Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

♣

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

6.4 MAXIMUM FLOW

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications

6.4 MAXIMUM FLOW

Ford-Fulkerson algorithm

Java implementation

running time analysis

maxflow-mincut theorem

• introduction

applications

Algorithms

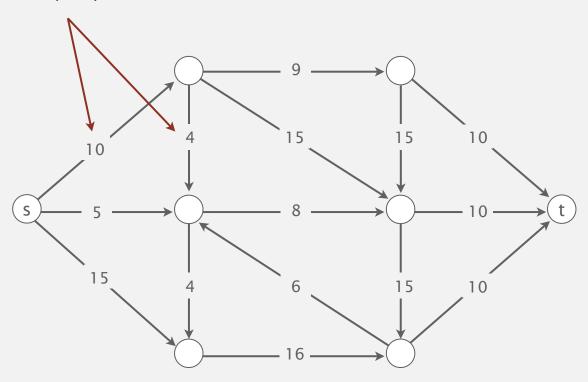
Robert Sedgewick | Kevin Wayne

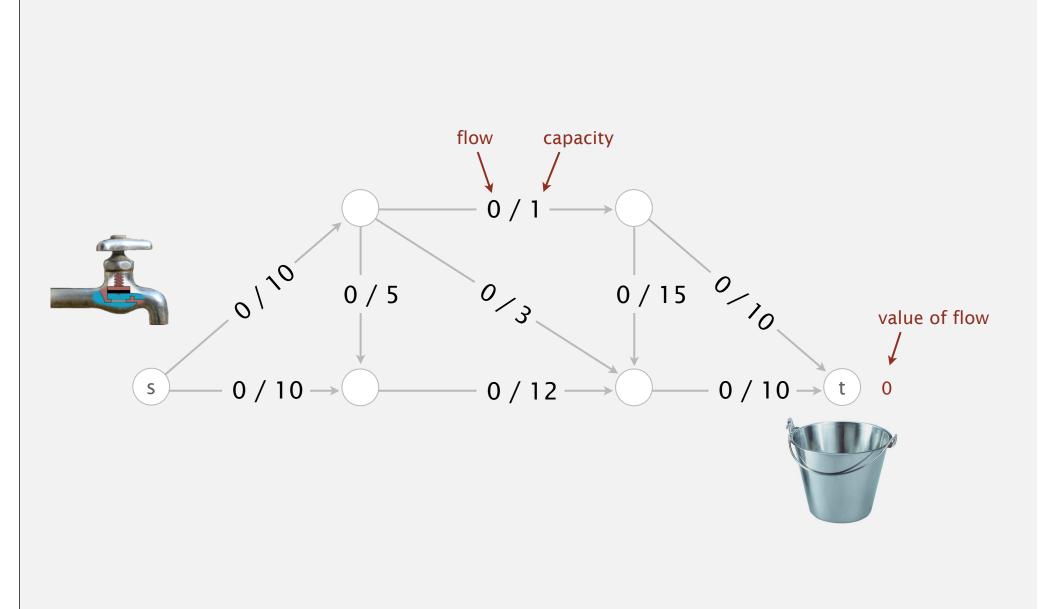
http://algs4.cs.princeton.edu

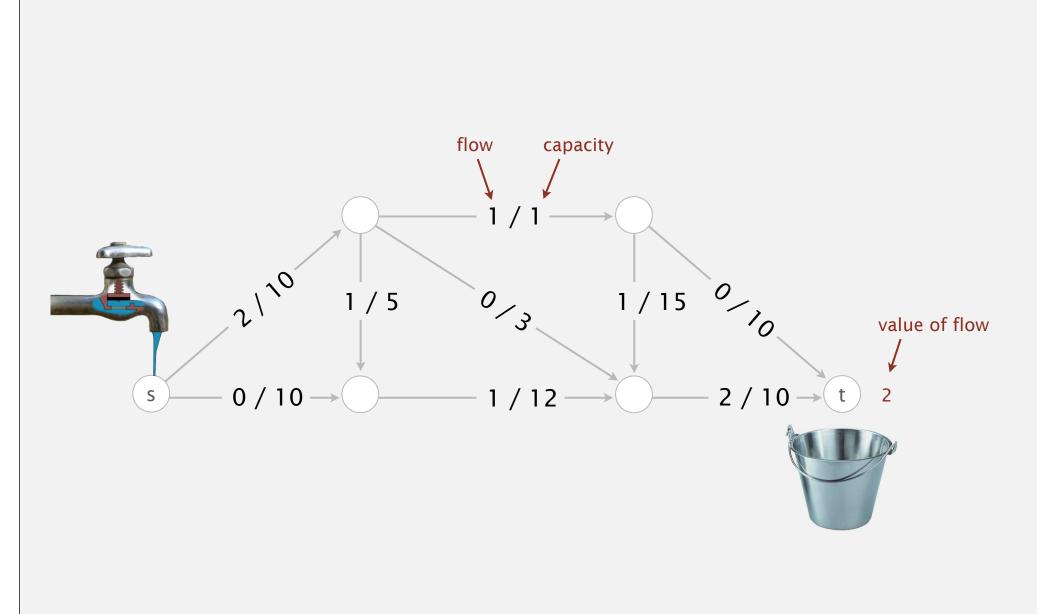
Input. An edge-weighted digraph, source vertex *s*, and target vertex *t*.

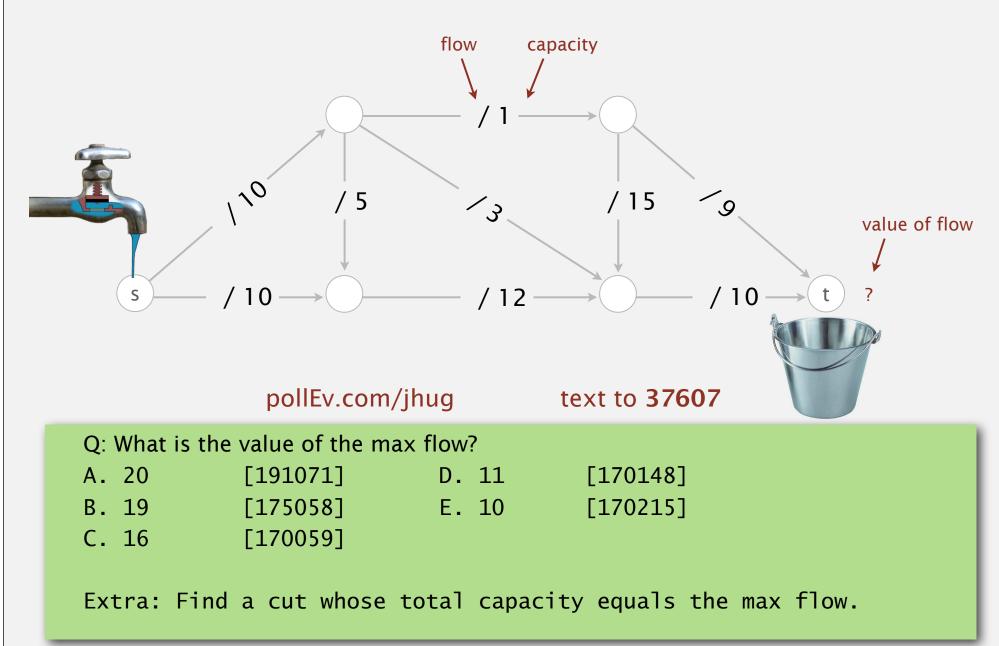
each edge has a positive capacity

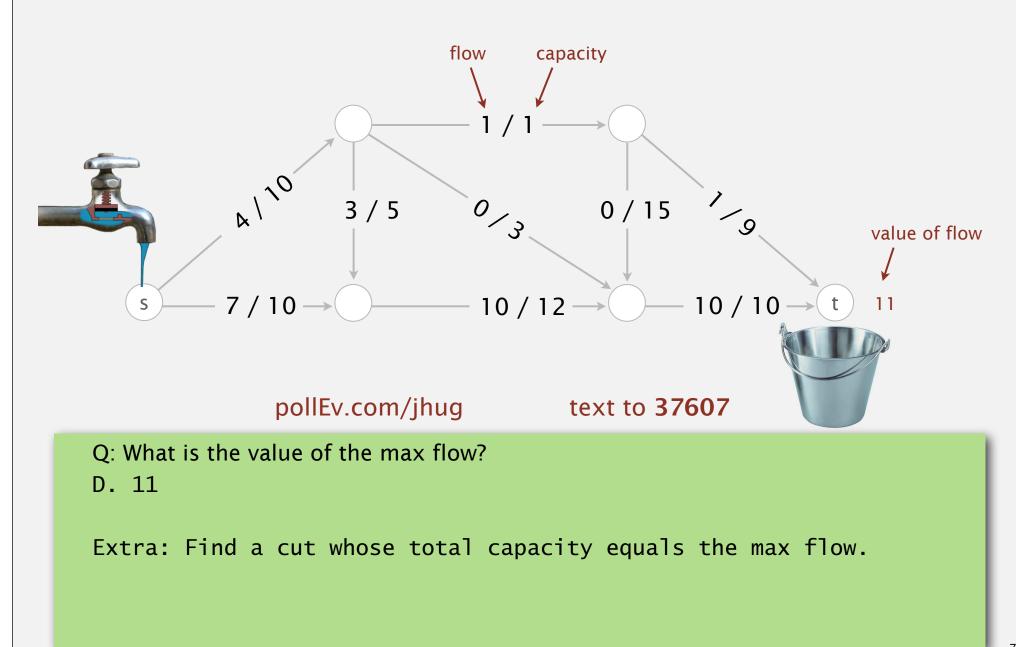
capacity

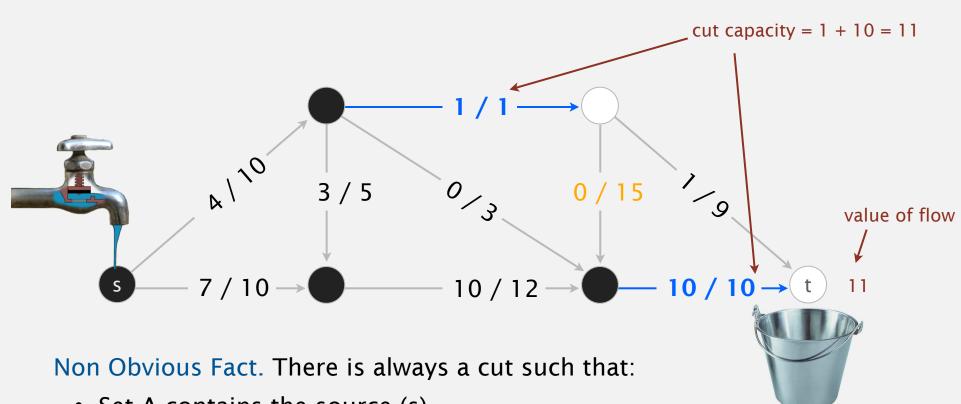










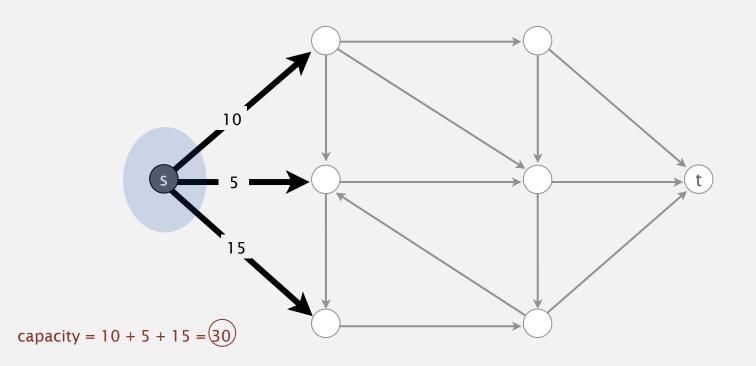


- Set A contains the source (s).
- Set B contains the sink (t).
- The capacity of this cut is equal to the value of the max flow.
- All edges from A to B are full.
- All edges from B to A are empty.

Mincut problem

Def. A *st*-cut (cut) is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

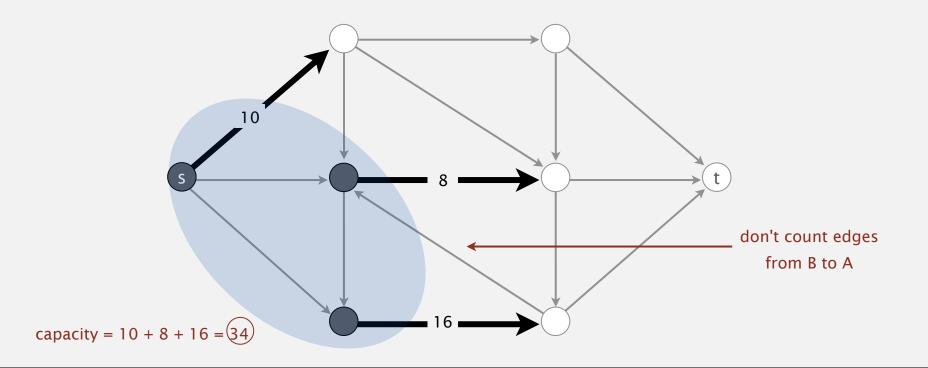
Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.



Mincut problem

Def. A *st*-cut (cut) is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.



Mincut problem

Def. A *st*-cut (cut) is a partition of the vertices into two disjoint sets, with *s* in one set *A* and *t* in the other set *B*.

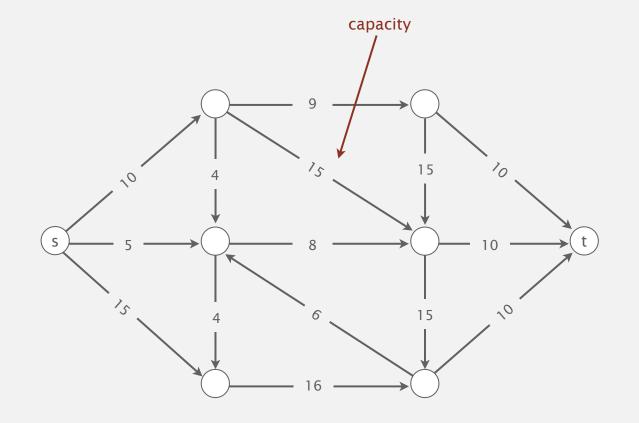
Def. Its capacity is the sum of the capacities of the edges from *A* to *B*.

Minimum st-cut (mincut) problem. Find a cut of minimum capacity.



Input. An edge-weighted digraph, source vertex *s*, and target vertex *t*.

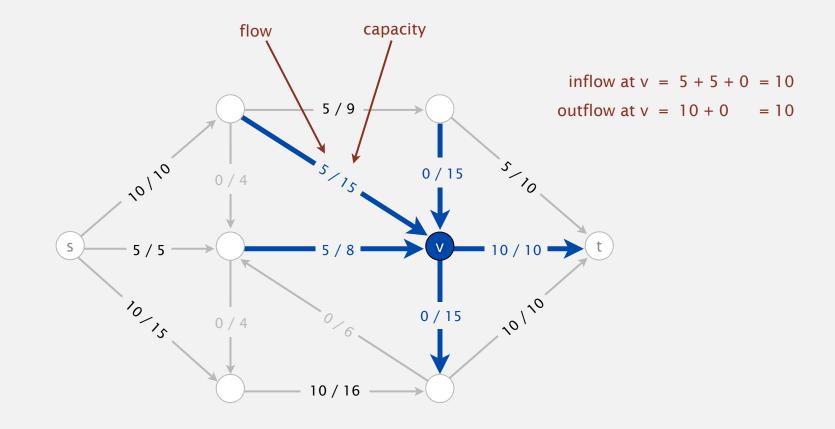
each edge has a positive capacity



Maxflow problem

Def. An *st*-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \le edge's$ flow $\le edge's$ capacity.
- Local equilibrium: inflow = outflow at every vertex (except *s* and *t*).



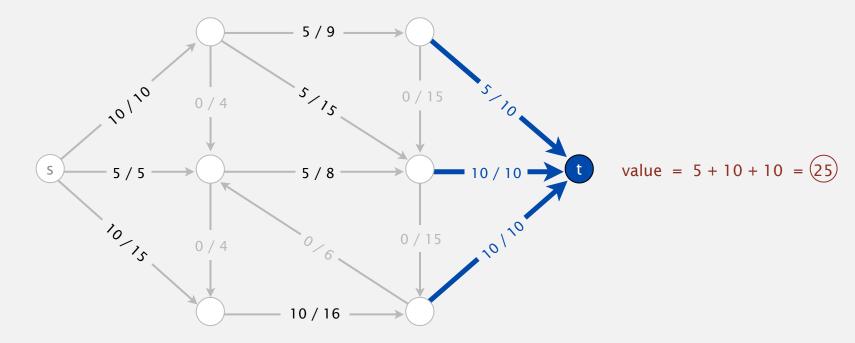
Maxflow problem

Def. An *st*-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \le edge's$ flow $\le edge's$ capacity.
- Local equilibrium: inflow = outflow at every vertex (except *s* and *t*).

Def. The value of a flow is the inflow at *t*.

we assume no edges point to s or from t



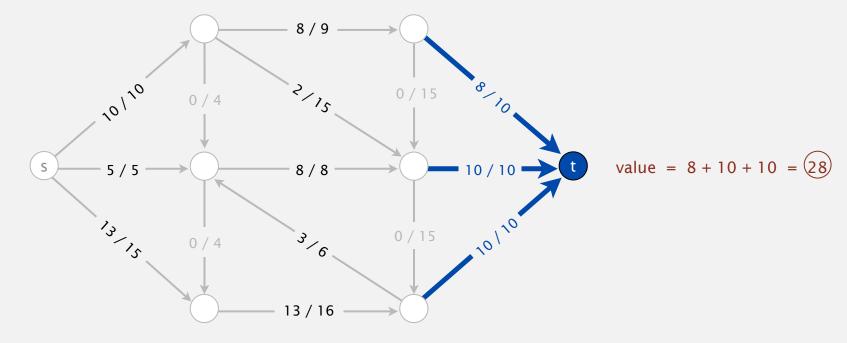
Maxflow problem

Def. An *st*-flow (flow) is an assignment of values to the edges such that:

- Capacity constraint: $0 \le edge's$ flow $\le edge's$ capacity.
- Local equilibrium: inflow = outflow at every vertex (except *s* and *t*).

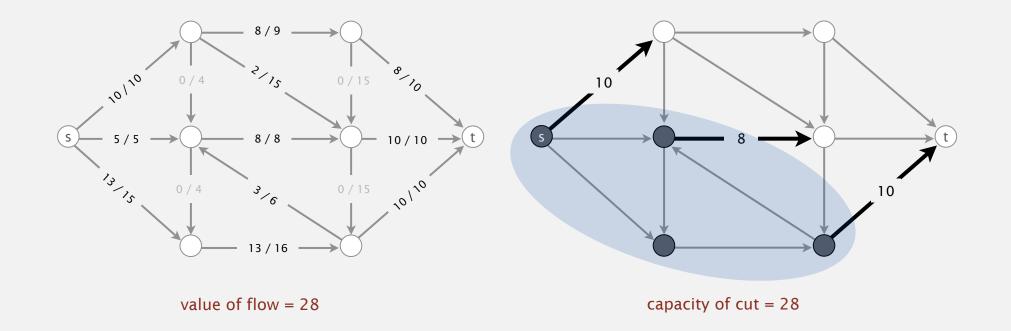
Def. The value of a flow is the inflow at *t*.

Maximum st-flow (maxflow) problem. Find a flow of maximum value.



Summary

Input. A weighted digraph, source vertex *s*, and target vertex *t*.Mincut problem. Find a cut of minimum capacity.Maxflow problem. Find a flow of maximum value.



Remarkable fact. These two problems are dual!

6.4 MAXIMUM FLOW

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Ford-Fulkerson algorithm
 Java implementation

maxflow-mincut theorem

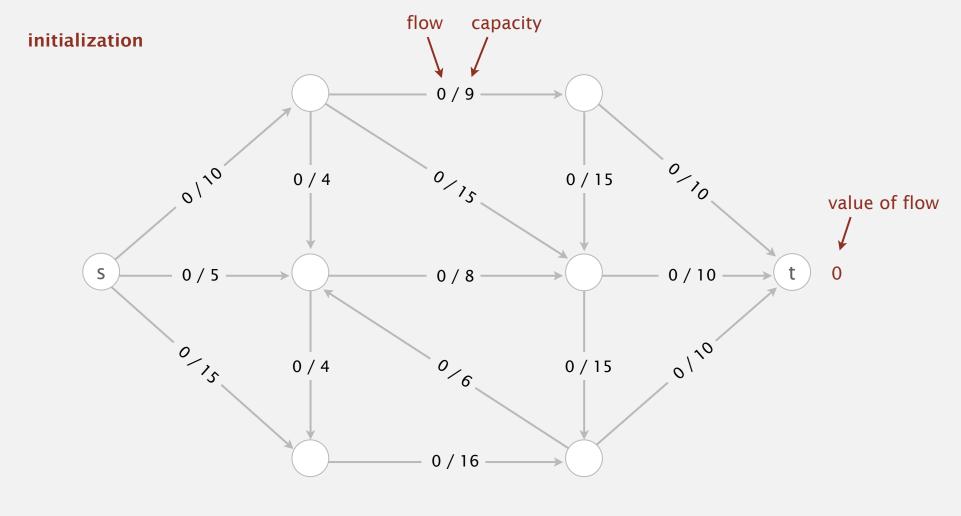
running time analysis

applications

introduction

Ford-Fulkerson algorithm

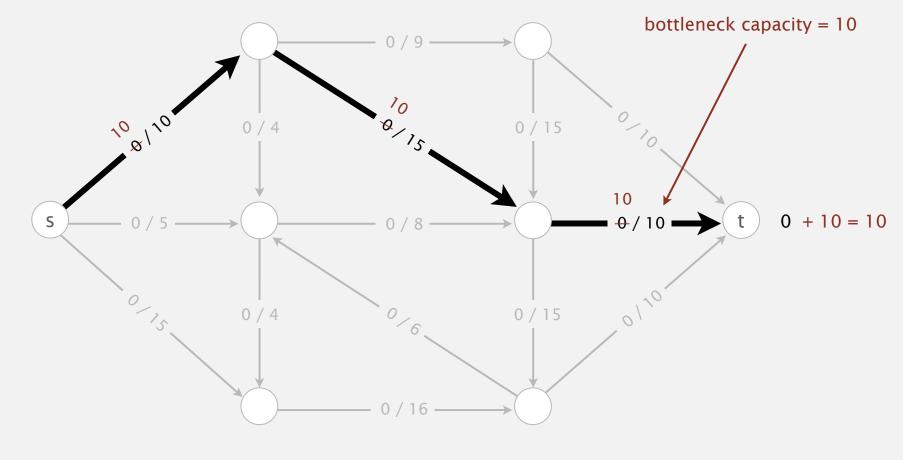
Initialization. Start with 0 flow.



Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

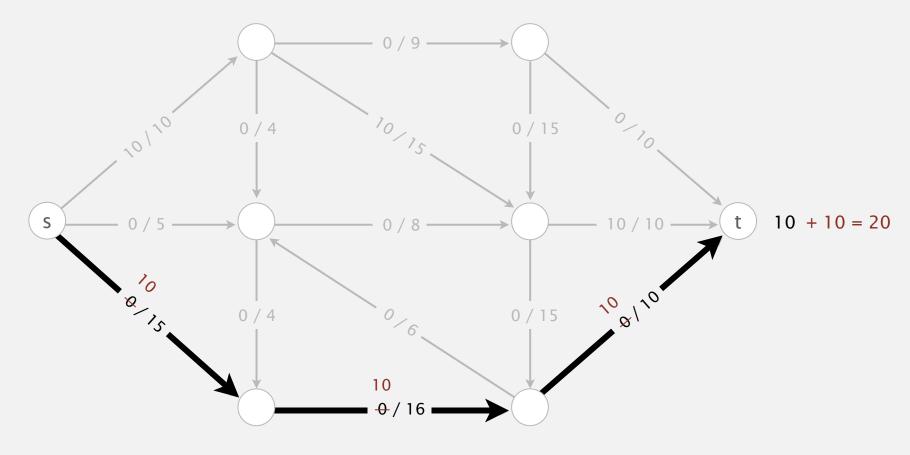
1st augmenting path



Augmenting path. Find an undirected path from *s* to *t* such that:

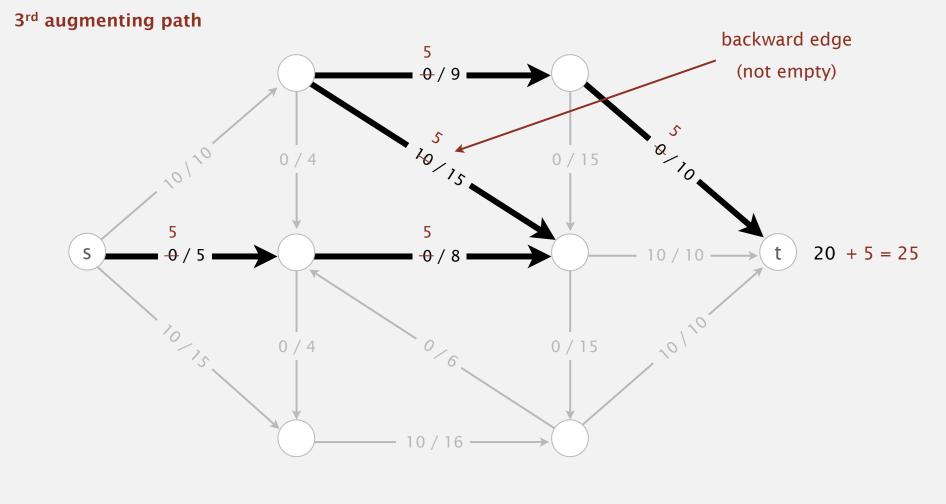
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).

2nd augmenting path



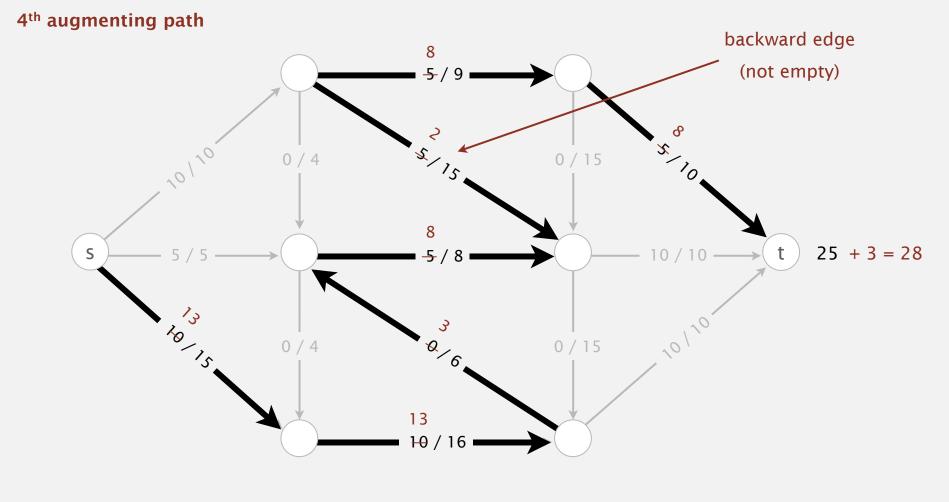
Augmenting path. Find an undirected path from *s* to *t* such that:

- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).



Augmenting path. Find an undirected path from *s* to *t* such that:

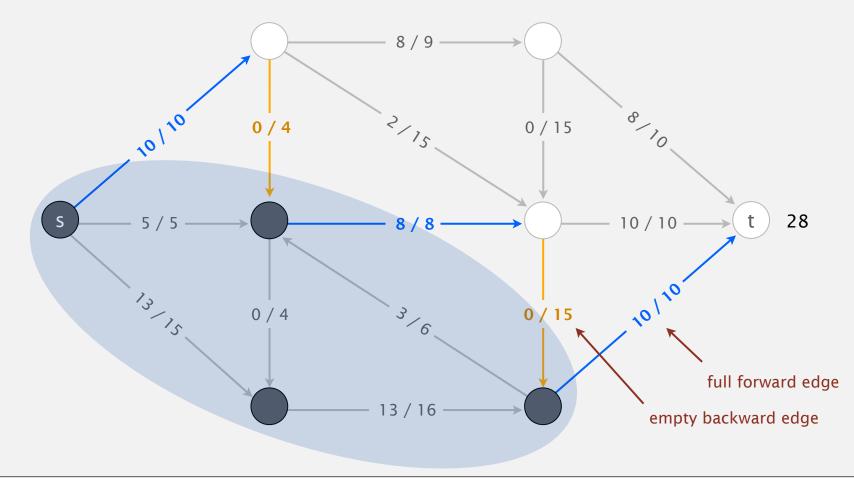
- Can increase flow on forward edges (not full).
- Can decrease flow on backward edge (not empty).



Termination. All paths from *s* to *t* are blocked by either a

- Full forward edge.
- Empty backward edge.

no more augmenting paths



Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

Questions.

- How to find an augmenting path?
- If FF terminates, does it always compute a maxflow?
- How to compute a mincut?
- Does FF always terminate? If so, after how many augmentations?

6.4 MAXIMUM FLOW

Ford-Fulkerson algorithm

maxflow-mincut theorem

running time analysis

Algorithms

Java implementation

introduction

applications

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

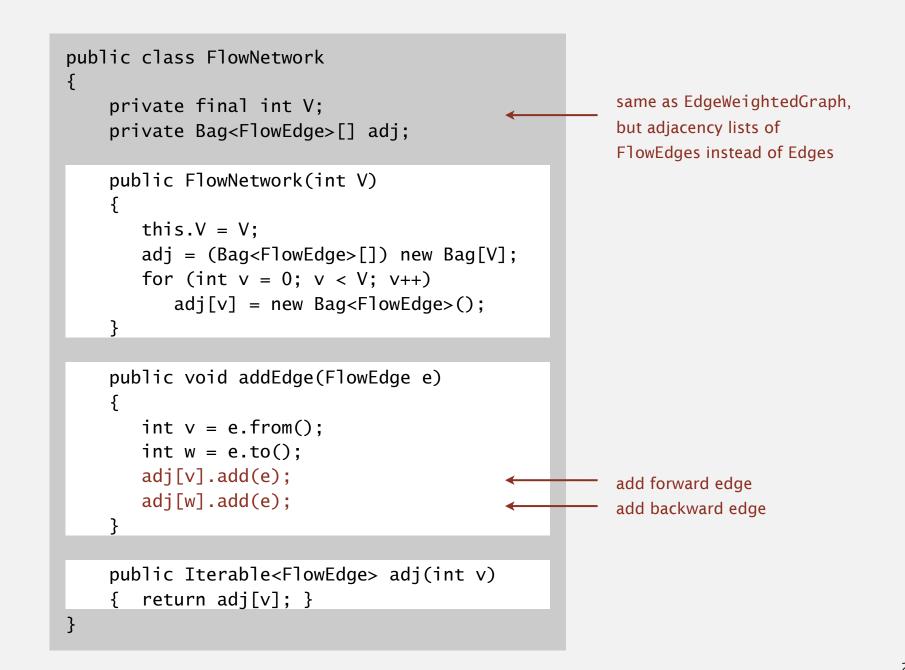
Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

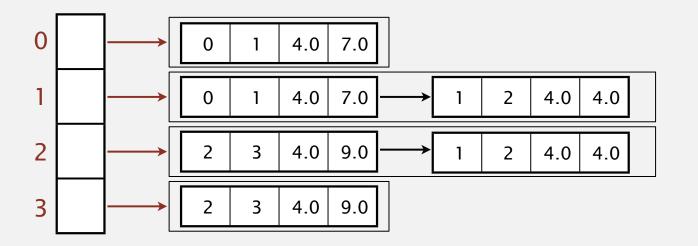
Questions.

- How to find an augmenting path?
- If FF terminates, does it always compute a maxflow?
- How to compute a mincut?
- Does FF always terminate? If so, after how many augmentations?



Ford-Fulkerson inspired details

• Both forward and backward edges are provided.

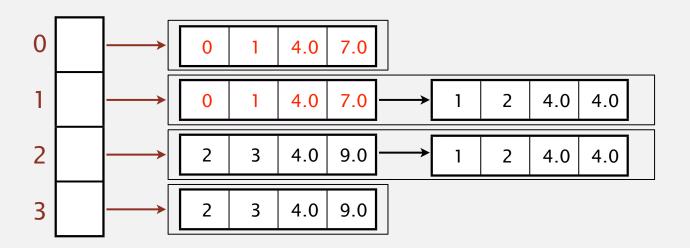


Ford-Fulkerson inspired details

- Both forward and backward edges are provided.
- Edges can report their **residual capacity**.

$$0 \qquad 1 \qquad 2 \qquad 3$$

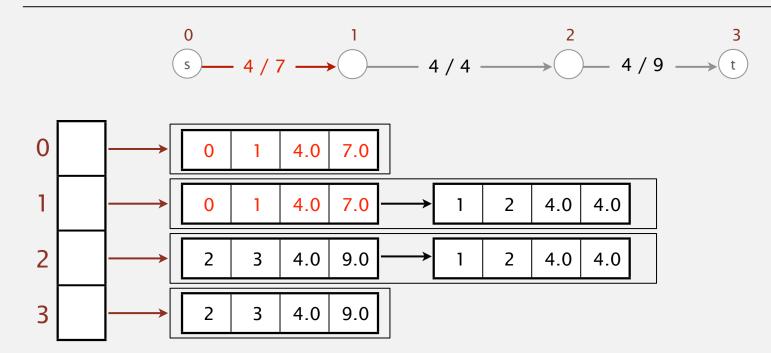
(s) -4 / 7 ----- 4 / 4 ----- 4 / 9 ----- t



e.edgeFrom(): 0 e.edgeTo(): 1

- e.residualCapacityTo(1): 3
- e.residualCapacityTo(0): 4

Forward edge, residual capacity = capacity - flow Backward edge, residual capacity = flow

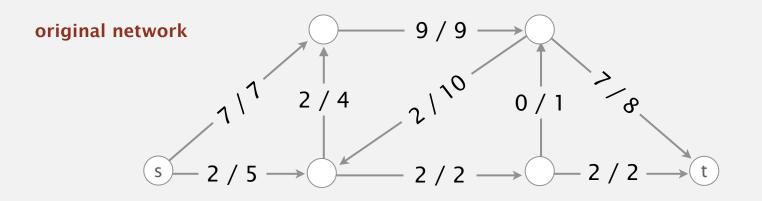


Residual Network

- Edge weighted digraph representing how much spare (used) capacity is available on a forward (backward) edge. If none, no edge.
- Represented *IMPLICITLY* by e.residualCapacityTo().

Residual Networks - Questions to ponder

Draw the residual network corresponding to the graph below.



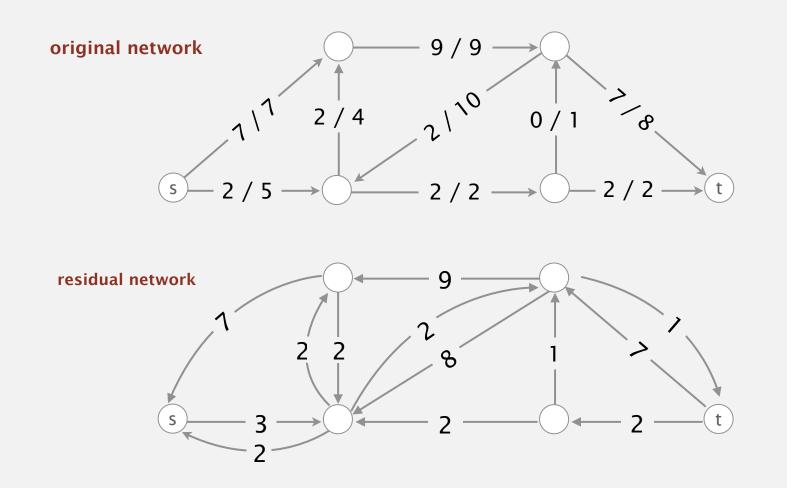
What is the result of the code below?

```
for (FlowEdge e : G.adj(s)) {
    int v = e.from(); int w = e.to();
    System.out.println(e.residualCapacityTo(w));
}
```

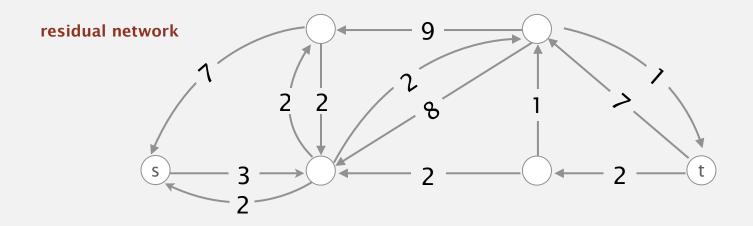
How can you find an augmenting path using the residual network graph?

Residual Networks

Draw the residual network corresponding to the graph below.



Residual Network



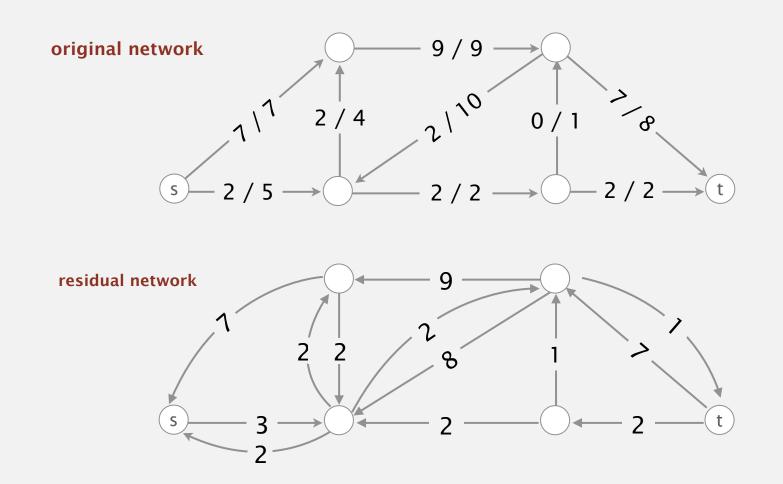
What is the result of the code below (s is the source vertex)?

```
for (FlowEdge e : G.adj(s)) {
    int v = e.from(); int w = e.to();
    System.out.println(e.residualCapacityTo(w));
}
```

- The two FlowEdges adjacent to e have residual capacity of 0 and 3 when examined in the forward direction.
 - Prints 0 on a new line, and 3 on a new line.

Residual Networks

Draw the residual network corresponding to the graph below.



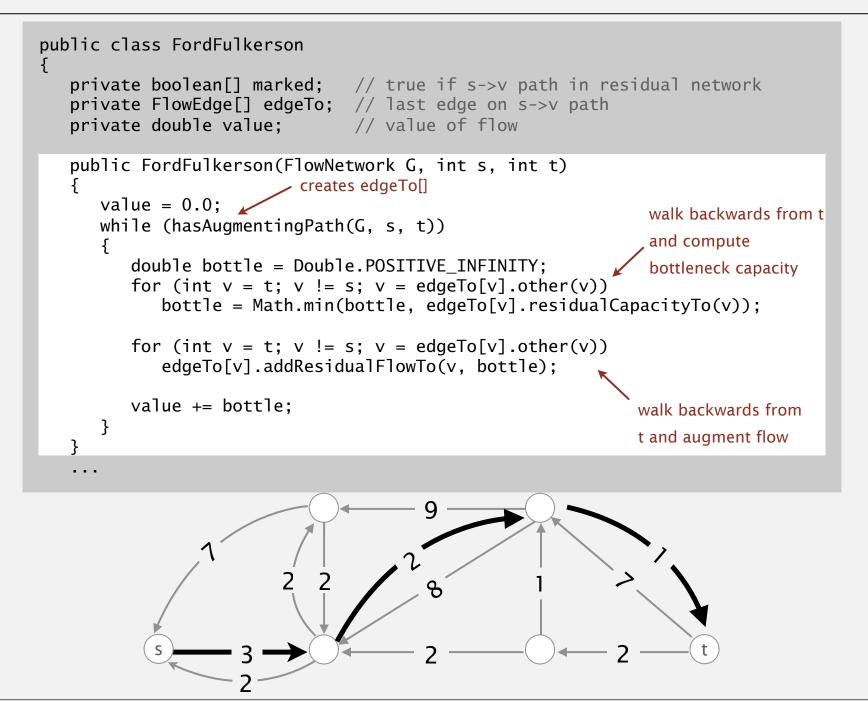
How can you find an augmenting path using the residual network graph?

• Find any path from s to t. Edge only exists if weight > 0.

Finding a shortest augmenting path (cf. breadth-first search)

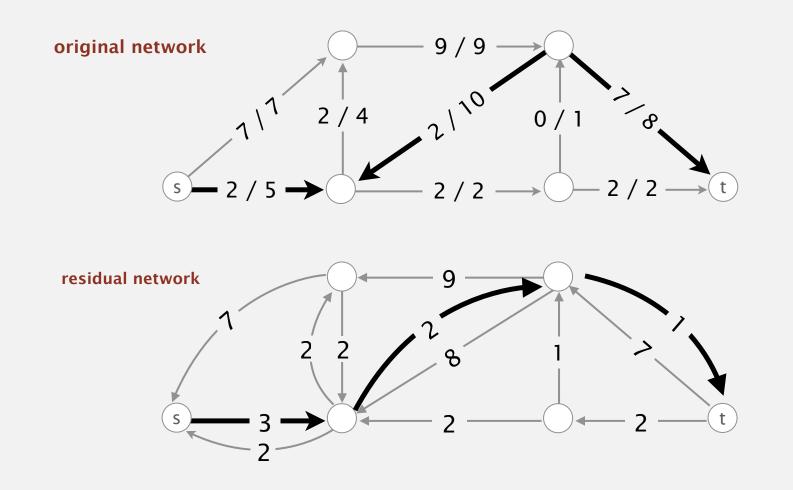
```
private boolean hasAugmentingPath(FlowNetwork G, int s, int t)
{
  edgeTo = new FlowEdge[G.V()];
  marked = new boolean[G.V()]:
  Queue<Integer> queue = new Queue<Integer>();
  queue.enqueue(s);
  while (!queue.isEmpty()) {
    int v = queue.dequeue();
    for (FlowEdge e : G.adj(v)) {
       int w = e.other(v);
        if (!marked[w] && e.residualCapacityTo(w) > 0) {
           marked[w] = true;
           queue.enqueue(w);
           edgeTo[w] = e;
       }
    }
    //how do we know if a path exists to t?
    return marked[t];
  }
}
```

Ford-Fulkerson: Java implementation



Residual Networks

Any path in residual network is an augmenting path in original network



6.4 MAXIMUM FLOW

introduction

applications

Algorithms

maxflow-mincut theorem

Java implementation

running time analysis

Ford-Fulkerson algorithm

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

Questions.

- How to find an augmenting path? BFS (or other).
- If FF terminates, does it always compute a maxflow?
- How to compute a mincut?
- Does FF always terminate? If so, after how many augmentations?

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths. Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

- Pf. The following three conditions are equivalent for any flow f:
 - i. There exists an st-cut cut whose capacity equals the value of the flow *f*.
- ii. f is a maxflow.
- iii. There is no augmenting path with respect to *f*.

Overall Goal:

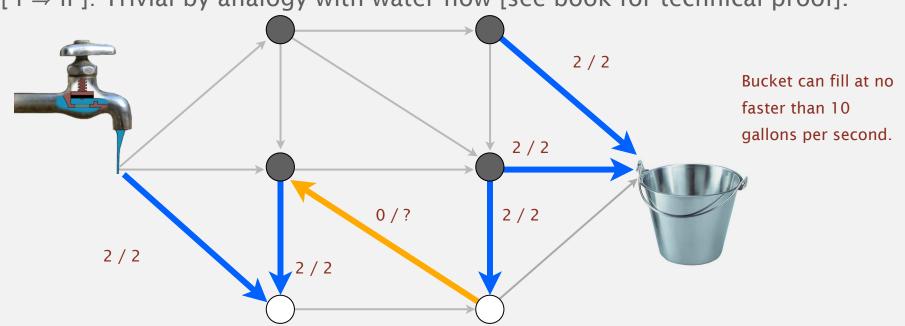
- Prove that $i \Rightarrow ii$. [Trivial]
- Prove that ii \Rightarrow iii. [Trivial]
- Prove that iii \Rightarrow i. [A little work]

Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths. Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:

- i. There exists an st-cut whose capacity equals the value of the flow f.
- \checkmark ii. f is a maxflow.
 - iii. There is no augmenting path with respect to *f*.



[$i \Rightarrow ii$]: Trivial by analogy with water flow [see book for technical proof].

Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths. Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:

i. There exists an st-cut cut whose capacity equals the value of the flow f.

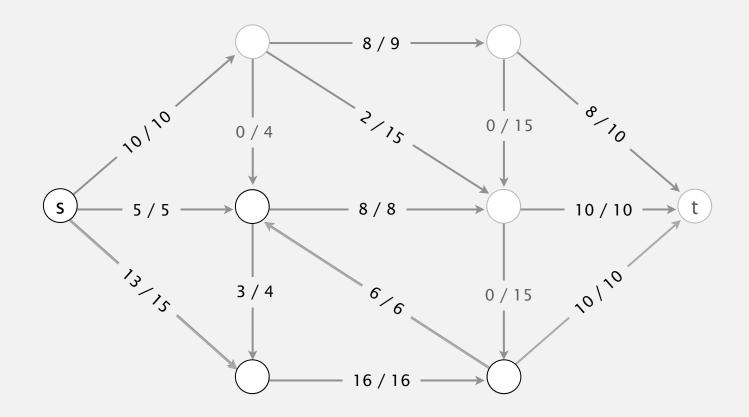
- $\mathbf{\dot{y}}$ ii. f is a maxflow.
- iii. There is no augmenting path with respect to f.

[ii \Rightarrow iii] Trivial, we prove contrapositive: \sim iii \Rightarrow \sim ii.

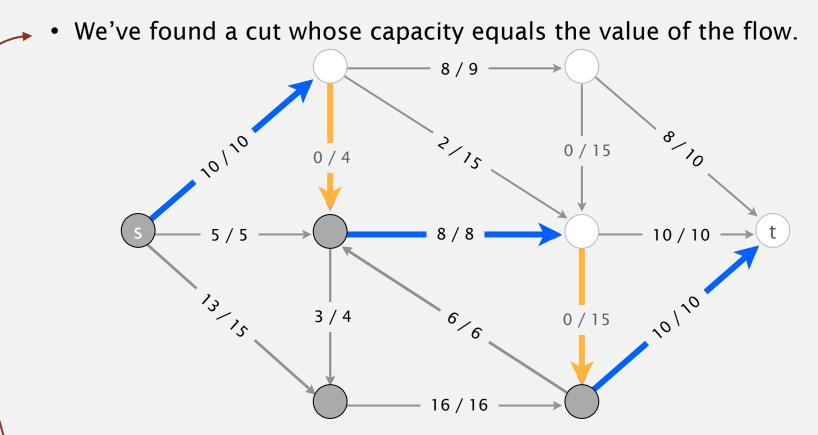
- Suppose that there is an augmenting path with respect to *f*.
- Can improve flow *f* by sending flow along this path.
- Thus, *f* is not a maxflow.

Computing a mincut from a maxflow

Find an augmenting path.



Computing a mincut from a maxflow



Find an augmenting path.

- Couldn't find an augmenting path (some edges block us).
 - These edges form a cut.
 - There is no backward flow from t to s.
 - All edges from s to t are full.

Maxflow-mincut theorem

Augmenting path theorem. A flow f is a maxflow iff no augmenting paths. Maxflow-mincut theorem. Value of the maxflow = capacity of mincut.

Pf. The following three conditions are equivalent for any flow f:

- i. There exists a cut whose capacity equals the value of the flow *f*.
- ii. f is a maxflow.
- \checkmark iii. There is no augmenting path with respect to *f*.

Overall Goal:

- Prove that $i \Rightarrow ii$. [Analogy with water, see book for technical proof]
- Prove that ii \Rightarrow iii. [Trivial by proving contrapositive]
- Prove that iii \Rightarrow i. [Constructive proof, see book for technical proof]

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

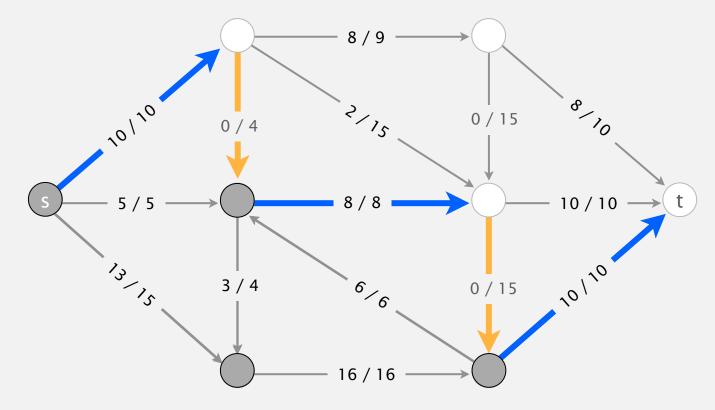
Questions.

- How to find an augmenting path? BFS (or other).
- If FF terminates, does it always compute a maxflow?
 - Yes, because non-existence of augmenting path implies max flow.
 - $iii \Rightarrow i \Rightarrow ii$
- How to compute a mincut?
- Does FF always terminate? If so, after how many augmentations?

Computing a mincut from a maxflow

Find an augmenting path.

- Couldn't find an augmenting path (some edges block us).
 - These edges form a cut.
 - There is no backward flow from t to s.
 - All edges from s to t are full.
- We've found a cut whose capacity equals the value of the flow.



6.4 MAXIMUM FLOW

Ford-Fulkerson algorithm

introduction

applications

Algorithms

running time analysis

Java implementation

maxflow-mincut theorem

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Ford-Fulkerson algorithm

Ford-Fulkerson algorithm

Start with 0 flow.

While there exists an augmenting path:

- find an augmenting path
- compute bottleneck capacity
- increase flow on that path by bottleneck capacity

Questions.

- How to find an augmenting path? BFS (or other).
- If FF terminates, does it always compute a maxflow? Yes.
- How to compute a mincut? Easy. 🖌
- Does FF always terminate? If so, after how many augmentations?

yes, provided edge capacities are integers (or augmenting paths are chosen carefully) requires clever analysis

Ford-Fulkerson algorithm with integer capacities

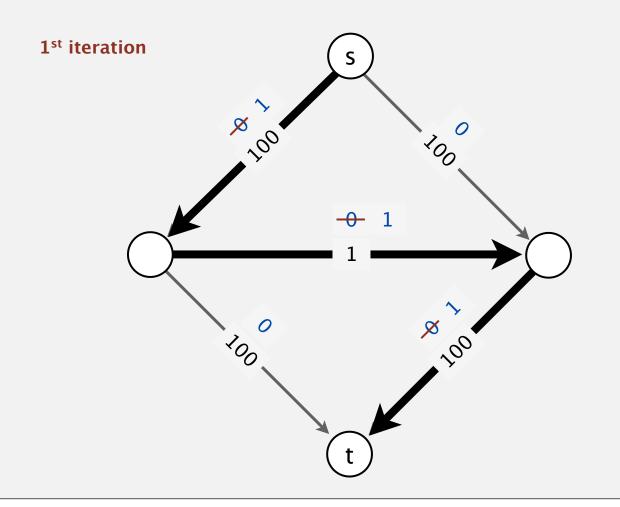
Important special case. Edge capacities are integers between 1 and U. flow on each edge is an integer Invariant. The flow is integer-valued throughout Ford-Fulkerson. Pf. [by induction] • Bottleneck capacity is an integer.

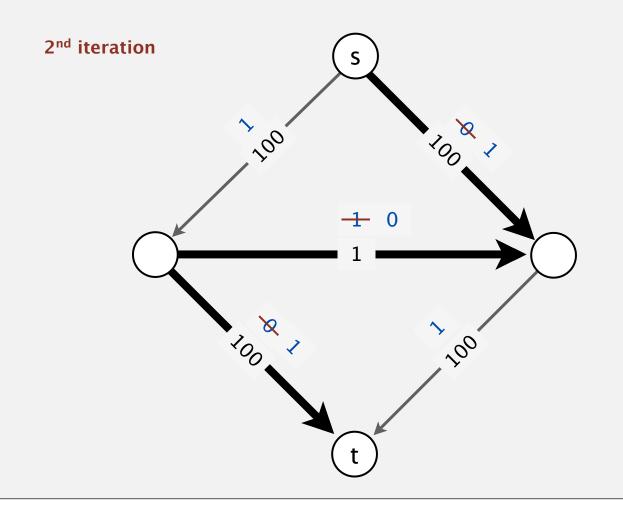
• Flow on an edge increases/decreases by bottleneck capacity.

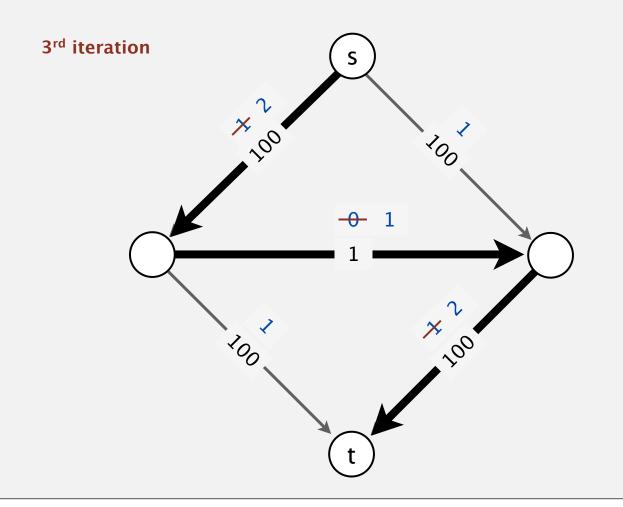
Proposition. Number of augmentations \leq the value of the maxflow. Pf. Each augmentation increases the value by at least 1.

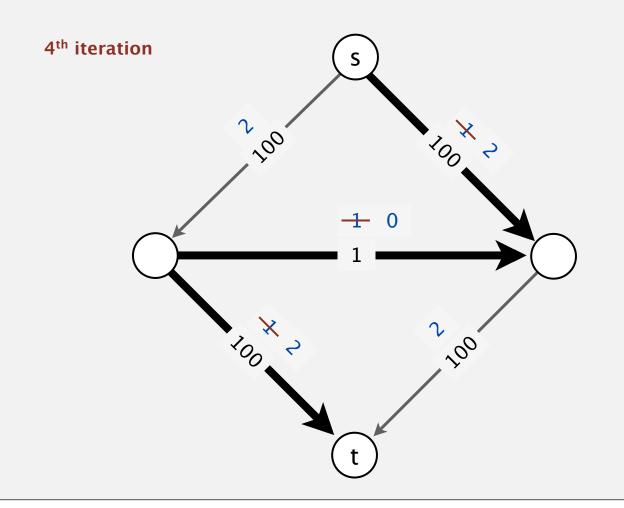
important for some applications (stay tuned) Integrality theorem. There exists an integer-valued maxflow. Pf. Ford-Fulkerson terminates and maxflow that it finds is integer-valued.

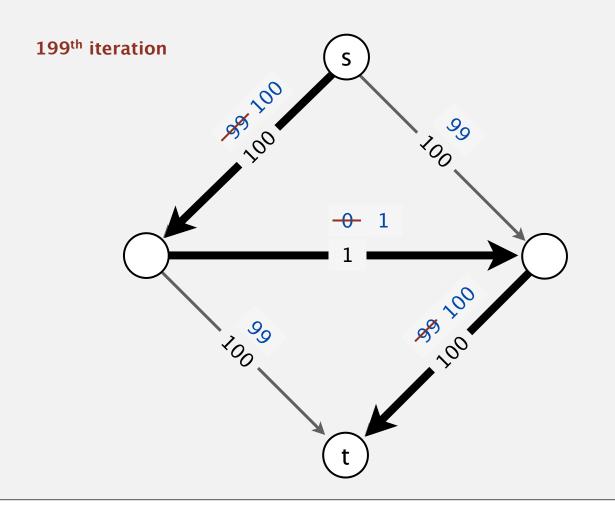


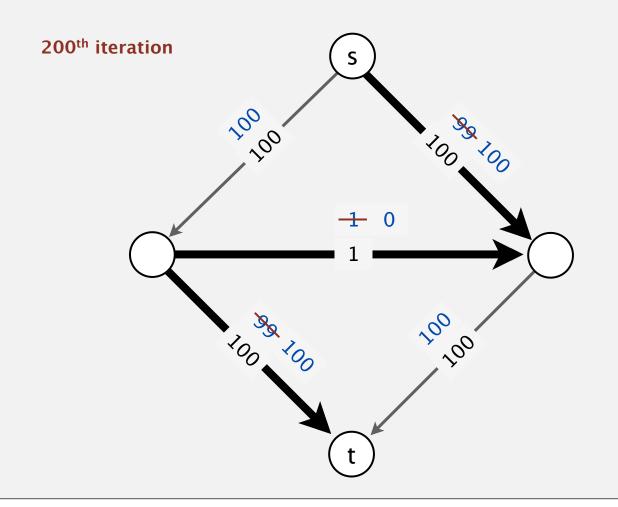








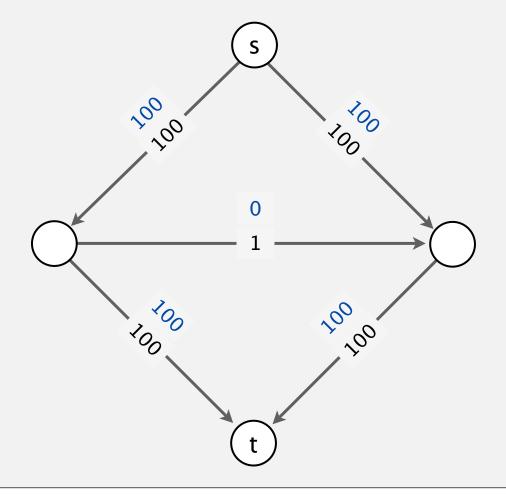




Bad news. Even when edge capacities are integers, number of augmenting paths could be equal to the value of the maxflow.

can be exponential in input size

Good news. This case is easily avoided. [use shortest/fattest path]



FF performance depends on choice of augmenting paths.

augmenting path	number of paths	implementation
shortest path	≤ ½ E V	queue (BFS)
fattest path	≤ E In(E U)	priority queue
random path	≤ E U	randomized queue
DFS path	≤ E U	stack (DFS)

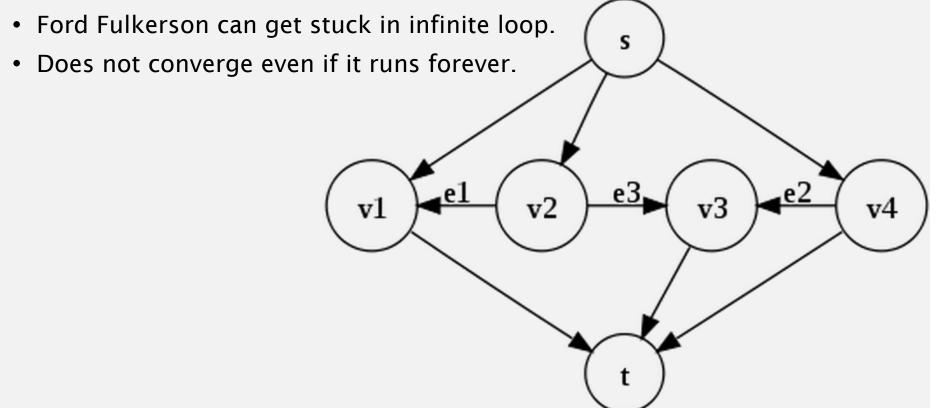
digraph with V vertices, E edges, and integer capacities between 1 and U

Non-integer weights (beyond scope of course)

If:

- e1 = 1
- $e^2 = (sqrt(5) 1)/2$
- e3 = 1
- Other edges of weight 2 or greater

Can show:



6.4 MAXIMUM FLOW

Ford-Fulkerson algorithm

Java implementation

running time analysis

maxflow-mincut theorem

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

applications

introduction

Mincut application (RAND Corporation - 1950s)

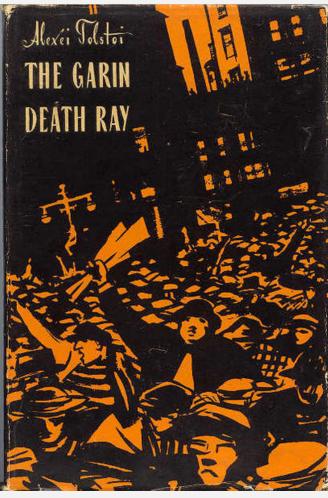
"Free world" goals. Understand peak Soviet supply rate. Cut supplies (if cold war turns into real war). ORIGINS D 54 1267 3W) 17 के कि flow 1501 capacity[.] 6 ٢ð ri4

> rail network connecting Soviet Union with Eastern European countries (map declassified by Pentagon in 1999)

Maxflow application (1950s)

Soviet Union goal. Maximize flow of supplies to Eastern Europe.

- Originally studied by writer Alexei Tolstoi in the 1930s (ad hoc approach).
- Later considered by Ford & Fulkerson via min cut approach.



Гиперболоид инженера Гарина

Maxflow and mincut applications

Maxflow/mincut is a widely applicable problem-solving model.

- Data mining.
- Open-pit mining.
- Bipartite matching.
- Network reliability.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Distributed computing.
- Security of statistical data.
- Egalitarian stable matching.
- Multi-camera scene reconstruction.
- Sensor placement for homeland security.
- Many, many, more.

liver and hepatic vascularization segmentation

Bipartite matching problem

N students apply for N jobs.

Each gets several offers.

Is there a way to match all students to jobs?

bipartite matching problem

1	Alice	6	Adobe
	Adobe		Alice
	Amazon		Bob
	Google		Carol
2	Bob	7	Amazon
	Adobe		Alice
	Amazon		Bob
3	Carol		Dave
	Adobe		Eliza
	Facebook	8	Facebook
	Google		Carol
4	Dave	9	Google
	Amazon		Alice
	Yahoo		Carol
5	Eliza	10	Yahoo
	Amazon		Dave
	Yahoo		Eliza

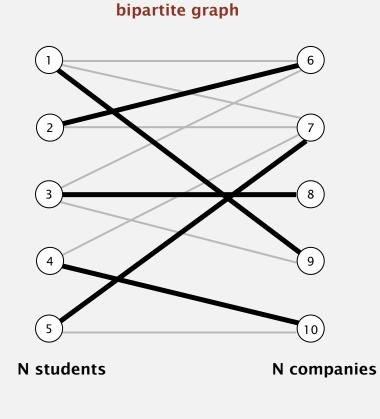
Bipartite matching problem

Given a bipartite graph, find a perfect matching.

perfect matching (solution)

Alice — Google

- Bob Adobe
- Carol Facebook
- Dave Yahoo
- Eliza Amazon

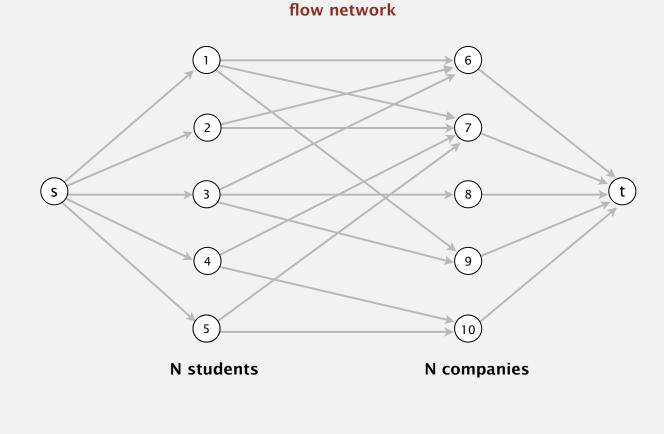


bipartite matching problem

1	Alice	6	Adobe
	Adobe		Alice
	Amazon		Bob
	Google		Carol
2	Bob	7	Amazon
	Adobe		Alice
	Amazon		Bob
3	Carol		Dave
	Adobe		Eliza
	Facebook	8	Facebook
	Google		Carol
4	Dave	9	Google
	Amazon		Alice
	Yahoo		Carol
5	Eliza	10	Yahoo
	Amazon		Dave
	Yahoo		Eliza

Network flow formulation of bipartite matching

- Create *s*, *t*, one vertex for each student, and one vertex for each job.
- Add edge from *s* to each student (capacity 1).
- Add edge from each job to *t* (capacity 1).
- Add edge from student to each job offered (infinite capacity).



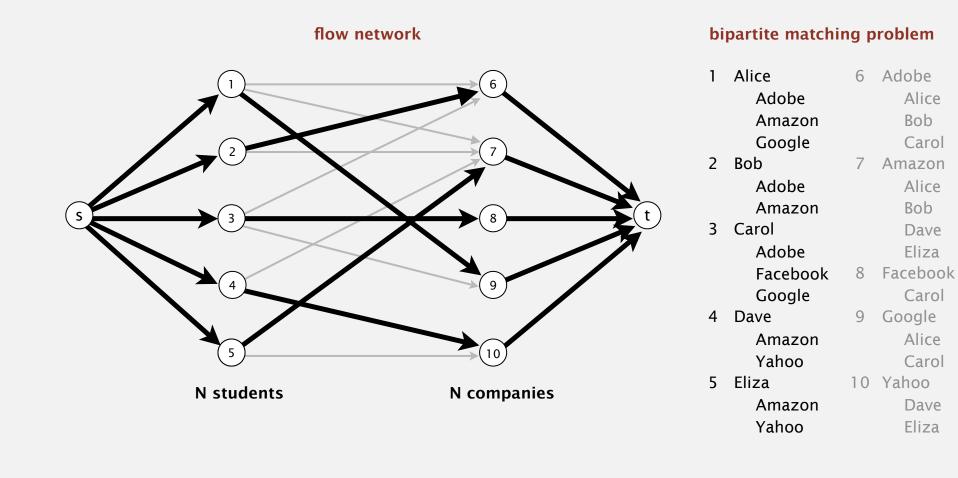
bipartite matching problem

also works if just 1

1	Alice	6	Adobe
	Adobe		Alice
	Amazon		Bob
	Google		Carol
2	Bob	7	Amazon
	Adobe		Alice
	Amazon		Bob
3	Carol		Dave
	Adobe		Eliza
	Facebook	8	Facebook
	Google		Carol
4	Dave	9	Google
	Amazon		Alice
	Yahoo		Carol
5	Eliza	10	Yahoo
	Amazon		Dave
	Yahoo		Eliza

Network flow formulation of bipartite matching

1-1 correspondence between perfect matchings in bipartite graph and integer-valued maxflows of value N.



Alice

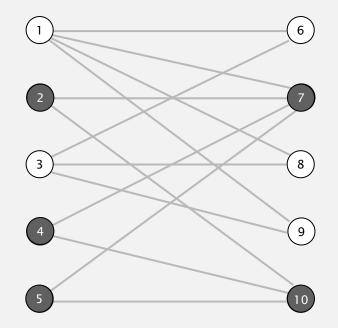
Bob

Alice

Dave

What the mincut tells us

Goal. When no perfect matching, explain why.



no perfect matching exists

S = { 2, 4, 5 } T = { 7, 10 }

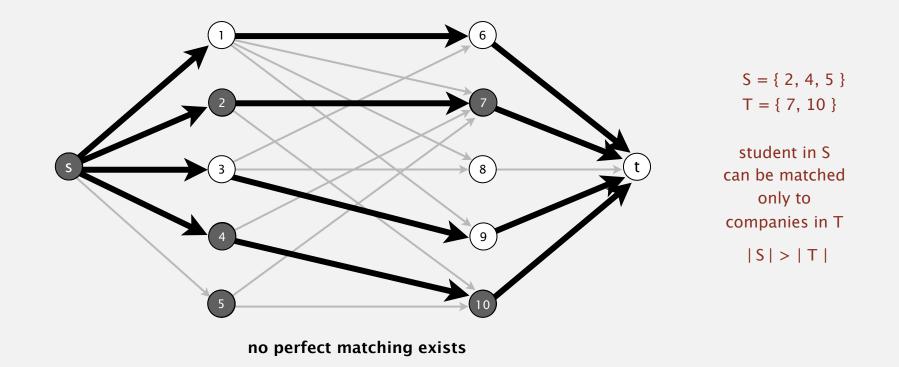
student in S can be matched only to companies in T

| S | > | T |

What the mincut tells us

Mincut. Consider mincut (A, B).

- Let *S* = students on *s* side of cut.
- Let *T* = companies on *s* side of cut.
- Fact: |S| > |T|; students in *S* can be matched only to companies in *T*.



Bottom line. When no perfect matching, mincut explains why.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i		team	wins	losses	to play	ATL	PHI	NYM	MON
0	A	Atlanta	83	71	8	-	1	6	1
1	Phillips	Philly	80	79	3	1	-	0	2
2		New York	78	78	6	6	0	-	0
3		Montreal	77	82	3	1	2	0	-

Montreal is mathematically eliminated.

- Montreal finishes with ≤ 80 wins.
- Atlanta already has 83 wins.

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

i		team	wins	losses	to play	ATL	PHI	NYM	MON
0	A	Atlanta	83	71	8	-	1	6	1
1	Phillips	Philly	80	79	3	1	-	0	2
2	Hets	New York	78	78	6	6	0	-	0
3		Montreal	77	82	3	1	2	0	-

Philadelphia is mathematically eliminated.

- Philadelphia finishes with ≤ 83 wins.
- Either New York or Atlanta will finish with ≥ 84 wins.

Observation. Answer depends not only on how many games already won and left to play, but on whom they're against.

Baseball elimination problem

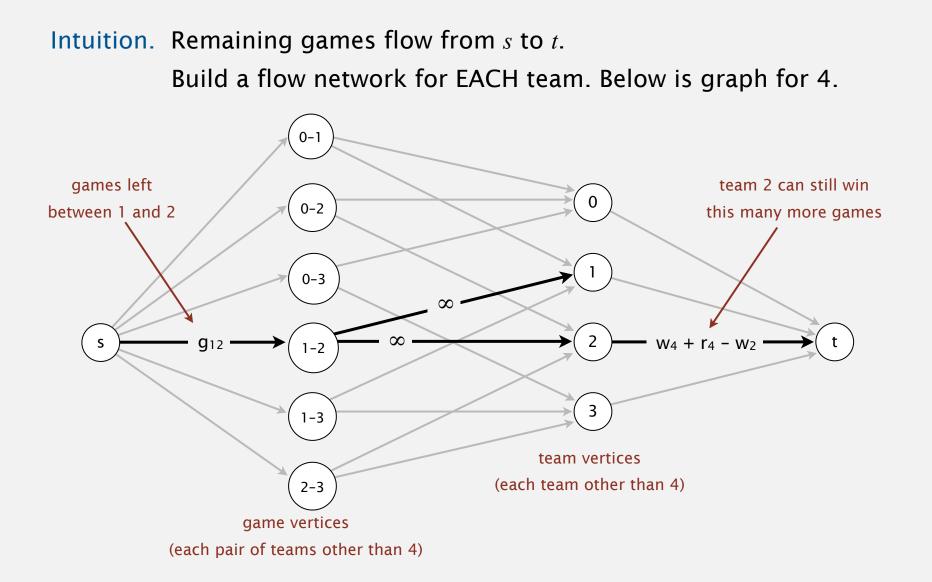
Q. Which teams have a chance of finishing the season with the most wins?

i		team	wins	losses	to play	NYY	BAL	BOS	TOR	DET
0	Jankees	New York	75	59	28	-	3	8	7	3
1		Baltimore	71	63	28	3	_	2	7	4
2	SST ST	Boston	69	66	27	8	2	_	0	0
3	ANTON TO A	Toronto	63	72	27	7	7	0	_	0
4		Detroit	49	86	27	3	4	0	0	-

Detroit is mathematically eliminated.

- Detroit finishes with \leq 76 wins.
- Wins for $R = \{$ NYY, BAL, BOS, TOR $\} = 278$.
- Remaining games among { NYY, BAL, BOS, TOR } = 3 + 8 + 7 + 2 + 7 = 27.
- Average team in *R* wins 305/4 = 76.25 games.

Baseball elimination problem: maxflow formulation



Fact. Team 4 not eliminated iff all edges pointing from *s* are full in maxflow.

(Yet another) holy grail for theoretical computer scientists.

year	method	worst case	discovered by
1951	simplex	E ³ U	Dantzig
1955	augmenting path	E ² U	Ford-Fulkerson
1970	shortest augmenting path	E ³	Dinitz, Edmonds-Karp
1970	fattest augmenting path	E ² log E log(EU)	Dinitz, Edmonds-Karp
1977	blocking flow	E ^{5/2}	Cherkasky
1978	blocking flow	E ^{7/3}	Galil
1983	dynamic trees	E ² log E	Sleator-Tarjan
1985	capacity scaling	E ² log U	Gabow
1997	length function	E ^{3/2} log E log U	Goldberg-Rao
2012	compact network	E ² / log E	Orlin
?	?	Е	?

maxflow algorithms for sparse digraphs with E edges, integer capacities between 1 and U

Maximum flow algorithms: practice

Warning. Worst-case order-of-growth is generally not useful for predicting or comparing maxflow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: $E^{3/2}$.

On Implementing Push-Relabel Method for the Maximum Flow Problem

Boris V. Cherkassky¹ and Andrew V. Goldberg²

 ¹ Central Institute for Economics and Mathematics, Krasikova St. 32, 117418, Moscow, Russia *cher@cemi.msk.su* ² Computer Science Department, Stanford University Stanford, CA 94305, USA goldberg@cs.stanford.edu

Abstract. We study efficient implementations of the push-relabel method for the maximum flow problem. The resulting codes are faster than the previous codes, and much faster on some problem families. The speedup is due to the combination of heuristics used in our implementations. We also exhibit a family of problems for which the running time of all known methods seem to have a roughly quadratic growth rate.

European Journal of Operational Research 97 (1997) 509-542

EUROPEAN JOURNAL DF OPERATIONAL RESEARCH

Theory and Methodology

Computational investigations of maximum flow algorithms

Ravindra K. Ahuja^a, Murali Kodialam^b, Ajay K. Mishra^c, James B. Orlin^{d.*}

^a Department of Industrial and Management Engineering, Indian Institute of Technology, Kanpur, 208 016, India
 ^b AT & T Bell Laboratories, Holmdel, NJ 07733, USA
 ^c KATZ Graduate School of Business, University of Pittsburgh, Pittsburgh, PA 15260, USA
 ^d Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 30 August 1995; accepted 27 June 1996

Summary

Mincut problem. Find an *st*-cut of minimum capacity. Maxflow problem. Find an *st*-flow of maximum value. Duality. Value of the maxflow = capacity of mincut.

Proven successful approaches.

- Ford-Fulkerson (various augmenting-path strategies).
- Preflow-push (various versions).

Open research challenges.

- Practice: solve real-word maxflow/mincut problems in linear time.
- Theory: prove it for worst-case inputs.
- Still much to be learned!

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

♣

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

6.4 MAXIMUM FLOW

- introduction
- Ford-Fulkerson algorithm
- maxflow-mincut theorem
- running time analysis
- Java implementation
- applications