
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

GEOMETRIC APPLICATIONS OF BSTS

‣ 1d range search

‣ kd trees

‣ line segment intersection (optional)

‣ interval search trees (optional)

‣ rectangle intersection (optional)

This lecture. Intersections among geometric objects.

Applications. CAD, games, movies, virtual reality, databases, GIS, .…

Efficient solutions. Binary search trees (and extensions).
2

Overview

2d orthogonal range search orthogonal rectangle intersection

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ kd trees

‣ interval search trees (optional)

‣ line segment intersection (optional)

‣ rectangle intersection (optional)

GEOMETRIC APPLICATIONS OF BSTS

4

1d range search

Extension of ordered symbol table.

・Insert key-value pair.

・Search for key k.

・Delete key k.

・Range search: find all keys between k1 and k2.

・Range count: number of keys between k1 and k2.

Application. Database queries.

Geometric interpretation.

・Keys are point on a line.

・Find/count points in a given 1d interval.

insert B B

insert D B D

insert A A B D

insert I A B D I

insert H A B D H I

insert F A B D F H I

insert P A B D F H I P

count G to K 2

search G to K H I

5

1d range search: elementary implementations

Unordered list. Fast insert, slow range search.

Ordered array. Slow insert, binary search for k1 and k2 to do range search.

data structure insert range count range search

unordered list 1 N N

ordered array N log N R + log N

goal log N log N R + log N

order of growth of running time for 1d range search

N = number of keys

R = number of keys that match

6

1d range count: BST implementation

1d range count. How many keys between lo and hi ?

Proposition. Running time proportional to log N.

Pf. Nodes examined = search path to lo + search path to hi.

public int size(Key lo, Key hi)
{
 if (contains(hi)) return rank(hi) - rank(lo) + 1;
 else return rank(hi) - rank(lo);
} number of keys < hi

A
C

E

H
M

R

S
X1

2

6

7

4

0

5

3

rank
rank(E) = 2
rank(F) = 3
rank(S) = 6
rank(T) = 7

size(E, S) = 5
size(E, T) = 5
size(F, T) = 4

number of keys < E

1d range search. Find all keys between lo and hi.

・Recursively find all keys in left subtree (if any could fall in range).

・Check key in current node.

・Recursively find all keys in right subtree (if any could fall in range).

Proposition. Running time proportional to R + log N.

Pf. Nodes examined = search path to lo + search path to hi + matches.

7

1d range search: BST implementation

black keys are
in the range

red keys are used in compares
but are not in the range

A
C

E

H

L
M

P

R

S
X

searching in the range [F..T]

Range search in a BST

S.w.i.m.p.

8

data structure insert range count range search

unordered list 1 N N

ordered array N log N R + log N

goal log N log N R + log N

order of growth of running time for 1d range search

Q: You time your range search algorithm with one million standard range

search queries and get the following data. Your boss wants to know if it is

safe to run the algorithm with dataset4, where safe means it’ll take less

than a minute or so.
 NAME N Time
dataset1 10000000 13s Safe: [137559]
dataset2 20000000 14s Not safe: [148239]
dataset3 160000000 17s
dataset4 320000000 ???

pollEv.com/jhug text to 37607

S.w.i.m.p.

9

data structure insert range count range search

unordered list 1 N N

ordered array N log N R + log N

goal log N log N R + log N

order of growth of running time for 1d range search

Q: Same deal, but now the new data set is just the other three datasets

combined?

 NAME N Time
dataset1 10000000 13s Safe: [149242]
dataset2 20000000 14s Not safe: [149300]
dataset3 160000000 17s
concatenated 190000000 ???

pollEv.com/jhug text to 37607

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ kd trees

‣ interval search trees (optional)

‣ line segment intersection (optional)

‣ rectangle intersection (optional)

GEOMETRIC APPLICATIONS OF BSTS

11

2-d orthogonal range search

Extension of ordered symbol-table to 2d keys.

・Insert a 2d key.

・Delete a 2d key.

・Search for a 2d key.

・Range search: find all keys that lie in a 2d range.

・Range count: number of keys that lie in a 2d range.

Applications. Networking, circuit design, databases, ...

Geometric interpretation.

・Keys are point in the plane.

・Find/count points in a given h-v rectangle

rectangle is axis-aligned

Binary search tree?

Tree construction

・What order to store points?

– X coordinate determines order?

– Y coordinate determines order?

12

E R

13

2d orthogonal range search: grid implementation

Grid implementation.

・Divide space into M-by-M grid of squares.

・Create list of points contained in each square.

・Use 2d array to directly index relevant square.

・Insert: add (x, y) to list for corresponding square.

・Range search: examine only squares that intersect 2d range query.

LB

RT
Old Algorithm: Look at all points, order of growth N

New algorithm: Look at all points, order of growth ?

14

2d orthogonal range search: grid implementation analysis

Space-time tradeoff.

・Space: M 2 + N.

・Time: 1 + N / M 2 per square examined, on average.

Choose grid square size to tune performance.

・Too small: wastes space.

・Too large: too many points per square.

・Rule of thumb: √N-by-√N grid.

Running time. [if points are evenly distributed]

・Initialize data structure: N.

・Insert point: 1.

・Range search: 1 per point in range.

LB

RT

choose M ~ √N

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

・Lists are too long, even though average length is short.

・Need data structure that adapts gracefully to data.

15

Clustering

Grid implementation. Fast, simple solution for evenly-distributed points.

Problem. Clustering a well-known phenomenon in geometric data.

Ex. USA map data.

16

Clustering

half the squares are empty half the points are

in 10% of the squares

13,000 points, 1000 grid squares

Use a tree to represent a recursive subdivision of 2d space.

Grid. Divide space uniformly into squares.

2d tree. Recursively divide space into two halfplanes.

Quadtree. Recursively divide space into four quadrants.

BSP tree. Recursively divide space into two regions.

17

Space-partitioning trees

Grid 2d tree BSP treeQuadtree

Applications.

・Ray tracing.

・2d range search.

・Flight simulators.

・N-body simulation.

・Collision detection.

・Astronomical databases.

・Nearest neighbor search.

・Adaptive mesh generation.

・Accelerate rendering in Doom.

・Hidden surface removal and shadow casting.

18

Space-partitioning trees: applications

Grid 2d tree BSP treeQuadtree

Recursively partition plane into two halfplanes.

19

2d tree construction

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Your turn

20

Draw the KdTree and matching graph when the following points are inserted:

 (2,3) (4, 2) (4, 4) (3, 3) (1, 5)

(2, 3)

Your turn

21

Draw the KdTree and matching graph when the following points are inserted:

 (2,3) (4, 2) (4, 4) (3, 3) (1, 5)

(2, 3)

(4, 2)

(4, 4)

(3, 3)

(1, 5)

(4, 2)

(2, 3)

(4, 4)

(3, 3)

(1, 5)

Data structure. BST, but alternate using x- and y-coordinates as key.

・Search gives rectangle containing point.

・Insert further subdivides the plane.

22

2d tree implementation

even levels

p

points

left of p

points

right of p

p

q

points

below q

points

above q

odd levels

q

1

2

87

10 9

3

4 6

5

1 2

3

4

6

7

8

9

10

5

Recursively partition plane into two halfplanes.

23

2d tree construction

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Goal. Find all points in a query axis-aligned rectangle.

・Check if point in node lies in given rectangle.

・Recursively search left/bottom (if any could fall in rectangle).

・Recursively search right/top (if any could fall in rectangle).

24

Range search in a 2d tree demo

1

2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

Goal. Find all points in a query axis-aligned rectangle.

・Check if point in node lies in given rectangle.

・Recursively search left/bottom (if any could fall in rectangle).

・Recursively search right/top (if any could fall in rectangle).

25

Range search in a 2d tree demo

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

done

Typical case. R + log N.
Worst case (assuming tree is balanced). R + √N.

26

Range search in a 2d tree analysis

2

3

7

8

9

10

2

87

10 9

3

1

1

4

4

5 5

6

6

Goal. Find closest point to query point.

27

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

1

2

87

10 9

3

4 6

5

query point

1

6

Goal. Find closest point to query point.

28

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

1

2

87

10 9

3

4 6

5

query point

1

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

29

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search root node
compute distance from query point to 1

(update champion nearest neighbor)

1

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

30

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

query point is to the left of splitting line
search left subtree first

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

31

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

3

search left subtree
compute distance from query point to 3

(update champion)

1

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

32

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is above splitting line
search top subtree first

1

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

33

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search top subtree
compute distance from query point to 6

6

1

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

34

Nearest neighbor search in a 2d tree demo

2

3

4

6

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is to left of splitting line
search left subtree first

1

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

35

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search left subtree
return since empty

1

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

36

Nearest neighbor search in a 2d tree demo

2

3

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search right subtree
prune since nearest neighbor

can't be here

1

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

37

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call
search bottom subtree next

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

38

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search bottom subtree
compute distance from query point to 4

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

39

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is to left of splitting line
search left subtree first

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

40

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search left subtree
compute distance from query point to 5

(update champion)

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

41

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

query point is above splitting line
search top subtree first

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

42

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search top subtree
return since empty

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

43

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search bottom subtree
return since empty

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

44

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call
search right subtree next

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

45

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search right subtree
prune since nearest neighbor

can't be here

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

46

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

47

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

return from function call
search right subtree next

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

48

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

search right subtree
prune since nearest neighbor

can't be here

1

3

6

・Check distance from point in node to query point.

・Recursively search left/bottom (if it could contain a closer point).

・Recursively search right/top (if it could contain a closer point).

・Organize method so that it begins by searching for query point.

49

Nearest neighbor search in a 2d tree demo

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

3

6

nearest neighbor = 5

50

Nearest neighbor search in a 2d tree analysis

Typical case. log N.
Worst case (even if tree is balanced). N.

30

2

4

7

8

9

10

5

2

87

10 9

3

4 6

5

1

1

3

6

nearest neighbor = 5

51

Flocking birds

Q. What "natural algorithm" do starlings, migrating geese, starlings,

cranes, bait balls of fish, and flashing fireflies use to flock?

http://www.youtube.com/watch?v=XH-groCeKbE

52

Flocking boids [Craig Reynolds, 1986]

Boids. Three simple rules lead to complex emergent flocking behavior:

・Collision avoidance: point away from k nearest boids.

・Flock centering: point towards the center of mass of k nearest boids.

・Velocity matching: update velocity to the average of k nearest boids.

53

Kd tree

Kd tree. Recursively partition k-dimensional space into 2 halfspaces.

Implementation. BST, but cycle through dimensions ala 2d trees.

Efficient, simple data structure for processing k-dimensional data.

・Widely used.

・Adapts well to high-dimensional and clustered data.

・Discovered by an undergrad in an algorithms class!

level ≡ i (mod k)
points

whose ith

coordinate

is less than p’s

points

whose ith

coordinate

is greater than p’s

p

Jon Bentley

Goal. Simulate the motion of N particles, mutually affected by gravity.

Brute force. For each pair of particles, compute force:

Running time. Time per step is N 2.

54

N-body simulation

F =
G m1 m2

r2

http://www.youtube.com/watch?v=ua7YlN4eL_w

55

Appel's algorithm for N-body simulation

Key idea. Suppose particle is far, far away from cluster of particles.

・Treat cluster of particles as a single aggregate particle.

・Compute force between particle and center of mass of aggregate.

56

Appel's algorithm for N-body simulation

・Build 3d-tree with N particles as nodes.

・Store center-of-mass of subtree in each node.

・To compute total force acting on a particle, traverse tree, but stop

as soon as distance from particle to subdivision is sufficiently large.

Impact. Running time per step is N log N ⇒ enables new research.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
O08

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*
ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N’) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

1. Introduction. Isaac Newton calculated the behavior of two particles interacting
through the force of gravity, but he was unable to solve the equations for three particles.
In this he was not alone [7, p. 634], and systems of three or more particles can be
solved only numerically. Iterative methods are usually used, computing at each discrete
time interval the force on each particle, and then computing the new velocities and
positions for each particle.

A naive implementation of an iterative many-body simulator is computationally
very expensive for large numbers of particles, where "expensive" means days of Cray-1
time or a year of VAX time. This paper describes the development of an efficient
program in which several aspects of the computation were made faster. The initial
step was the use of a new algorithm with lower asymptotic time complexity; the use
of a better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are
O(N2) interactions to compute for every iteration. Furthermore, for the same reasons
that the closed form integral diverges for small distances (since the force is proportional
to the inverse square of the distance between two bodies), the discrete time interval
must be made extremely small in the case that two particles pass very close to each
other. These are the two problems on which the algorithmic attack concentrated. By
the use of an appropriate data structure, each iteration can be done in time believed
to be O(N log N), and the time intervals may be made much larger, thus reducing
the number of iterations required. The algorithm is applicable to N-body problems in
any force field with no dipole moments; it is particularly useful when there is a severe
nonuniformity in the particle distribution or when a large dynamic range is required
(that is, when several distance scales in the simulation are of interest).

The use of an algorithm with a better asymptotic time complexity yielded a
significant improvement in running time. Four additional attacks on the problem were
also undertaken, each of which yielded at least a factor of two improvement in speed.
These attacks ranged from insights into the physics down to hand-coding a routine in
assembly language. By finding savings at many design levels, the execution time of a
large simulation was reduced from (an estimated) 8,000 hours to 20 (actual) hours.
The program was used to investigate open problems in cosmology, giving evidence to
support a model of the universe with random initial mass distribution and high mass
density.

* Received by the editors March 24, 1983, and in revised form October 1, 1983.r Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This
research was supported by a National Science Foundation Graduate Student Fellowship and by the office
of Naval Research under grant N00014-76-C-0370.

85

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ kd trees

‣ interval search trees (optional)

‣ line segment intersection (optional)

‣ rectangle intersection (optional)

GEOMETRIC APPLICATIONS OF BSTS

58

1d interval search. Data structure to hold set of (overlapping) intervals.

・Insert an interval (lo, hi).

・Search for an interval (lo, hi).

・Delete an interval (lo, hi).

・Interval intersection query: given an interval (lo, hi), find all intervals

(or one interval) in data structure that intersects (lo, hi).

Q. Which intervals intersect (9, 16) ?
A. (7, 10) and (15, 18).

1d interval search

(7, 10)

(5, 8)

(4, 8) (15, 18)

(17, 19)

(21, 24)

(9, 16)

59

Nondegeneracy assumption. No two intervals have the same left endpoint.

1d interval search API

 public class IntervalST<Key extends Comparable<Key>, Value> public class IntervalST<Key extends Comparable<Key>, Value> public class IntervalST<Key extends Comparable<Key>, Value>

IntervalST() create interval search tree

void put(Key lo, Key hi, Value val) put interval-value pair into ST

Value get(Key lo, Key hi) value paired with given interval

void delete(Key lo, Key hi) delete the given interval

Iterable<Value> intersects(Key lo, Key hi)
all intervals that intersect

the given interval

Create BST, where each node stores an interval (lo, hi).

・Use left endpoint as BST key.

・Store max endpoint in subtree rooted at node.

60

Interval search trees

binary search tree

(left endpoint is key)

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

24

18

8 18

10

24

max endpoint in

subtree rooted at node

61

Interval search trees

(26, 28)

(19, 17) (27, 33)

(6, 10) (21, 25)

(22, 24)

33

25

10 25

25

33

How many numbers in the diagram violate our definition of an interval

search tree?

A. 0 [136754] C. 2 [136757] E. 4 [136767]
B. 1 [136755] D 3 [136758]

pollEv.com/jhug text to 37607

To insert an interval (lo, hi) :

・Insert into BST, using lo as the key.

・Update max in each node on search path.

62

Interval search tree demo

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

insert interval (16, 22)

24

18

8 18

10

24

63

Interval search tree demo

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

interval intersection
search for (21, 23)

(17, 19)

(5, 8) (21, 24)

(4, 8) (15, 18)

(7, 10)

24

22

8 22

10

24

22 (21, 23)

compare (21, 23) to (16, 22)

(intersection!)

(16, 22)

64

Search for an intersecting interval implementation

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

 Node x = root;

 while (x != null)

 {

 if (x.interval.intersects(lo, hi)) return x.interval;

 else if (x.left == null) x = x.right;

 else if (x.left.max < lo) x = x.right;

 else x = x.left;

 }

 return null;

65

Search for an intersecting interval analysis

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

Case 1. If search goes right, then no intersection in left.

Pf. Suppose search goes right and left subtree is non empty.

・Since went right, we have max < lo.

・For any interval (a, b) in left subtree of x,
we have b ≤ max < lo.

・Thus, (a, b) will not intersect (lo, hi).

definition of max reason for going right

(a, b)

left subtree of x

(lo, hi)

max

right subtree of x

(c, max)

66

Search for an intersecting interval analysis

To search for any one interval that intersects query interval (lo, hi) :

・If interval in node intersects query interval, return it.

・Else if left subtree is null, go right.

・Else if max endpoint in left subtree is less than lo, go right.

・Else go left.

Case 2. If search goes left, then there is either an intersection in left

subtree or no intersections in either.

Pf. Suppose no intersection in left.

・Since went left, we have lo ≤ max.

・Then for any interval (a, b) in right subtree of x,
hi < c ≤ a ⇒ no intersection in right.

no intersections

in left subtree

intervals sorted

by left endpoint

(a, b)

left subtree of x right subtree of x

(c, max)

(lo, hi)

max

67

Interval search tree: analysis

Implementation. Use a red-black BST to guarantee performance.

easy to maintain auxiliary information

using log N extra work per op

operation brute
interval

search tree

best

in theory

insert interval 1 log N log N

find interval N log N log N

delete interval N log N log N

find any one interval

that intersects (lo, hi)
N log N log N

find all intervals

that intersects (lo, hi)
N R log N R + log N

order of growth of running time for N intervals

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ kd trees

‣ interval search trees (optional)

‣ line segment intersection (optional)

‣ rectangle intersection (optional)

GEOMETRIC APPLICATIONS OF BSTS

69

Orthogonal line segment intersection

Given N horizontal and vertical line segments, find all intersections.

Quadratic algorithm. Check all pairs of line segments for intersection.

Nondegeneracy assumption. All x- and y-coordinates are distinct.

Sweep vertical line from left to right.

・x-coordinates define events.

・h-segment (left endpoint): insert y-coordinate into BST.

70

Orthogonal line segment intersection: sweep-line algorithm

y-coordinates

0

1

2

3

0

1

3

2

4

Sweep vertical line from left to right.

・x-coordinates define events.

・h-segment (left endpoint): insert y-coordinate into BST.

・h-segment (right endpoint): remove y-coordinate from BST.

71

Orthogonal line segment intersection: sweep-line algorithm

y-coordinates

0

1

2

3

4

0

1

3

Sweep vertical line from left to right.

・x-coordinates define events.

・h-segment (left endpoint): insert y-coordinate into BST.

・h-segment (right endpoint): remove y-coordinate from BST.

・v-segment: range search for interval of y-endpoints.

72

Orthogonal line segment intersection: sweep-line algorithm

1d range

search

y-coordinates

0

1

2

3

4

0

1

3

73

Orthogonal line segment intersection: sweep-line analysis

Proposition. The sweep-line algorithm takes time proportional to N log N + R

to find all R intersections among N orthogonal line segments.

Pf.

・Put x-coordinates on a PQ (or sort).

・Insert y-coordinates into BST.

・Delete y-coordinates from BST.

・Range searches in BST.

Bottom line. Sweep line reduces 2d orthogonal line segment intersection

search to 1d range search.

N log N

N log N

N log N

N log N + R

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ 1d range search

‣ kd trees

‣ interval search trees (optional)

‣ line segment intersection (optional)

‣ rectangle intersection (optional)

GEOMETRIC APPLICATIONS OF BSTS

75

Orthogonal rectangle intersection

Goal. Find all intersections among a set of N orthogonal rectangles.

Quadratic algorithm. Check all pairs of rectangles for intersection.

Non-degeneracy assumption. All x- and y-coordinates are distinct.

0

1

2

3

76

Microprocessors and geometry

Early 1970s. microprocessor design became a geometric problem.

・Very Large Scale Integration (VLSI).

・Computer-Aided Design (CAD).

Design-rule checking.

・Certain wires cannot intersect.

・Certain spacing needed between different types of wires.

・Debugging = orthogonal rectangle intersection search.

COS / ELE 462

77

Algorithms and Moore's law

"Moore’s law." Processing power doubles every 18 months.

・197x: check N rectangles.

・197(x+1.5): check 2 N rectangles on a 2x-faster computer.

Bootstrapping. We get to use the faster computer for bigger circuits.

But bootstrapping is not enough if using a quadratic algorithm:

・197x: takes M days.

・197(x+1.5): takes (4 M) / 2 = 2 M days. (!)

Bottom line. Linearithmic algorithm is necessary to sustain Moore’s Law.

2x-faster

computer

quadratic

algorithm

Gordon Moore

Sweep vertical line from left to right.

・x-coordinates of left and right endpoints define events.

・Maintain set of rectangles that intersect the sweep line in an interval

search tree (using y-intervals of rectangle).

・Left endpoint: interval search for y-interval of rectangle; insert y-interval.

・Right endpoint: remove y-interval.

78

Orthogonal rectangle intersection: sweep-line algorithm

y-coordinates

0

1

2

3

0

1

23

79

Orthogonal rectangle intersection: sweep-line analysis

Proposition. Sweep line algorithm takes time proportional to N log N + R log N
to find R intersections among a set of N rectangles.

Pf.

・Put x-coordinates on a PQ (or sort).

・Insert y-intervals into ST.

・Delete y-intervals from ST.

・Interval searches for y-intervals.

Bottom line. Sweep line reduces 2d orthogonal rectangle intersection

search to 1d interval search.

N log N

N log N

N log N

N log N + R log N

Geometric applications of BSTs

80

problem example solution

1d range search BST

2d orthogonal line

segment intersection

sweep line reduces to

1d range search

kd range search kd tree

1d interval search interval search tree

2d orthogonal

rectangle intersection

sweep line reduces to

1d interval search

