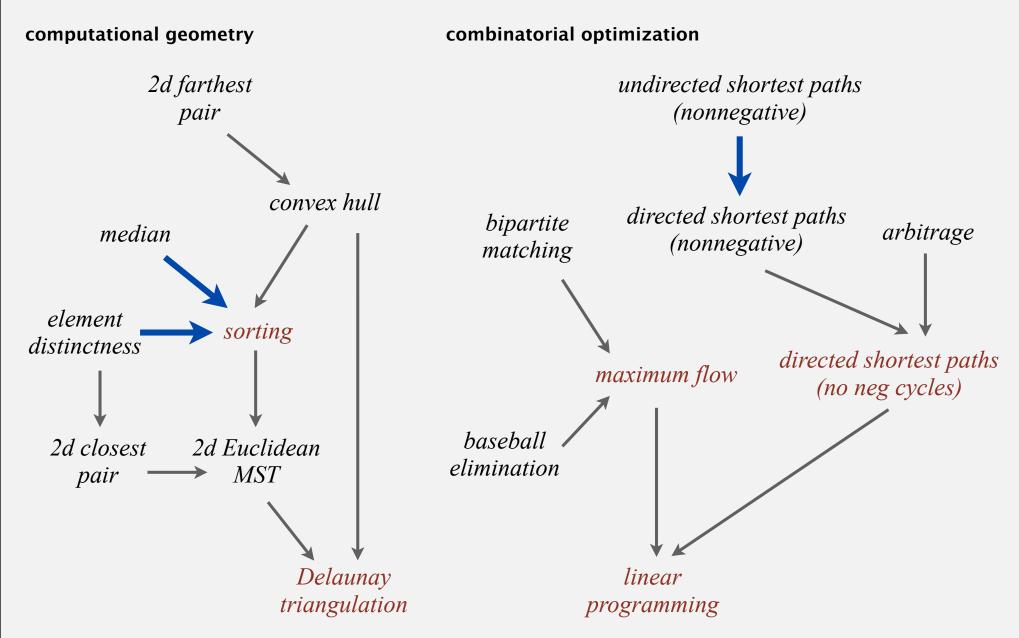
Polynomial-time reductions

Problem *X* poly-time (Cook) reduces to problem *Y* if *X* can be solved with:

- Polynomial number of standard computational steps.
- Polynomial number of calls to *Y*.



Some reductions involving familiar problems



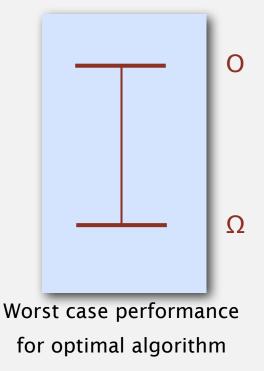
Big O and Big Omega reminders

Can bound a problem above and below.

- Develop an algorithm (big O).
- Prove a lower bound (big Ω).

Gap?

- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).



Example: Sorting.

- Insertion sort tells us that sorting is O(N²).
- Decision tree argument tells us that sorting is $\Omega(N \log N)$.

Example: Hamilton Path.

• Brute force: O(N!) different permutations to check.

Uses of Reduction

Proving a problem Π is O(f(N))

- Prove linear-time reduction to a problem that is O(f(N)).
- Examples: N log N

N log N

- Convex hull reduces to sorting (Graham scan).
- Bipartite matching reduces to max-flow.
- Baseball elimination reduces to max-flow.
- Currency arbitrage reduces to negative cycle detection.
- Wordnet's shortest ancestral path reduces to directed shortest paths.
- Seam carving reduces to directed shortest paths.

Developing code to solve problems

• Write a translation routine from Π.

Proving a problem Π is $\Omega(f(N))$

• Stay tuned!

REDUCTIONS AND TRACTABILITY

Vinear reductions

tractability, P, and NP

theoretical uses of linear reductions

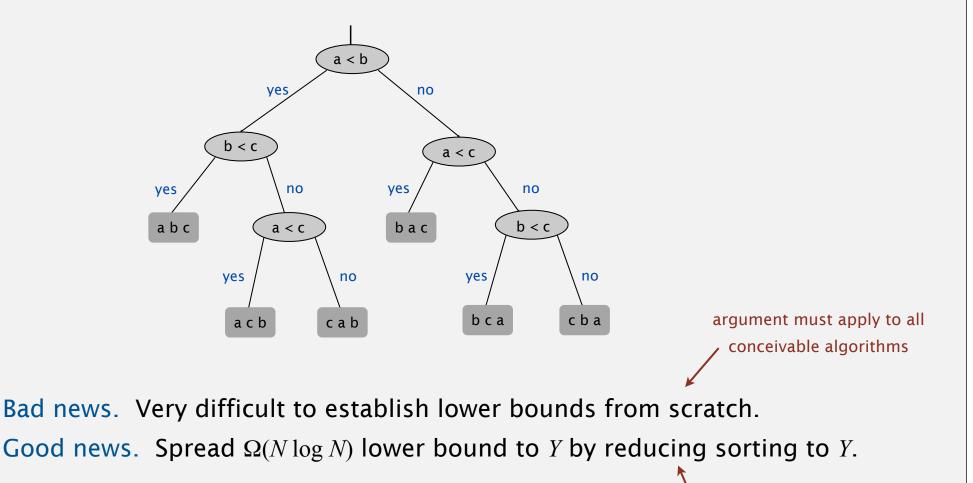
Algorithms

Robert Sedgewick | Kevin Wayne

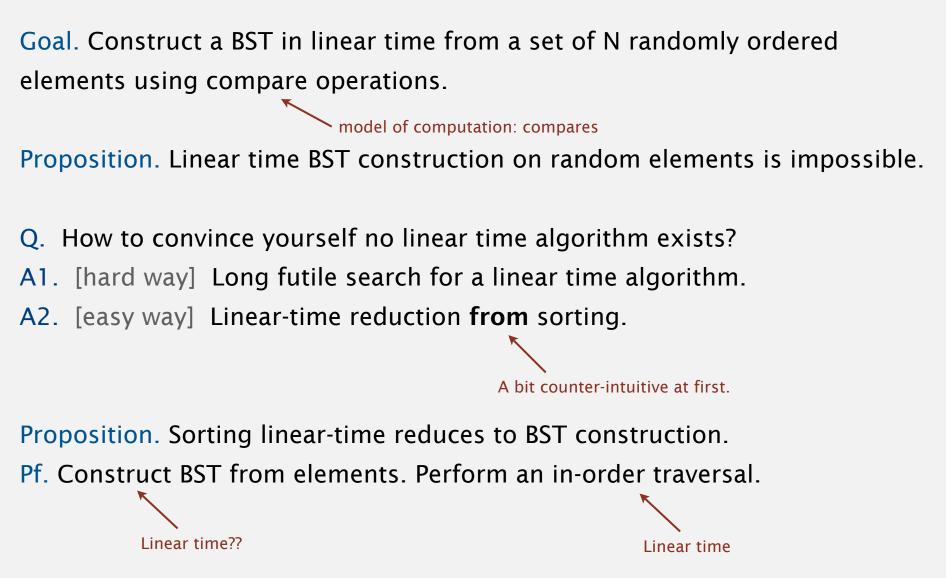
http://algs4.cs.princeton.edu

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps. Ex. In decision tree model, any compare-based sorting algorithm requires $\Omega(N \log N)$ compares in the worst case.



Simple lower bound through reductions example

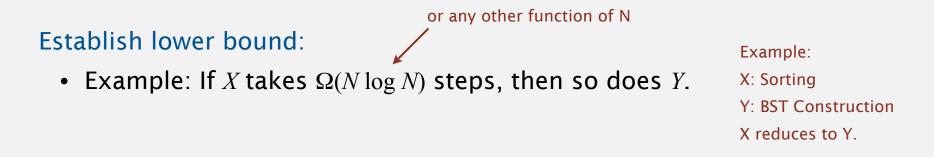


Contradiction. If construction is linear, the reduction provides a linear time sorting algorithm, which is impossible to do only using compares.

Linear-time reductions

Suppose problem *X* linear-time reduces to problem *Y*, i.e. solvable with:

- Linear number of standard computational steps.
- Constant number of calls to Y.



Mentality.

- If I could easily solve *Y*, then I could easily solve *X*.
- I can't easily solve X.
- Therefore, I can't easily solve *Y*.

Uses of Reduction

Proving a problem Π is O(f(N))

• Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

• Write a translation routine from Π .

Proving a problem Π is $\Omega(f(N))$

• Prove linear-time reduction from a known $\Omega(f(N))$ problem.

Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting N integers requires $\Omega(N \log N)$ steps. allows linear or quadratic tests: $\underline{x_i} < \underline{x_i}$ or $(x_j - x_i) (x_k - x_i) - (x_j) (\underline{x_j} - x_i) < 0$ Proposition. Sorting linear-time reduces to convex hull. Pf. [see next slide]

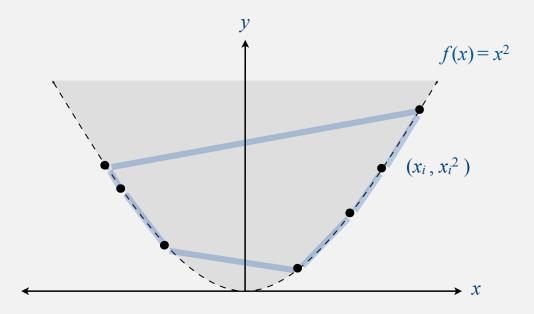
1251432
2861534
398818
4190745
8111033
13546464
89885444
43434213
34435312Image: solution of the second se

Implication. Any ccw-based convex hull algorithm requires $\Omega(N \log N)$ ops.

Sorting linear-time reduces to convex hull

Proposition. Sorting linear-time reduces to convex hull.

- Sorting instance: *x*₁, *x*₂, ..., *x*_N.
- Convex hull instance: $(x_1, x_1^2), (x_2, x_2^2), \dots, (x_N, x_N^2)$.



Pf.

- Region $\{x : x^2 \ge x\}$ is convex \Rightarrow all *N* points are on hull.
- Starting at point with most negative *x*, counterclockwise order of hull points yields integers in ascending order.

Uses of Reduction

Proving a problem Π is O(f(N))

• Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

• Write a translation routine from Π.

Proving a problem Π is $\Omega(f(N))$

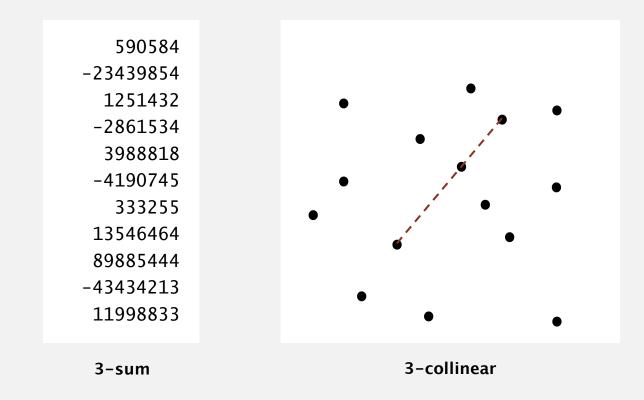
• Prove linear-time reduction **from** a known $\Omega(f(N))$ problem.

Suggest that a problem Π is $\Omega(f(N))$

• Prove linear-time reduction **from** a problem suspected to be $\Omega(f(N))$.

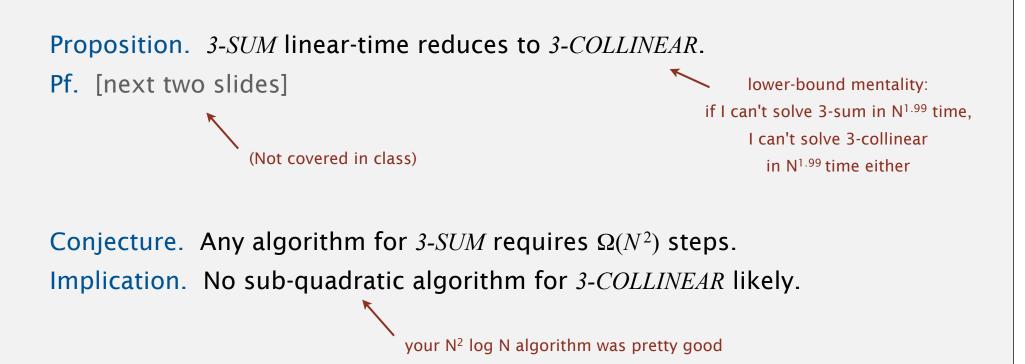
3-SUM. Given *N* distinct integers, are there three that sum to 0?

3-COLLINEAR. Given *N* distinct points in the plane, are there 3 that all lie on the same line?



3-SUM. Given *N* distinct integers, are there three that sum to 0?

3-COLLINEAR. Given *N* distinct points in the plane, are there 3 that all lie on the same line?

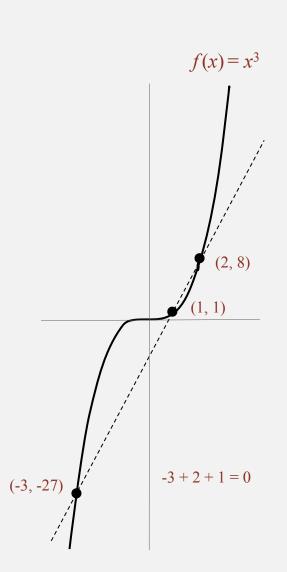


3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- *3-SUM* instance: *x*₁, *x*₂, ..., *x*_N.
- *3-COLLINEAR* instance: $(x_1, x_1^3), (x_2, x_2^3), \dots, (x_N, x_N^3)$.

Lemma. If *a*, *b*, and *c* are distinct, then a + b + c = 0 if and only if (a, a^3) , (b, b^3) , and (c, c^3) are collinear.



3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

- *3-SUM* instance: *x*₁, *x*₂, ..., *x*_N.
- *3-COLLINEAR* instance: $(x_1, x_1^3), (x_2, x_2^3), \dots, (x_N, x_N^3)$.

Lemma. If *a*, *b*, and *c* are distinct, then a + b + c = 0 if and only if (a, a^3) , (b, b^3) , and (c, c^3) are collinear.

Pf. Three distinct points (a, a^3) , (b, b^3) , and (c, c^3) are collinear iff:

$$0 = \begin{vmatrix} a & a^{3} & 1 \\ b & b^{3} & 1 \\ c & c^{3} & 1 \end{vmatrix}$$
$$= a(b^{3} - c^{3}) - b(a^{3} - c^{3}) + c(a^{3} - b^{3})$$
$$= (a - b)(b - c)(c - a)(a + b + c)$$

Uses of Reduction

Proving a problem Π is O(f(N))

• Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

• Write a translation routine from Π.

Proving a problem Π is $\Omega(f(N))$

• Prove linear-time reduction **from** a known $\Omega(f(N))$ problem.

Suggest that a problem Π is $\Omega(f(N))$

• Prove linear-time reduction **from** a problem suspected to be $\Omega(f(N))$.

Prove that two problems Π and X have the same complexity, i.e. are $\Theta(f(N))$

- Prove that Π linear-time reduces to X
- Prove that X linear-time reduces to Π

Have same worst case order of growth, given by unknown function!

Classifying problems: summary

Desiderata'. Prove that two problems *X* and *Y* have the same complexity.

- First, show that problem *X* linear-time reduces to *Y*.
- Second, show that *Y* linear-time reduces to *X*.
- Conclude that *X* and *Y* have the same complexity.

even if we don't know what it is!

sorting convex hull

Linear algebra reductions

Matrix multiplication. Given two *N*-by-*N* matrices, compute their product. Brute force. N^3 flops.

					column j							j		
	0.1	0.2	0.8	0.1		0.4	0.3	0.1	0.1		0.16	0.11	0.34	0.62
row i	0.5	0.3	0.9	0.6	×	0.2	0.2	0.0	0.6	i =	0.74	0.45	0.47	1.22
	0.1	0.0	0.7	0.4	~	0.0	0.0	0.4	0.5		0.36	0.19	0.33	0.72
	0.0	0.3	0.3	0.1		0.8	0.4	0.1	0.9		0.14	0.10	0.13	0.42
												/		

 $0.5 \cdot 0.1 + 0.3 \cdot 0.0 + 0.9 \cdot 0.4 + 0.6 \cdot 0.1 = 0.47$

Linear algebra reductions

Matrix multiplication. Given two *N*-by-*N* matrices, compute their product. Brute force. N^3 flops.

problem	linear algebra	order of growth		
matrix multiplication	$A \times B$	MM(N)		
matrix inversion	A ⁻¹	MM(N)		
determinant	A	MM(N)		
system of linear equations	Ax = b	MM(N)		
LU decomposition	A = L U	MM(N)		
least squares	min Ax – b ₂	MM(N)		

numerical linear algebra problems with the same complexity as matrix multiplication

Q. Is brute-force algorithm optimal?

History of complexity of matrix multiplication

year	algorithm	order of growth				
?	brute force	N ³				
1969	Strassen	N ^{2.808}				
1978	Pan	N ^{2.796}				
1979	Bini	N ^{2.780}				
1981	Schönhage	N ^{2.522}				
1982	Romani	N ^{2.517}				
1982	Coppersmith-Winograd	N ^{2.496}				
1986	Strassen	N ^{2.479}				
1989	Coppersmith-Winograd	N ^{2.376}				
2010	Strother	N ^{2.3737}				
2011	Williams	N ^{2.3727}				
?	?	N ² + ε				

number of floating-point operations to multiply two N-by-N matrices

Uses of reduction

Proving a problem Π is O(f(N))

• Prove linear-time reduction to a problem that is O(f(N)).

Developing code to solve problems

• Write a translation routine from Π .

Proving a problem Π is $\Omega(f(N))$

• Prove linear-time reduction **from** a known $\Omega(f(N))$ problem.

Suggest that a problem Π is $\Omega(f(N))$

• Prove linear-time reduction **from** a problem suspected to be $\Omega(f(N))$.

Prove that two problems Π and X have the same complexity, i.e. are $\Theta(f(N))$

- Prove that Π linear-time reduces to X
- Prove that X linear-time reduces to Π

Unknown function!

REDUCTIONS AND TRACTABILITY

Vinear reductions

tractability, P, and NP

theoretical uses of linear reductions

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Intractability

Desiderata. Understand which problems are easy, and which are hard.

Def. A problem is intractable if it can't be solved in polynomial time.

• Run-time grows faster than N^k.

Tractable.

- Comparison sorting: O(N²)
- Collinear: O(N³)

Intractable.

- Given a constant-size program, does it halt in at most K steps?
- Given *N*-by-*N* checkers board position, can the first player force a win?

Alan designed the perfect computer

using forced capture rule

input size = c + lg K

Unknown difficulty

Decision problems of unknown difficulty.

- Does there exist a Hamilton path in a graph?
- Does there exist a path a traveling salesman can take that is of total weight less than W?
- Does there exist a set of inputs for a circuit such that the output is true?
- Given a set of axioms, can we prove mathematical theorem X?

Optimization problems of unknown difficulty.

- What is the minimum weight path for a traveling salesman?
- Given a set of basic axioms, what is the shortest proof?

Amazing fact:

- A solution to ANY of these problems provides a solution to all of them.
 - Every one of these problems reduces to every other problem.
 - Nobody knows whether or not these problems can be solved in polynomial time. Does P = NP?

Decision problems vs. function problems

Easier to reason about, output is only 1 bit.

Decision Problem

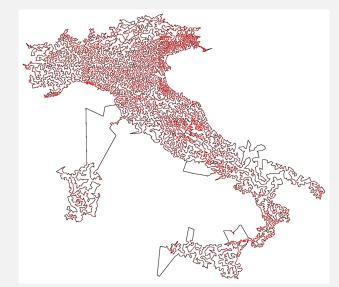
• Given some input, gives "yes" or "no" as answer.

Function problem

• Given some input, give some output as an answer.

Examples:

- Decision problems
 - Does a TSP tour exist of length < M?
 - Is N the product of two primes?
- Function problems
 - What is the minimal weight TSP tour?
 - What are the factors of N?
 - What is the sorted version of X?



TSP Tour of Italy's Cities

Solving function problems via decision problems

TSP

- What is the minimal weight TSP tour?
- Does a TSP tour exist of length < M?
- Example
 - Does a TSP tour exist of length < 20000?
 - Yes. What about < 10000?
 - Yes. What about < 5000?
 - No. What about < 7500?
 - ...

Full discussion beyond the scope of our course.

The class P

Classic definition. Book defines P as a class of "search problems".

A problem is in P if

All problems in P are tractable!

- It is a decision problem.
- It can be solved in O(N^k) time.
 - $O(N^k)$ Worst case order of growth is $\leq N^k$.
 - N is number of bits needed to specify input.

Example

- Is vertex X reachable from vertex S?
 - Total bits used for adjacency list representation: $N = c_1E + c_2V$
 - DFS, worst case order of growth: E+V
 - In terms of big O: O(E+V) = O(N)

Easy as P

Why O(N^k)?

- P seems rather generous.
- O(N^k) closed under addition, multiplication and polynomial reduction.
 - Consecutively run two algorithms in P, still in P.
 - Run an algorithm N times, still in P.
 - Reduce to a problem Π in P, then Π is in P.
- Exponents for practical problems are typically small.

The class NP

A problem is in NP if

Also called a certificate.

- It is a decision problem.
- If answer is "Yes", a proof exists that can be verified in polynomial time.
 - NP: Does a TSP tour exist of length less than 1000?
 - Not NP: Is a given TSP tour optimal? This is in a class called co-NP.
 - Not NP: What is the optimal TSP tour? -

Defining NP in terms of "search problems" puts this problem into NP.

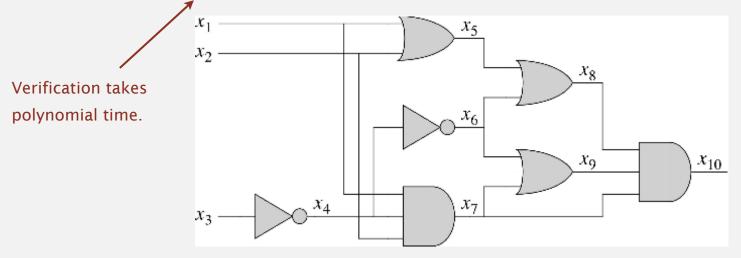
- Stands for "non-deterministic polynomial"
 - Name is a bit confusing. Don't worry about it.
- Most important detail: Verifiable in Polynomial Time.
 - "In an ideal world it would be renamed P vs VP" Clyde Kruskal

"Joseph Kruskal [inventor of Kruskal's algorithm] should not be confused with his two brothers <u>Martin Kruskal(1925–2006;</u> co-inventor of <u>solitons</u> and of <u>surreal</u> <u>numbers</u>) and <u>William Kruskal(1919–2005;</u> developed the <u>Kruskal-Wallis one-way</u> <u>analysis of variance</u>), or his nephew <u>Clyde Kruskal</u>." -Dbenbenn

Verification example

Verifiable in polynomial time

- Circuit satisfiability: Do there exist x_1 , x_2 , x_3 such that x_{10} is true?
 - If true, easy proof is x_1 =true, x_2 =true, x_3 =false.
 - Linear time simulation with this input yields x_{10} =true.



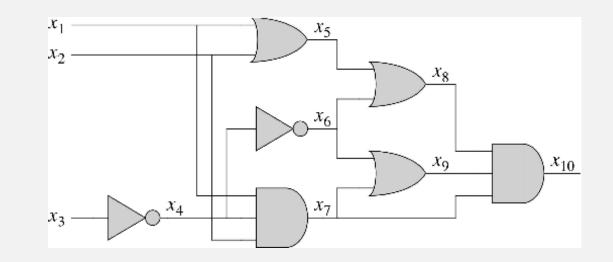
Not verifiable in polynomial time

- Checkers: From a given checkerboard position, is there some sequence of moves such that player 1 wins?
 - Certificate cannot be easily verified.

Solving the circuit satisfiability problem

Solving circuit satisfiability

- 2^N possible inputs.
- Brute force solution is exponential.
- Best known solution is exponential.



NP

NP includes a vast number of interesting problems.

- Hand-wavy reason: Many (most?) practical problems can be analyzed in terms of interesting NP decision problems.
- Example: Managing an airline
 - Can we assign planes to our routes such that we use < N gallons/year?
- Example: Destroying the global e-commerce system. 👡
 - Given Z, are there two primes such that X*Y = Z. See COS432
- Counter-example?
 - Is move X better than move Y in this chess game on N² board?

Completeness (short detour)

Completeness

- Let Q be a class of problems and let π be a specific problem.
- π is Q-Complete if many glossed over details!
 - π is in Q.
 - Everything in Q time reduces to π [π solves any problem in Q].
- If a solution is known, can use π as a tool to solve any problem in Q.

NP-complete

NP-complete

- A problem π is NP-complete if: many glossed over details!
 - π is in NP.
 - All problems in NP poly-time reduce to π .
- Solution to an NP-complete problem would be a key to the universe!

Two questions

- Are there any NP-complete problems?
- Do we know how to solve any of them?

Existence of an NP complete problem

Also in NP!

- Cook (71), Levin (73) proved every NP problem poly-time reduces to 3SAT.
 - 3SAT is at least as hard as every other problem in NP.
 - A solution to 3SAT provides a solution to every problem in NP.
 - Every problem in NP is O(F_{3SAT}(N)).
- Does there exist a truth value for boolean variables that obeys a set of 3-variable disjunctive constraints: (x1 || x2 || !x3) && (x1 || !x1 || x1)

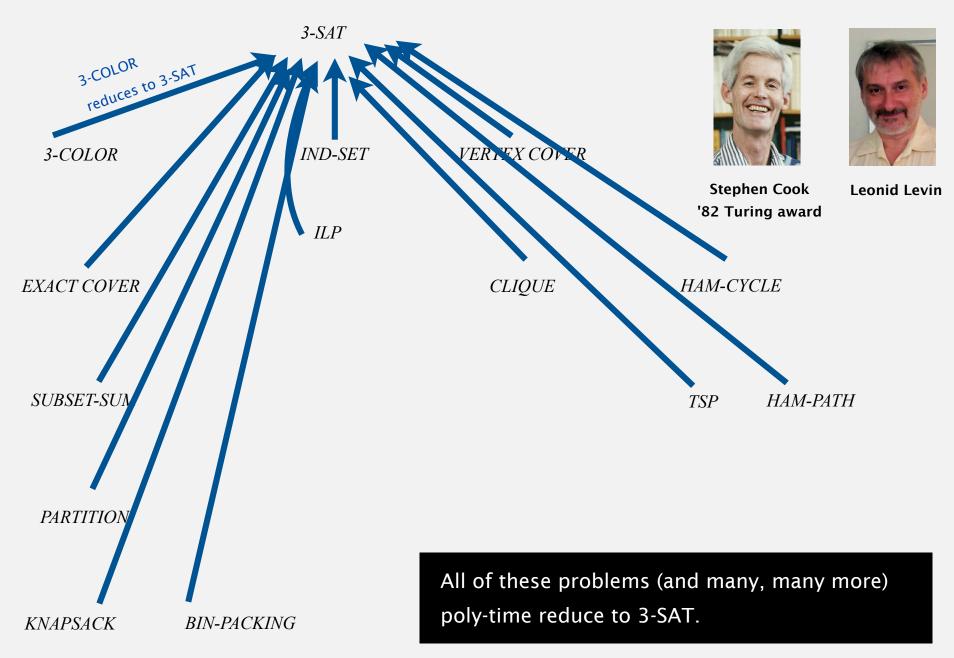
3SAT

Existence of an NP complete problem

Rough idea of Cook-Levin theorem

- Create giant (!!) boolean logic expression that represents entire state of your computer at every time step.
- If solution takes polynomial time, boolean logic circuit is polynomial in size.
- Example boolean logic variable: True if 57173rd bit of memory is true and we're on line 38 of code during cycle 7591872 of execution.

Implications of Cook-Levin theorem



Great, 3SAT solves most well defined problems of general interest!

Can we solve 3SAT efficiently?

- Nobody knows how to solve 3SAT efficiently.
- Nobody knows if an efficient solution exists.
 - Unknown if 3SAT is in P.

Other NP Complete problems?

• Are there other keys to this magic kingdom?

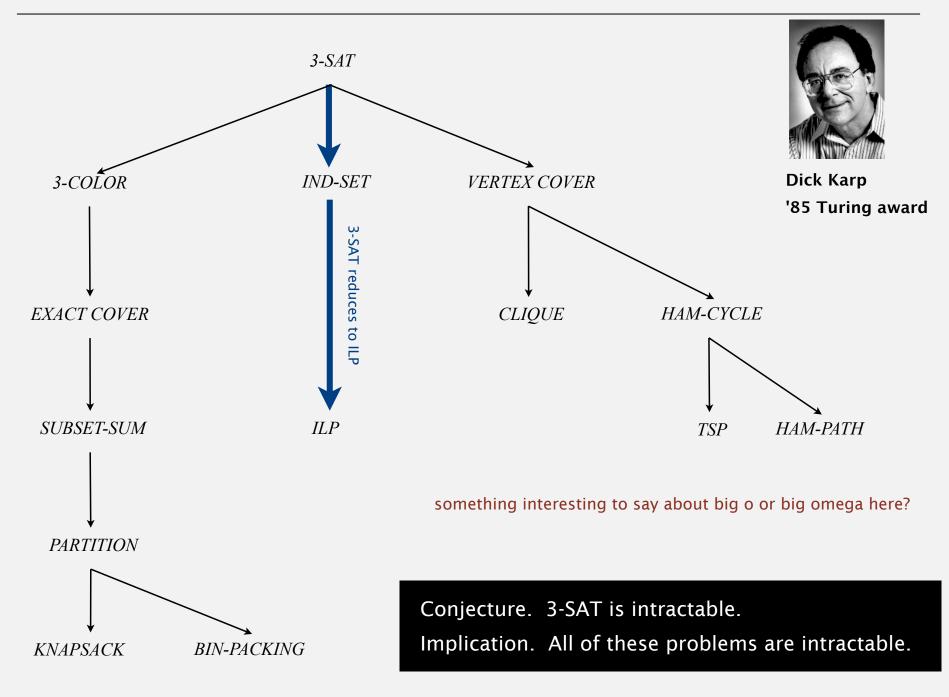
NP Complete

There are more

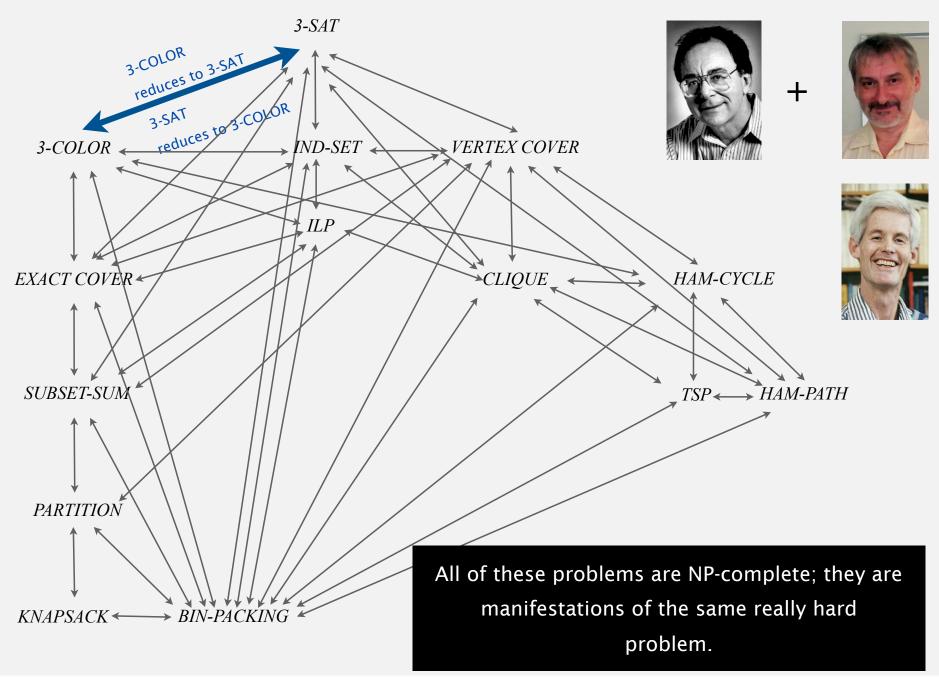
- Dick Karp (72) proved that 3SAT reduces to 21 important NP problems.
 - Example: A solution to TSP provides a solution to 3SAT.
 - All of these problems join 3SAT in the NP Complete club.
 - These 21 problems are $\Omega(F_{3SAT}(N))$.
- Proof applies only to these 21 problems. Each was its own special case.

Dick Karp

More poly-time reductions from 3-satisfiability



Implications of Karp + Cook-Levin



Summary

Cook and Levin

- Every NP problem is O(F_{3SAT}(N)).
- 3SAT is in NP and solves every NP problem, i.e. it is NP-Complete.

Karp

- 21 specific NP problems are $\Omega(F_{3SAT}(N))$.
- These 21 problems solve 3SAT.
- All of these problems are also therefore NP-Complete.

Later work

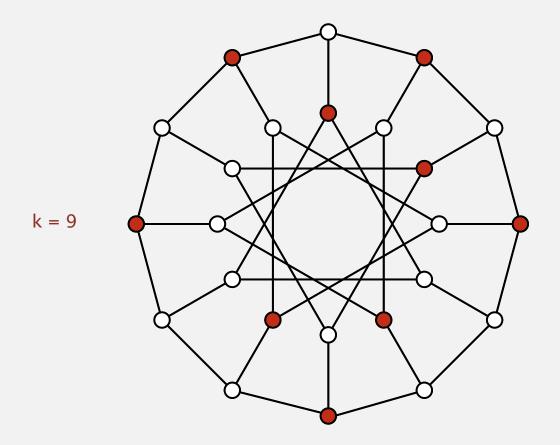
- Thousands of practical NP problems are also $\Omega(F_{3SAT}(N))$.
- All of these problems are also therefore NP-Complete.

How to tell if your problem is NP Complete?

• Prove that it is in NP [easy].

 Prove that some NP Complete problem reduces to your problem [tricky!] An independent set is a set of vertices, no two of which are adjacent.

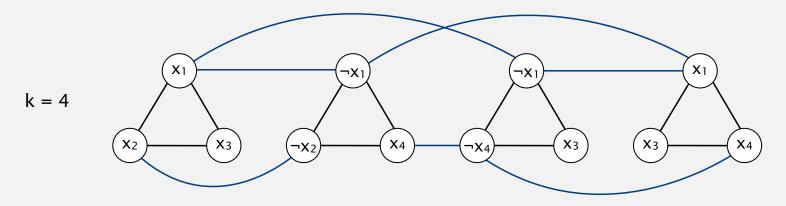
IND-SET. Given graph *G* and an integer *k*, find an independent set of size *k*.



Applications. Scheduling, computer vision, clustering, ...

Proposition. 3-SAT poly-time reduces to IND-SET. <---- if I could solve IND-SET efficiently, I could solve 3-SAT efficiently

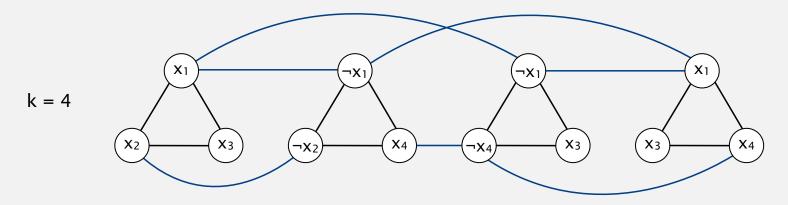
- **Pf**. Given an instance Φ of *3-SAT*, create an instance *G* of *IND-SET*:
 - For each clause in Φ , create 3 vertices in a triangle.
 - Add an edge between each literal and its negation.



 $\Phi = (x_1 \text{ or } x_2 \text{ or } x_3) \text{ and } (\neg x_1 \text{ or } \neg x_2 \text{ or } x_4) \text{ and } (\neg x_1 \text{ or } x_3 \text{ or } \neg x_4) \text{ and } (x_1 \text{ or } x_3 \text{ or } x_4)$

Proposition. *3-SAT* poly-time reduces to *IND-SET*.

- Pf. Given an instance Φ of *3-SAT*, create an instance *G* of *IND-SET*:
 - For each clause in Φ , create 3 vertices in a triangle.
 - Add an edge between each literal and its negation.



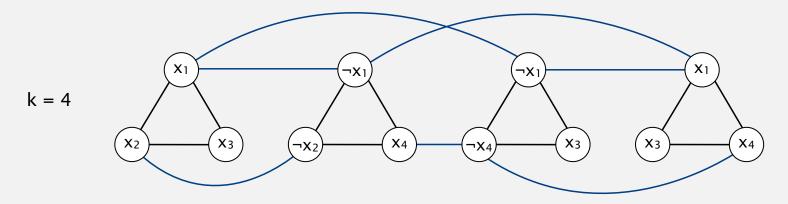
 $\Phi = (x_1 \text{ or } x_2 \text{ or } x_3) \text{ and } (\neg x_1 \text{ or } \neg x_2 \text{ or } x_4) \text{ and } (\neg x_1 \text{ or } x_3 \text{ or } \neg x_4) \text{ and } (x_1 \text{ or } x_3 \text{ or } x_4)$

• Φ satisfiable \Rightarrow *G* has independent set of size *k*.

for each of k clauses, include in independent set one vertex corresponding to a true literal

Proposition. 3-SAT poly-time reduces to IND-SET.

- Pf. Given an instance Φ of *3-SAT*, create an instance *G* of *IND-SET*:
 - For each clause in Φ , create 3 vertices in a triangle.
 - Add an edge between each literal and its negation.

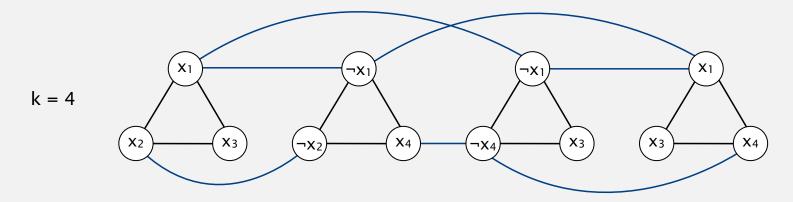


 $\Phi = (x_1 \text{ or } x_2 \text{ or } x_3) \text{ and } (\neg x_1 \text{ or } \neg x_2 \text{ or } x_4) \text{ and } (\neg x_1 \text{ or } x_3 \text{ or } \neg x_4) \text{ and } (x_1 \text{ or } x_3 \text{ or } x_4)$

- Φ satisfiable \Rightarrow *G* has independent set of size *k*.
- *G* has independent set of size $k \Rightarrow \Phi$ satisfiable.

Proposition. *3-SAT* poly-time reduces to *IND-SET*.

Implication. Assuming *3-SAT* is intractable, so is *IND-SET*.

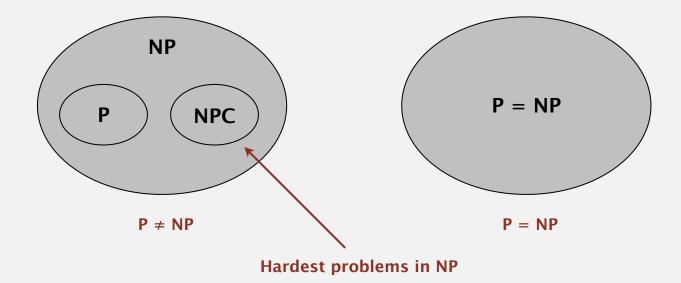


 $\Phi = (x_1 \text{ or } x_2 \text{ or } x_3) \text{ and } (\neg x_1 \text{ or } \neg x_2 \text{ or } x_4) \text{ and } (\neg x_1 \text{ or } x_3 \text{ or } \neg x_4) \text{ and } (x_1 \text{ or } x_3 \text{ or } x_4)$

P = NP

Does P = NP?

- Equivalently: Is any NP Complete problem also in P?
- Equivalently: Efficiently verifiable ⇒ efficiently solvable?



Reminder: NP may as well have been called VP for "Verifiable in Polynomial Time"

Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	Ν	min, max, median, Burrows-Wheeler transform,
linearithmic	N log N	sorting, element distinctness, convex hull, closest pair,
quadratic	N ²	?
÷	÷	:
exponential	CN	?

Frustrating news. Huge number of problems have defied classification.

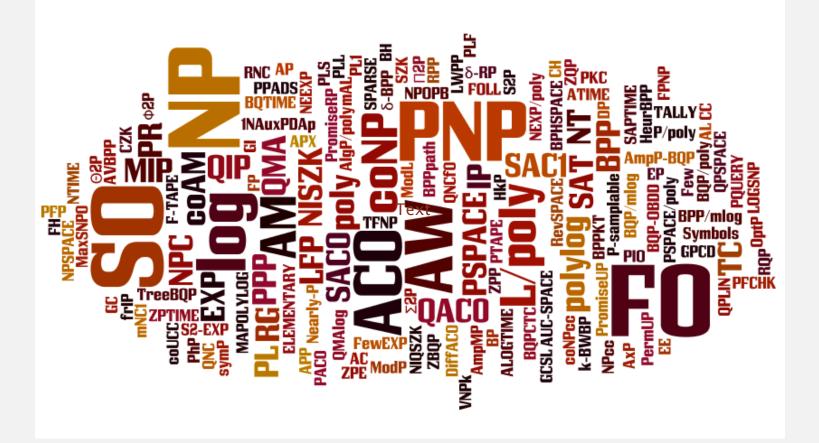
Desiderata. Classify problems according to computational requirements.

complexity	order of growth	examples
linear	Ν	min, max, median,
linearithmic	N log N	sorting, convex hull,
M(N)	?	integer multiplication, division, square root,
MM(N)	?	matrix multiplication, Ax = b, least square, determinant,
÷	÷	÷
NP-complete	probably not N ^b	3-SAT, IND-SET, ILP,

Good news. Can put many problems into equivalence classes.

Complexity zoo

Complexity class. Set of problems sharing some computational property.



http://qwiki.stanford.edu/index.php/Complexity_Zoo

Bad news. Lots of complexity classes.