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Collections

Things we might like to represent

・Sequences of items.

・Sets of items.

・Mappings between items, e.g. jhug’s grade is 88.4
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“The difference between a bad programmer and a good one is whether 

[the programmer] considers code or data structures more important. Bad 

programmers worry about the code. Good programmers worry about 

data structures and their relationships.”

            — Linus Torvalds (creator of Linux)

Terminology

Abstract Data Type (ADT)

・A set of abstract values, and a collection of operations on those values.

・Operations:

– Queue: enqueue, dequeue

– Stack: push, pop

– Union-Find: union, find, connected

Example: queue of integers

・A sequence of integers

– Mathematical sequence, not any particular data structure!

・create: returns empty sequence.

・enqueue x: puts x on the right side of the sequence.

・dequeue x: removes and returns the element on the left-hand side of 

the sequence.

For more: COS326
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Terminology

Abstract Data Type (ADT)

・A set of abstract values, and a collection of operations on those values.

Collection

・An abstract data type that contains a collection of data items.

Data Structure

・A specific way to store and organize data.

・Can be used to implement ADTs.

・Examples: Array, linked list, binary tree.

5

Terminology

Implementation

・Data structures are used to implement ADTs.

・Choice of data structure may involve performance tradeoffs.

– Worst case vs. average case performance.

– Space vs. time.

・Restricting ADT capabilities may allow better performance. [stay tuned]

Examples

・Queue

– Linked list

– Resizing array

・Randomized Queue

– Linked list (slow, but you can do it!)

– Resizing array

6
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List (Java terminology)

(some) List operations

Java implementations

・ArrayList

・LinkedList

Caveat

・Java list does not match standard ADT terminology.

・Abstract lists don’t support random access.
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operation parameters returns effect

contains Item boolean checks if an item is in the list

add Item appends Item at end

add index, Item adds Item at position index

set index, Item replaces item at position index with Item

remove index boolean removes item at index

remove Item boolean removes Item if present in list

get index Item returns item at index



Task

NSA Monitoring

・You receive 1,000,000,000 unencrypted documents every day.

・You’d like to save the 1,000 documents with the highest score for 

manual review.
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public void process(List<Document> top1000, Document newDoc) {
Document lowest = top1000.get(0);
for (Document d : top1000)
   if (d.score() < lowest.score())
      lowest = d;

if (newDoc.score() > lowest.score()) {
   top1000.remove(lowest);
   top1000.add(newDoc);
}

}

In real code, pick a list implementation, e.g. LinkedList

List based solution

Priority queue 

Priority queue.  Remove the largest (or smallest) item.

・MaxPQ: Supports largest operations.

・MinPQ: Supports smallest operations.

Min PQ operations. 
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P          1     P                        P
Q          2     P  Q                     P  Q
E          3     P  Q  E                  E  P  Q  
      Q    2     P  E                     E  P
X          3     P  E  X                  E  P  X
A          4     P  E  X  A               A  E  P  X
M          5     P  E  X  A  M            A  E  M  P  X
      X    4     P  E  M  A               A  E  M  P
P          5     P  E  M  A  P            A  E  M  P  P
L          6     P  E  M  A  P  L         A  E  L  M  P  P
E          7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
      P    6     E  M  A  P  L  E         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue

operation

s
parameters returns effect

insert Item adds an item

min Item returns minimum Item

delMin Item deletes and returns minimum Item

Priority queue

Advantages

・Much simpler code.

・ADT is problem specific. May be faster.
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public void process(MinPQ<Document> top1000, Document newDoc) {
top1000.insert(newDoc);
top1000.delMin(newDoc);

}

PQ based solution

operation

s
parameters returns effect

insert Item adds an item

min Item returns minimum Item

delMin Item deletes and returns minimum Item

Actual algs4 class

Priority queue 

Implementation

・We’ll get to that later.
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“Programmers waste enormous amounts of time thinking about, 
or worrying about, the speed of noncritical parts of their 
programs, and these attempts at efficiency actually have a strong 
negative impact when debugging and maintenance are considered. 
We should forget about small efficiencies, say about 97% of the 
time: premature optimization is the root of all evil. Yet we should 
not pass up our opportunities in that critical 3%” —  Donald 
Knuth, Structured Programming with Go To Statements



Sets
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operation

s
parameters returns effect

add Item adds an item, only one copy may exist

contains boolean returns true if item is present

delete deletes item

public Set<String> wordsInFile(In file) {
Set<String> s = new Set<String>();

while (!file.isEmpty())
   s.add(file.readString());

return s;
}

In real code, pick a set implementation, e.g. TreeSet

Finding all words in a file

Application

Genre identification

・Collect set of all words from a song’s lyrics.

・Compare against large dataset using machine learning techniques.

– Guess genre.

14

Symbol tables

Other names

・Associative array, map, dictionary

15

operation parameters returns effect

put Key, Value associates Value with Key

contains Key boolean returns true if Key is present

get Key Value returns Value associated with Key (if any)

delete Key Value deletes Key and returns Value

public void countChars(SymT<Character, Integer> charCount, String s) {
   for (Character c : s.toCharArray())
      if (charCount.contains(c)) 
         charCount.put(c, charCount.get(c) + 1);
      else
         charCount.put(c, 1);
}

In real code, pick a symbol table implementation, e.g. TreeMap

Adding letter counts to array of strings

Collinear

Collinear revisited (on board / projector)

・Collections make things easier.

・Likely to be slower and use more memory.

16



Design Problem

Solo in Groups

・Erweiterten Netzwerk is a new German minimalist social networking 

site that provides only two operations for its logged-in users.

–                  : Enter another user’s username and click the Neu button. 

This marks the two users as friends.

–                                         : Type in another user’s username and 

determine whether the two users are in the same extended network 

(i.e. there exists some chain of friends between the two users).
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Identify at least one ADT that Erweiterten Netzwerk should use: 

A. Queue       [879345]    D. Priority Queue       [879348]
B. Union-find  [879346]    E. Symbol Table         [879349]
C. Stack       [879347]    F. Randomized Queue     [879350]

Note: There may be more than one ‘good’ answer.

pollEv.com/jhug              text to 37607

Implementations

Implementations

・Use algs4 classes when possible in COS226.

・When performance matters, pick the right implementation!

・Next two weeks: Implementation details of these collections.

・More collections to come.
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Collection Java Implementations algs4 Implementations

List
LinkedList, ArrayList, Stack (oops)

None

MinPQ

MaxPQ
PriorityQueue

MinPQ

MaxPQ

Set
TreeSet, HashSet, 

CopyOnWriteArraySet, ...
SET (note: ordered)

Symbol Table
TreeMap, HashMap,

ConcurrentHashMap, ...

RedBlackBST, SeparateChainingHashST,

LinearProbingHashST, ...
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Priority queue API

Requirement.  Generic items are Comparable.

 public class MaxPQ<Key extends Comparable<Key>> public class MaxPQ<Key extends Comparable<Key>> public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create an empty priority queue

MaxPQ(Key[] a) create a priority queue with given keys

void insert(Key v) insert a key into the priority queue

Key delMax() return and remove the largest key

boolean isEmpty() is the priority queue empty?

Key max() return the largest key

int size() number of entries in the priority queue

Key must be Comparable

(bounded type parameter)
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Priority queue applications

・Event-driven simulation. [customers in a line, colliding particles]

・Numerical computation. [reducing roundoff error]

・Data compression.  [Huffman codes]

・Graph searching.  [Dijkstra's algorithm, Prim's algorithm]

・Number theory.  [sum of powers]

・Artificial intelligence.  [A* search]

・Statistics.   [maintain largest M values in a sequence]

・Operating systems.  [load balancing, interrupt handling]

・Discrete optimization. [bin packing, scheduling]

・Spam filtering.  [Bayesian spam filter]

Generalizes:  stack, queue, randomized queue.

See optional slides / Coursera lecture.

Assignment 4.

Challenge.  Find the largest M items in a stream of N items.
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Priority queue client example

implementation time space

sort N log N N

elementary PQ M N M

binary heap N log M M

best in theory N M

order of growth of finding the largest M in a stream of N items
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Priority queue:  unordered and ordered array implementation

P          1     P                        P
Q          2     P  Q                     P  Q
E          3     P  Q  E                  E  P  Q  
      Q    2     P  E                     E  P
X          3     P  E  X                  E  P  X
A          4     P  E  X  A               A  E  P  X
M          5     P  E  X  A  M            A  E  M  P  X
      X    4     P  E  M  A               A  E  M  P
P          5     P  E  M  A  P            A  E  M  P  P
L          6     P  E  M  A  P  L         A  E  L  M  P  P
E          7     P  E  M  A  P  L  E      A  E  E  L  M  P  P
      P    6     E  M  A  P  L  E         A  E  E  L  M  P   

insert
insert
insert

remove max
insert
insert
insert

remove max
insert
insert
insert

remove max

operation  argument
return
value

contents
(unordered)

contents
(ordered)size

A sequence of operations on a priority queue
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Priority queue:  unordered array implementation

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>>
{
   private Key[] pq;   // pq[i] = ith element on pq
   private int N;      // number of elements on pq

   public UnorderedArrayMaxPQ(int capacity)
   {  pq = (Key[]) new Comparable[capacity];  }

   public boolean isEmpty()
   {  return N == 0; }

   public void insert(Key x) 
   {  pq[N++] = x;  }

   public Key delMax()
   {
      int max = 0;
      for (int i = 1; i < N; i++)
         if (less(max, i)) max = i;
      exch(max, N-1);
      return pq[--N];
   }
}

no generic

array creation

less() and exch()

similar to sorting methods

(but don't pass pq[])
should null out entry

to prevent loitering
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Priority queue elementary implementations

Challenge.  Implement all operations efficiently.

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

goal log N log N log N

order of growth of running time for priority queue with N items

Binary heap

Basic idea on board
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Insert.  Add node at end, then swim it up.

Remove the maximum.  Exchange root with node at end, then sink it down.

27

Binary heap demo

T P R N H O A E I G

R

H O AN

E I G

P

T

heap ordered

Binary tree.  Empty or node with links to left and right binary trees.

Complete tree.  Perfectly balanced, except for bottom level.

Property.  Height of complete tree with N nodes is !lg N".

Pf.  Height only increases when N is a power of 2.

28

Complete binary tree

complete tree with N = 16 nodes (height = 4)
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A complete binary tree in nature
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Binary heap representations

Binary heap.  Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

・Keys in nodes.

・Parent's key no smaller than

children's keys.

Array representation.

・Indices start at 1.

・Take nodes in level order.

・No explicit links needed!

  i   0  1  2  3  4  5  6  7  8  9 10 11
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Heap representations
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 E  I  H  G

P  N  O  A

S  R
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T

O

R

A

Heap representations
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Binary heap properties

Proposition.  Largest key is a[1], which is root of binary tree.

Proposition.  Can use array indices to move through tree.

・Parent of node at k is at k/2.

・Children of node at k are at 2k and 2k+1.

  i   0  1  2  3  4  5  6  7  8  9 10 11
a[i]  -  T  S  R  P  N  O  A  E  I  H  G

 E  I  H  G

P  N  O  A

S  R
T

1
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4 5 6 7

10 118 9
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G

T

O

R

A

Heap representations
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E
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G
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A

violates heap order
(larger key than parent)

E

N

I

S

H

P

G

T

O

R

A5

2

1

Bottom-up reheapify (swim)

Scenario.  Child's key becomes larger key than its parent's key.

To eliminate the violation:

・Exchange key in child with key in parent.

・Repeat until heap order restored.

Peter principle.  Node promoted to level of incompetence.
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Promotion in a heap

private void swim(int k)
{
   while (k > 1 && less(k/2, k))
   {
      exch(k, k/2);
      k = k/2;
   }
}

parent of node at k is at k/2



Insert.  Add node at end, then swim it up.

Cost.  At most 1 + lg N compares.

Heap operations
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sink down

insert remove the maximum
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Insertion in a heap

public void insert(Key x)
{
   pq[++N] = x;
   swim(N);
}

Scenario.  Parent's key becomes smaller than one (or both) of its children's.

To eliminate the violation:

・Exchange key in parent with key in larger child.

・Repeat until heap order restored.

Power struggle.  Better subordinate promoted.
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Demotion in a heap

private void sink(int k)
{
   while (2*k <= N)
   {
      int j = 2*k;
      if (j < N && less(j, j+1)) j++;
      if (!less(k, j)) break;
      exch(k, j);
      k = j;
   }
}

children of node at k 

are 2k and 2k+1 5
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Top-down reheapify (sink)

why not smaller child?

Delete max.  Exchange root with node at end, then sink it down.

Cost.  At most 2 lg N compares.
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Delete the maximum in a heap

public Key delMax()
{
   Key max = pq[1];
   exch(1, N--);
   sink(1);
   pq[N+1] = null;
   return max;
} 

prevent loitering

Heap operations
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Binary heap:  Java implementation 

public class MaxPQ<Key extends Comparable<Key>>
{
   private Key[] pq;
   private int N;

   public MaxPQ(int capacity)
   {  pq = (Key[]) new Comparable[capacity+1];  }

   public boolean isEmpty()
   {   return N == 0;   }
   public void insert(Key key)
   public Key delMax()
   {   /* see previous code */  }

   private void swim(int k)
   private void sink(int k)
   {   /* see previous code */  }

   private boolean less(int i, int j)
   {   return pq[i].compareTo(pq[j]) < 0;  }
   private void exch(int i, int j)
   {   Key t = pq[i]; pq[i] = pq[j]; pq[j] = t;  }
}

array helper functions

heap helper functions

PQ ops

fixed capacity

(for simplicity)
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Priority queues implementation cost summary

implementation insert del max max

unordered array 1 N N

ordered array N 1 1

binary heap log N log N 1

d-ary heap logd N d logd N 1

Fibonacci 1 log N † 1

Brodal queue 1 log N 1

impossible 1 1 1

order-of-growth of running time for priority queue with N items

† amortized

why impossible?
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Binary heap considerations

Immutability of keys. 

・Assumption:  client does not change keys while they're on the PQ.

・Best practice:  use immutable keys.

Underflow and overflow.

・Underflow: throw exception if deleting from empty PQ.

・Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.

・Replace less() with greater().

・Implement greater().

Other operations.

・Remove an arbitrary item.

・Change the priority of an item.
can implement with sink() and swim() [stay tuned]

leads to log N

amortized time per op

(how to make worst case?)
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Immutability:  implementing in Java

Data type.  Set of values and operations on those values.

Immutable data type.  Can't change the data type value once created.

Immutable.  String, Integer, Double, Color, Vector, Transaction, Point2D.

Mutable.  StringBuilder, Stack, Counter, Java array.

public final class Vector { 
   private final int N;
   private final double[] data;

   public Vector(double[] data) {
      this.N = data.length;
      this.data = new double[N];
      for (int i = 0; i < N; i++)
         this.data[i] = data[i];
   }

   …
}

defensive copy of mutable

instance variables

instance variables private and final

instance methods don't change

instance variables

can't override instance methods
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Immutability:  properties

Data type.  Set of values and operations on those values.

Immutable data type.  Can't change the data type value once created.

Advantages.

・Simplifies debugging.

・Safer in presence of hostile code.

・Simplifies concurrent programming.

・Safe to use as key in priority queue or symbol table.

Disadvantage.  Must create new object for each data type value.

“ Classes should be immutable unless there's a very good reason

    to make them mutable.…  If a class cannot be made immutable,

    you should still limit its mutability as much as possible. ”

            — Joshua Bloch (Java architect)
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Challenge

Design a sorting algorithm

・Given an Iterable<Comparable>.

・Design a sorting algorithm that only uses methods from the Set 

collection to print the items in order.
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Challenge

Design a sorting algorithm

・Given an Iterable<Comparable>.

・Design a sorting algorithm that only uses methods from the Set 

collection to print the items in order.

Performance

・Order of growth of running time: N lg N. 

・Lots of unnecessary data movement and memory usage.
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public void HeapSort(Iterable<Comparable> a) {
MaxPQ<Comparable> mpq = new MaxPQ<Comparable>();
for (Comparable c : a)
   mpq.insert(c);

for (Comparable c : a)
   System.out.println(mpq.delMax());

}

Heapsort

Observation

・Our heaps are represented with arrays.

– Any array is just a messed up heap!

Heapsort can be done in place.

・Step 1: Heapify the array.

– In place.

・Step 2: Delete the max repeatedly.

– Largest element is swapped to the end.

– Once completed, array is in order.

・Items take a round trip, but only a logarithmic distance. 

44

Donald Knuth - The Art of Computer Programming Volume 3
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Heapsort

Basic plan for in-place sort.

・Create max-heap with all N keys.

・Repeatedly remove the maximum key.

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
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Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

start with array of keys

in arbitrary order

build a max-heap

(in place)

sorted result

(in place)

Heap construction.  Build max heap using bottom-up method.
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Heapsort demo

S O R T E X A M P L E

1 2 3 4 5 6 7 8 9 10 11

5

10 11

R

E X AT

M P L E

O

S

8 9

4 76

32

1

we assume array entries are indexed 1 to N

array in arbitrary order

Sortdown.  Repeatedly delete the largest remaining item.
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Heapsort demo

A E E L M O P R S T X

T

P

S

OL

R

A

M

E E

X

1 2 3 4 5 6 7 8 9 10 11

array in sorted order
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Heapsort:  heap construction

First pass.  Heapify using bottom-up method.

・Linear time (see book or optional slides).

・Top-down method is N lg N (see book or optional slides).

for (int k = N/2; k >= 1; k--)
   sink(a, k, N);

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap

M

T

P

O

L

E

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

X

R

A

M

T

P

O

E

L

E

S

R

X

A

M

P

O

T

E

L

E

S

R

X

A

M

P

O

T

E

L

E

X

R

S

A

R

A

S

L

T

E

X

M

O

E

P

R

A

S

E

T

M

X

L

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

A

T

M

X

E

O

E

P

R

L

S

E

T

M

X

A

O

E

P

R

L

S

E

T

M

X

A

O

E

P

M

P

O

T

E

L

E

X

R

S

A

M

O

E

P

E

L

X

T

R

S

A

M

O

E

P

T

L

X

S

E

R

A

M

O

S

P

T

L

X

R

E

E

A

R

M

S

O

T

L

X

P

E

E

A

R

A

S

M

T

L

X

O

E

E

P

1

2

4 5 6 7

8 9 10 11

3

1

2

4 5 6 7

8 9 10 11

3

heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction
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result (sorted)

starting point (heap-ordered)starting point (arbitrary order)
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Heapsort:  sortdown

Second pass.

・Remove the maximum, one at a time.

・Leave in array, instead of nulling out.

while (N > 1)
{
   exch(a, 1, N--);
   sink(a, 1, N);
}

sink(5, 11)

sink(4, 11)

sink(3, 11)

sink(2, 11)

sink(1, 11)

exch(1, 6)
sink(1, 5)

exch(1, 5)
sink(1, 4)

exch(1, 4)
sink(1, 3)

exch(1, 3)
sink(1, 2)

exch(1, 2)
sink(1, 1)

sortdown 

exch(1, 11)
sink(1, 10)

exch(1, 10)
sink(1, 9)

exch(1, 9)
sink(1, 8)

exch(1, 8)
sink(1, 7)

exch(1, 7)
sink(1, 6)

Heapsort: constructing (left) and sorting down (right) a heap
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heap construction

result (heap-ordered)
result (sorted)

starting point (heap-ordered)starting point (arbitrary order)
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Heapsort:  Java implementation

public class Heap
{
   public static void sort(Comparable[] a)
   {
      int N = a.length;
      for (int k = N/2; k >= 1; k--)
         sink(a, k, N);
      while (N > 1)
      {
         exch(a, 1, N);
         sink(a, 1, --N);
      }
   }

   private static void sink(Comparable[] a, int k, int N)
   {  /* as before */  }

   private static boolean less(Comparable[] a, int i, int j)
   {  /* as before */  }

   private static void exch(Object[] a, int i, int j)
   {  /* as before */  }
 
}

but convert from 1-based

indexing to 0-base indexing

but make static (and pass arguments)
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Heapsort:  trace

                       a[i]
  N   k   0  1  2  3  4  5  6  7  8  9 10 11
             S  O  R  T  E  X  A  M  P  L  E
 11   5      S  O  R  T  L  X  A  M  P  E  E  
 11   4      S  O  R  T  L  X  A  M  P  E  E 
 11   3      S  O  X  T  L  R  A  M  P  E  E  
 11   2      S  T  X  P  L  R  A  M  O  E  E  
 11   1      X  T  S  P  L  R  A  M  O  E  E
             X  T  S  P  L  R  A  M  O  E  E
 10   1      T  P  S  O  L  R  A  M  E  E  X
  9   1      S  P  R  O  L  E  A  M  E  T  X  
  8   1      R  P  E  O  L  E  A  M S  T  X  
  7   1      P  O  E  M  L  E  A  R  S  T  X 
  6   1      O  M  E  A  L  E  P  R  S  T  X  
  5   1      M  L  E  A  E  O  P  R  S  T  X  
  4   1      L  E  E  A  M  O  P  R  S  T  X 
  3   1      E  A  E  L  M  O  P  R  S  T  X  
  2   1      E  A  E  L  M  O  P  R  S  T  X  
  1   1      A  E  E  L  M  O  P  R  S  T  X
             A  E  E  L  M  O  P  R  S  T  X 

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)

Heapsort animation
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http://www.sorting-algorithms.com/heap-sort

50 random items

in order

algorithm position

not in order



Proposition.  Heap construction uses ≤ 2 N compares and exchanges.

Proposition.  Heapsort uses ≤ 2 N lg N compares and exchanges.

Significance.  In-place sorting algorithm with N log N worst-case.

・Mergesort:  no, linear extra space.

・Quicksort:  no, quadratic time in worst case.

・Heapsort:  yes!

Bottom line.  Heapsort is optimal for both time and space, but:

・Inner loop longer than quicksort’s.

・Makes poor use of cache memory.

・Not stable.
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Heapsort:  mathematical analysis

in-place merge possible, not practical

N log N worst-case quicksort possible, 

not practical

algorithm be improved to ~ 1 N lg N

Heapsort summary

The good news: 

・Heap sort: In place and theoretically fast (not in place)

The bad news:

・(Almost) nobody uses Heapsort in the real world. Why?

– Like Miss Manners, Heapsort is very well-behaved, but is unable to 

handle the stresses of the real world

– In particular, performance on real computers is heavily impacted by 

really messy factors like cache performance

54

Mergesort Quicksort Heapsort

What does your computer look like inside?

55

Play with it!

56



Levels of caches

We’ll assume there’s just one cache, to keep things simple.

57

Key idea behind caching

When fetching one memory address, fetch everything nearby.

・Because memory access patterns of most programs/algorithms are 

highly localized!

58
http://media.soundonsound.com/sos/dec08/images/DigitalVillageSynergyPC_04.jpg

Which of these is faster?

A.     sum=0
      for (i = 0 to size)
        for (j = 0 to size)
          sum += array[i][j]

B.     sum=0
      for (i = 0 to size)
        for (j = 0 to size)
          sum += array[j][i]

59

Answer: A is faster, sometimes by an order of magnitude or more.

Cache and memory latencies: an analogy

Cache

Get up and get something

from the kitchen

RAM

Walk down the block to

borrow from neighbor

Hard drive

Drive around the world...

...twice

60



Sort algorithms and cache performance

Mergesort: sort subarrays first

Quicksort: partition into subarrays

Heapsort: all over the place

61 62

Sorting algorithms: summary

# key comparisons to sort N distinct randomly-ordered keys

inplace? stable? worst average best remarks

selection

insertion

shell

quick

3-way quick

merge

heap

???

x ½ N 2 ½ N 2 ½ N 2 N exchanges

x x ½ N 2 ¼ N 2 N use for small N or partially ordered

x ? ? N tight code, subquadratic

x ½ N 2 2 N ln N N lg N
N log N  probabilistic guarantee

fastest in practice

x ½ N 2 2 N ln N N
improves quicksort in presence

of duplicate keys

x N lg N N lg N N lg N N log N  guarantee, stable

x 2 N lg N 2 N lg N N lg N N log N  guarantee, in-place

x x N lg N N lg N N lg N holy sorting grail

Optional slides on heapification running time

・Or see textbook section 2.4
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Sink-based (bottom up) heapification

Observation

・Given two heaps of height 1.

・A heap of height 2 results by:

– Pointing the root of each heap at a new item.

– Sinking that new item.

・Cost: 4 compares (2 * height of new tree).

Q: How many compares are needed to sink the O into the correct position 

in the worst case?

A. 1     [676050]
B. 2     [676051]
C. 3     [676052]
D. 4     [676053] E

T

M P

L

E

O

h = 1

pollEv.com/jhug              text to 37607
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7-node heap

7-node heap

Q: How many worst-case compares are needed to form a height 3 heap by 

sinking an item into one of two perfectly balanced heaps of height 2?

A. 4     [676057]
B. 6     [676058]
C. 8     [676059]

pollEv.com/jhug              text to 37607

Sink-based (bottom up) heapification

Observation

・Given two heaps of height h-1.

・A heap of height h results by

– Pointing the root of each heap at a new item.

– Sinking that new item.

・Cost to sink: At most 2h compares.

・Total heap construction cost: 4*2 + 2*4 + 6 = 22 compares

00000000

2222

44

6

0000

22

4

00

2

Sink-based (bottom up) heapification

Total Heap Construction Cost

・For h=1: C1 = 2

・For h=2: C2 = 2C1 + 2*2

・For h: Ch = 2Ch-1 + 2h

・Total cost: Doubles with h (plus a small constant factor): Exponential in h

・Total cost: Linear in N

00

2

4

6

Heapsort

Order of growth of running time

・Heap construction: N

・N calls to delete max: N lg N

Total Extra Space

・Constant (in-place)

00000000

2222

44

6



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ collections

‣ priority queues, sets, symbol tables

‣ heaps and priority queues

‣ heapsort

‣ event-driven simulation (optional)

COLLECTIONS, IMPLEMENTATIONS,
PRIORITY QUEUES

70

Molecular dynamics simulation of hard discs

Goal.  Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

71

Molecular dynamics simulation of hard discs

Goal.  Simulate the motion of N moving particles that behave

according to the laws of elastic collision.

Hard disc model.

・Moving particles interact via elastic collisions with each other and walls.

・Each particle is a disc with known position, velocity, mass, and radius.

・No other forces.

Significance.  Relates macroscopic observables to microscopic dynamics.

・Maxwell-Boltzmann:  distribution of speeds as a function of temperature.

・Einstein:  explain Brownian motion of pollen grains.

motion of individual

atoms and molecules

temperature, pressure,

diffusion constant

Time-driven simulation.  N bouncing balls in the unit square.

Warmup:  bouncing balls

72

public class BouncingBalls
{ 
   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      Ball[] balls = new Ball[N];
      for (int i = 0; i < N; i++)
         balls[i] = new Ball();
      while(true)
      {
         StdDraw.clear();
         for (int i = 0; i < N; i++)
         {
            balls[i].move(0.5);
            balls[i].draw();
         }
         StdDraw.show(50);
      }
   }
}

% java BouncingBalls 100

main simulation loop



Missing.  Check for balls colliding with each other.

・Physics problems:  when? what effect?

・CS problems:  which object does the check?  too many checks?

Warmup:  bouncing balls

73

public class Ball
{
    private double rx, ry;        // position
    private double vx, vy;        // velocity
    private final double radius;  // radius
    public Ball(...)
    {  /* initialize position and velocity */  }

    public void move(double dt)
    {
        if ((rx + vx*dt < radius) || (rx + vx*dt > 1.0 - radius)) { vx = -vx; }
        if ((ry + vy*dt < radius) || (ry + vy*dt > 1.0 - radius)) { vy = -vy; }
        rx = rx + vx*dt;
        ry = ry + vy*dt;
    }
    public void draw()
    {  StdDraw.filledCircle(rx, ry, radius);  }
}

check for collision with walls
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Time-driven simulation

・Discretize time in quanta of size dt.

・Update the position of each particle after every dt units of time,

and check for overlaps.

・If overlap, roll back the clock to the time of the collision, update the 

velocities of the colliding particles, and continue the simulation.

t t + dt t + 2 dt

(collision detected)

t + Δt

(roll back clock)

Main drawbacks.

・~ N 2 / 2 overlap checks per time quantum.

・Simulation is too slow if dt is very small. 

・May miss collisions if dt is too large.

(if colliding particles fail to overlap when we are looking)
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Time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

dt too small: excessive computation

dt too large: may miss collisions

Fundamental challenge for
time-driven simulation

Change state only when something happens.

・Between collisions, particles move in straight-line trajectories.

・Focus only on times when collisions occur.

・Maintain PQ of collision events, prioritized by time. 

・Remove the min = get next collision.

Collision prediction.  Given position, velocity, and radius of a particle,

when will it collide next with a wall or another particle?

Collision resolution.  If collision occurs, update colliding particle(s) 

according to laws of elastic collisions.
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Event-driven simulation

prediction  (at time t)
    particles hit unless one passes
    intersection point before the other
    arrives (see Exercise 3.6.X)

resolution (at time t + dt)
     velocities of both particles
     change after collision (see Exercise 3.6.X)

Predicting and resolving a particle-particle collision
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Particle-wall collision

Collision prediction and resolution.

・Particle of radius s at position (rx, ry).

・Particle moving in unit box with velocity (vx, vy).

・Will it collide with a vertical wall?  If so, when?

Predicting and resolving a particle-wall collision

prediction (at time t)
    dt  ! time to hit wall
          = distance/velocity

resolution (at time t + dt)
     velocity after collision   = ( − vx , vy) 
     position after collision  = ( 1 − s , ry + vydt)

 = (1 − s − rx )/vx

1 − s − rx 

(rx , ry 
)

s

wall at
x = 1

vx

vy
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Particle-particle collision prediction

Collision prediction.

・Particle i:  radius si, position (rxi, ryi), velocity (vxi, vyi).

・Particle j:  radius sj, position (rxj, ryj), velocity (vxj, vyj).

・Will particles i and j collide? If so, when?

sj

si

(rxi , ryi)

time = t

(vxi , vyi )

m i

i

j

(rxi', ryi')

time = t + Δt

(vxj', vyj')

(vxi', vyi')

(vxj , vyj)

Collision prediction.

・Particle i:  radius si, position (rxi, ryi), velocity (vxi, vyi).

・Particle j:  radius sj, position (rxj, ryj), velocity (vxj, vyj).

・Will particles i and j collide? If so, when?

Particle-particle collision prediction
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€ 

Δv = (Δvx, Δvy)  =  (vxi − vx j , vyi − vyj )

€ 

Δr = (Δrx, Δry)  =  (rxi − rx j , ryi − ryj )

€ 

Δv ⋅ Δv = (Δvx)2 +  (Δvy)2

€ 

Δr ⋅ Δr = (Δrx)2 +  (Δry)2

€ 

Δv ⋅ Δr = (Δvx)(Δrx)+  (Δvy)(Δry)

€ 

Δt  =  
 ∞  if Δv ⋅Δr ≥ 0
 ∞  if d < 0
 -  Δv ⋅Δr  +  d

Δv ⋅Δv
 otherwise

& 

' 
( ( 

) 
( 
( 

€ 

d  = (Δv ⋅Δr)2  −  (Δv ⋅Δv)  (Δr ⋅Δr  −  σ2 )

€ 

σ = σ i +σ j

Important note: This is high-school physics, so we won’t be testing you on it!

Collision resolution.  When two particles collide, how does velocity change?
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Particle-particle collision resolution

€ 

vxi" = vxi  +  Jx / mi

vyi" = vyi  +  Jy / mi

vx j" = vx j  −  Jx / mj

vyj" = vx j  −  Jy / mj

€ 

Jx  =  J Δrx
σ

,  Jy  =  J Δry
σ

,  J  =  
2mi mj (Δv ⋅Δr)
σ(mi +mj )

impulse due to normal force

(conservation of energy, conservation of momentum)

Newton's second law

(momentum form)

Important note: This is high-school physics, so we won’t be testing you on it!

€ 

vxi" = vxi  +  Jx / mi

vyi" = vyi  +  Jy / mi

vx j" = vx j  −  Jx / mj

vyj" = vx j  −  Jy / mj



Particle data type skeleton
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public class Particle
{
    private double rx, ry;       // position
    private double vx, vy;       // velocity
    private final double radius; // radius
    private final double mass;   // mass
    private int count;           // number of collisions

    public Particle(...) { }

    public void move(double dt) { }
    public void draw()          { }
  
    public double timeToHit(Particle that)  { }
    public double timeToHitVerticalWall()   { }
    public double timeToHitHorizontalWall() { }
    
    public void bounceOff(Particle that)    { }
    public void bounceOffVerticalWall()     { }
    public void bounceOffHorizontalWall()   { }
 
}

predict collision 

with particle or wall

resolve collision 

with particle or wall

Particle-particle collision and resolution implementation
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 public double timeToHit(Particle that)
 {
    if (this == that) return INFINITY;
    double dx  = that.rx - this.rx, dy  = that.ry - this.ry;
    double dvx = that.vx - this.vx; dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;
    if( dvdr > 0) return INFINITY;
    double dvdv = dvx*dvx + dvy*dvy;
    double drdr = dx*dx + dy*dy;
    double sigma = this.radius + that.radius;
    double d = (dvdr*dvdr) - dvdv * (drdr - sigma*sigma);
    if (d < 0) return INFINITY;
    return -(dvdr + Math.sqrt(d)) / dvdv;
 }

 public void bounceOff(Particle that)
 {
    double dx  = that.rx - this.rx, dy  = that.ry - this.ry;
    double dvx = that.vx - this.vx, dvy = that.vy - this.vy;
    double dvdr = dx*dvx + dy*dvy;       
    double dist = this.radius + that.radius;   
    double J = 2 * this.mass * that.mass * dvdr / ((this.mass + that.mass) * dist);
    double Jx = J * dx / dist;
    double Jy = J * dy / dist;
    this.vx += Jx / this.mass;
    this.vy += Jy / this.mass;
    that.vx -= Jx / that.mass;
    that.vy -= Jy / that.mass;
    this.count++;
    that.count++;
 }

no collision

Important note: This is high-school physics, so we won’t be testing you on it!
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Collision system: event-driven simulation main loop

Initialization.

・Fill PQ with all potential particle-wall collisions.

・Fill PQ with all potential particle-particle collisions.

Main loop.

・Delete the impending event from PQ (min priority = t).

・If the event has been invalidated, ignore it.

・Advance all particles to time t, on a straight-line trajectory.

・Update the velocities of the colliding particle(s).

・Predict future particle-wall and particle-particle collisions involving the 

colliding particle(s) and insert events onto PQ.

“potential” since collision may not happen if

some other collision intervenes

An invalidated event

two particles on a collision course

third particle interferes: no collision

Conventions.

・Neither particle null ⇒  particle-particle collision.

・One particle null ⇒  particle-wall collision.

・Both particles null ⇒  redraw event.

Event data type
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private class Event implements Comparable<Event>
{
    private double time;         // time of event
    private Particle a, b;       // particles involved in event
    private int countA, countB;  // collision counts for a and b
                
    public Event(double t, Particle a, Particle b) { }
     
    public int compareTo(Event that)
    {   return this.time - that.time;   }
        
    public boolean isValid()
    {   }
}

ordered by time

invalid if

intervening collision

create event



public class CollisionSystem
{
    private MinPQ<Event> pq;        // the priority queue
    private double t  = 0.0;        // simulation clock time
    private Particle[] particles;   // the array of particles

    public CollisionSystem(Particle[] particles) { }
      
    private void predict(Particle a)
    {
       if (a == null) return;
       for (int i = 0; i < N; i++)
       {
          double dt = a.timeToHit(particles[i]);
          pq.insert(new Event(t + dt, a, particles[i]));
       }
       pq.insert(new Event(t + a.timeToHitVerticalWall()  , a, null));
       pq.insert(new Event(t + a.timeToHitHorizontalWall(), null, a));
 }
   
    private void redraw()  { }

    public void simulate() {  /* see next slide */  }
}

Collision system implementation:  skeleton
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add to PQ all particle-wall and particle-

particle collisions involving this particle

public void simulate()
{
   pq = new MinPQ<Event>();
   for(int i = 0; i < N; i++) predict(particles[i]);
   pq.insert(new Event(0, null, null));
 
   while(!pq.isEmpty())
   { 
      Event event = pq.delMin();
      if(!event.isValid()) continue;
      Particle a = event.a;
      Particle b = event.b;
            
      for(int i = 0; i < N; i++)
         particles[i].move(event.time - t);
      t = event.time;
            
      if      (a != null && b != null) a.bounceOff(b);
      else if (a != null && b == null) a.bounceOffVerticalWall()
      else if (a == null && b != null) b.bounceOffHorizontalWall();
      else if (a == null && b == null) redraw();
      
      predict(a);
      predict(b);
   }
}

Collision system implementation:  main event-driven simulation loop
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initialize PQ with 

collision events and 

redraw event

get next event

update positions 

and time

process event

predict new events 

based on changes
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Particle collision simulation example 1

% java CollisionSystem 100
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Particle collision simulation example 2

% java CollisionSystem < billiards.txt
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Particle collision simulation example 3

% java CollisionSystem < brownian.txt
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Particle collision simulation example 4

% java CollisionSystem < diffusion.txt


