
Unrelated things

Observations from the weekend:

・Bitcoins are a really good plot point in the cyberunk dystopian future 

we live in. 

– Ditto Snapchat.

・That Lorde song is pretty good.

– But autotune is another harbringer of dystopia.

・Lots of people make their first submissions even with an extension on 

the day an assignment is due.

・Kerbal space program is amazing!

・Writing database software for four hours that saves you 30 minutes is a 

perfectly fine tradeoff.

・People around trash fires want to know about mergesort.
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String processing

String.   Sequence of characters.

Important fundamental abstraction.

・Genomic sequences.

・Information processing.

・Communication systems (e.g., email).

・Programming systems (e.g., Java programs).

・Disk drives (useful in forensics, see COS 432).

・…

“ The digital information that underlies biochemistry, cell

   biology, and development can be represented by a simple
  string of  G's, A's, T's and C's.   This string is the root data

  structure of an organism's biology.  ”  — M. V. Olson
0
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The char data type

C char data type.  Typically an 8-bit integer.

・Supports 7-bit ASCII.

・Can represent at most 256 characters.

Java char data type.  A 16-bit unsigned integer.

・Supports original 16-bit Unicode.

・Supports 21-bit Unicode 3.0 (awkwardly).

6676.5 Q Data Compression

ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.  
Given a 2-digit hex number, use the first hex 
digit as a row index and the second hex digit 
as a column reference to find the character 
that it encodes. For example, 31 encodes the 
digit 1, 4A encodes the letter J, and so forth. 
This table is for 7-bit ASCII, so the first hex 
digit must be 7 or less. Hex numbers starting 
with 0 and 1 (and the numbers 20 and 7F) 
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices 
like typewriters were controlled by ASCII input; the table highlights a few that you 
might see in dumps. For example SP is the space character, NUL is the null character, LF 
is line-feed, and CR is carriage-return. 

In summary, working with data compression requires us to reorient our thinking about 
standard input and standard output to include binary encoding of data. BinaryStdIn 
and BinaryStdOut provide the methods that we need. They provide a way for you to 
make a clear distinction in your client programs between writing out information in-
tended for file storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans). 

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! “ # $ % & ‘ ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal to ASCII conversion table

U+1D50AU+2202U+00E1U+0041

Unicode characters 
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I (heart) Unicode



String data type in Java.  Sequence of characters (immutable).

Length.  Number of characters.

Indexing.  Get the ith character.

Substring extraction.  Get a contiguous subsequence of characters.

String concatenation.  Append characters to end of string.

7

The String data type

B U Y  P E P S I

0 1 2 3 4 5 6 7 8

s.length = 9

s.charAt(8) == ‘I’

s.substring(2, 7) : “Y PEP”
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The String data type:  Java implementation

public final class String implements Comparable<String>
{
   private char[] value;  // characters
   private int offset;    // index of first char in array
   private int length;    // length of string
   private int hash;      // cache of hashCode()

   public int length()
   {  return length; }

   public char charAt(int i)
   {  return value[i + offset];  }
   
   
   private String(int offset, int length, char[] value)
   {
      this.offset = offset;
      this.length = length;
      this.value  = value;
   }
  
   public String substring(int from, int to)
   {  return new String(offset + from, to - from, value);  }
   …

B U Y  P E P S I

0 1 2 3 4 5 6 7 8

value[]

offset

length

Java 6: copy of reference to

original char array

Java 7: new copy of value is made
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The String data type:  performance

String data type (in Java).  Sequence of characters (immutable).

Underlying implementation.  Immutable char[] array, offset, and length.

Memory.  40 + 2N bytes for a freshly created String of length N.

can use byte[] or char[] instead of String to save space

(but lose convenience of String data type)

StringString

operation guarantee extra space

length() 1 1

charAt() 1 1

substring() 1 or N 1 or N

concat(), + N N
“goldentoa“.concat(“d”)

“goldentoa” + “d”
“goldentoad”

Runtimes for Java 6 and 7, respectively



Java 7, Update #6

Tradeoffs.

・Bad: Slower substring construction. Breaks old code.

・“Good”: Lazy programmer need not create new Strings to save space.

– String smallString = new String(s.substring(a, b));

Moral of the story.

・No more easy substring construction.

・Alternate approaches are more complex (See Burrows-Wheeler 

assignment on Coursera)
10

“Shared char array backing buffers only ‘win’ with 
very heavy use of String.substring. The negatively 
impacted situations can include parsers and 
compilers however current testing shows that 
overall this change is beneficial.”

For a long time preparations and planing have been underway to remove the offset and count fields from java.lang.String. These two fields 
enable multiple String instances to share the same backing character buffer. Shared character buffers were an important optimization for old 
benchmarks but with current real world code and benchmarks it's actually better to not share backing buffers. Shared char array backing 
buffers only "win" with very heavy use of String.substring. The negatively impacted situations can include parsers and compilers however 
current testing shows that overall this change is beneficial.

Java 7 StringJava 7 String

operation guarantee extra space

substring() N N
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The StringBuilder data type

StringBuilder data type.  Sequence of characters (mutable).

Underlying implementation.  Resizing char[] array and length.

Remark.  StringBuffer data type is similar, but thread safe (and slower).

StringString StringBuilderStringBuilder

operation guarantee extra space guarantee extra space

length() 1 1 1 1

charAt() 1 1 1 1

substring() 1 or N 1 or N N N

S: concat(), +
SB: append() N N 1 * 1 *

*  amortized

sb.append(“d”)
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String vs. StringBuilder

A.

B.

  public static String reverse(String s)
  {
     String rev = "";
     for (int i = s.length() - 1; i >= 0; i--)
        rev += s.charAt(i);
     return rev;
  }

  public static String reverse(String s)
  {
     StringBuilder rev = new StringBuilder();
     for (int i = s.length() - 1; i >= 0; i--)
        rev.append(s.charAt(i));
     return rev.toString();
  }

quadratic time

extremely common

rookie mistake!

linear time

Q: Which string reversal method is more efficient?
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Sublinearity example: Longest common prefix

Q.  How many compares to compute length of longest common prefix?

Running time.  Proportional to length D of longest common prefix.

Remark.  Also can compute compareTo() in sublinear time.

 public static int lcp(String s, String t)
 {
    int N = Math.min(s.length(), t.length());
    for (int i = 0; i < N; i++)
       if (s.charAt(i) != t.charAt(i))
          return i;
    return N;
 }

p r e f i x

p r e f e t c h

0 1 2 3 4 5 6 7

linear time (worst case)

sublinear time (typical case)



Digital key.  Sequence of digits over fixed alphabet.

Radix.  Number of digits R in alphabet.

Alphabets

14

604 CHAPTER 6 ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java 
String, we have to use an array of size 256; with Alphabet, we just need an array with 
one entry for each alphabet character. This savings might seem modest, but, as you will 
see, our algorithms can produce huge numbers of such arrays, and the space for arrays 
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over 
a given Alphabet into a base-R number represented as an int[] array with all values 
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For 
example, if we know that the input consists only of characters from the alphabet, we 
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s); 
for (int i = 0; i < N; i++) 
   count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef 
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1  STRING SORTS



Review:  summary of the performance of sorting algorithms

Frequency of operations = key compares.

Lower bound.  ~ N lg N compares required by any compare-based algorithm.

Q.  Can we do better (despite the lower bound)?

A.  Yes, if we don't depend on key compares.

16

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ N2 ¼ N2 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

*  probabilistic



Sublinearithmic Sort

Simplest Case.

・Keys are unique integers from 0 to 11.

17

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile



Sublinearithmic Sort

Simplest Case.

・Keys are unique integers from 0 to 11.

– Create new array.

– Copy entry with key i into ith row.

18

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#



Sublinearithmic Sort

Simplest Case.

・Keys are unique integers from 0 to 11.

– Create new array.

– Copy entry with key i into ith row.

19

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#

5 Sandra ...



Sublinearithmic Sort

Simplest Case.

・Keys are unique integers from 0 to 11.

– Create new array.

– Copy entry with key i into ith row.

20

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#

0 Lauren ...

5 Sandra ...



Sublinearithmic Sort

Simplest Case.

・Keys are unique integers from 0 to 11.

– Create new array.

– Copy entry with key i into ith row.

21

#

5 Sandra Vanilla Grimes

0 Lauren Mint Jon Talabot

11 Lisa Vanilla Blue Peter

9 Dave Chocolate Superpope

4 JS Fish The Filthy Reds

7 James Rocky Road Robots are Supreme

3 Edith Vanilla My Bloody Valentine

6 Swimp Chocolate Sef

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

8 Lee Vanilla La(r)va

10 Bearman Butter Pecan Extrobophile

#

0 Lauren ...

5 Sandra ...

11 Lisa ...



Sublinearithmic Sort

Simplest Case.

・Keys are unique integers from 0 to 11.

– Create new array.

– Copy entry with key i into ith row.

– Throw away old table.

22

#

0 Lauren Mint Jon Talabot

1 Delbert Strawberry Ronald Jenkees

2 Glaser Cardamom Rx Nightly

3 Edith Vanilla My Bloody Valentine

4 JS Fish The Filthy Reds

5 Sandra Vanilla Grimes

6 Swimp Chocolate Sef

7 James Rocky Road Robots are Supreme

8 Lee Vanilla La(r)va

9 Dave Chocolate Superpope

10 Bearman Butter Pecan Extrobophile

11 Lisa Vanilla Blue Peter

・Order of growth of running time: N

N rows



Sublinearithmic Sorts

Simplest Case.

・Keys are unique integers from 0 to N-1.

More Complex Cases.

・Non-unique keys.

・Non-consecutive keys.

・Non-numerical keys.

23

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa



Sublinearithmic Sorts

Alphabet Case.

・Keys belong to a finite ordered alphabet.

– Example: {♣, ♠, ♥, ♦}

24

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

Q: What will be the index of the first ♥?

Text 686853 followed by #####.
Example: “686853 11” would mean first ♥ will be at index 11.

pollEv.com/jhug              text to 37607

0

1

2

3

4

5

6

7

8

9

10

11



Sublinearithmic Sorts

Alphabet Case.

・Keys belong to a finite ordered alphabet.

– Example: {♣, ♠, ♥, ♦}

25

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

Q: What will be the index of the first ♥?

There are 3 ♣s and 2 ♠s. These will take up the slots 0 through 4, 

so the first ♥ goes in 5. 

pollEv.com/jhug              text to 37607

♣
♣
♣
♠
♠

0

1

2

3

4

5

6

7

8

9

10

11



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

26

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 0

♠ 3

♥ 5

♦ 9

Starting Points

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

27

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 0

♠ 4

♥ 5

♦ 9

Starting Points

♠ Lauren

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

28

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 0

♠ 4

♥ 6

♦ 9

Starting Points

♠ Lauren

♥ Delbert

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

29

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 0

♠ 4

♥ 6

♦ 10

Starting Points

♠ Lauren

♥ Delbert

♦ Glaser

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

30

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 1

♠ 4

♥ 6

♦ 10

Starting Points

♣ Edith

♠ Lauren

♥ Delbert

♦ Glaser

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

31

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 1

♠ 5

♥ 6

♦ 10

Starting Points

♣ Edith

♠ Lauren

♠ JS

♥ Delbert

♦ Glaser

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

32

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 1

♠ 5

♥ 6

♦ 11

Starting Points

♣ Edith

♠ Lauren

♠ JS

♥ Delbert

♦ Glaser

♦ Sandra

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

33

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 1

♠ 5

♥ 7

♦ 11

Starting Points

♣ Edith

♠ Lauren

♠ JS

♥ Delbert

♥ Swimp

♦ Glaser

♦ Sandra

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

34

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 1

♠ 5

♥ 8

♦ 11

Starting Points

♣ Edith

♠ Lauren

♠ JS

♥ Delbert

♥ Swimp

♥ James

♦ Glaser

♦ Sandra

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

35

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 2

♠ 5

♥ 8

♦ 11

Starting Points

♣ Edith

♣ Lee

♠ Lauren

♠ JS

♥ Delbert

♥ Swimp

♥ James

♦ Glaser

♦ Sandra

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

36

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 2

♠ 5

♥ 9

♦ 11

Starting Points

♣ Edith

♣ Lee

♠ Lauren

♠ JS

♥ Delbert

♥ Swimp

♥ James

♥ Dave

♦ Glaser

♦ Sandra

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

37

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 3

♠ 5

♥ 9

♦ 11

Starting Points

♣ Edith

♣ Lee

♣ Bearman

♠ Lauren

♠ JS

♥ Delbert

♥ Swimp

♥ James

♥ Dave

♦ Glaser

♦ Sandra

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Key-indexed counting

Example

・Alphabet: {♣, ♠, ♥, ♦}

38

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 3

♠ 5

♥ 9

♦ 12

Starting Points

♣ Edith

♣ Lee

♣ Bearman

♠ Lauren

♠ JS

♥ Delbert

♥ Swimp

♥ James

♥ Dave

♦ Glaser

♦ Sandra

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

0

1

2

3



Memory Optimization

Can save memory

・Replace our two helper arrays by one array that does both jobs.

39

♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 3

♠ 2

♥ 4

♦ 3

Counts

♣ 0

♠ 3

♥ 5

♦ 9

Starting Points

0

1

2

3

0

1

2

3



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣
♠
♥
♦

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣
♠ 3

♥
♦

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣
♠ 3

♥ 2

♦ 4

3

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣
♠ 3

♥ 2

♦ 4

3

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 3

♥ 2

♦ 4

3

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 3

♥ 2

♦ 4

3

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 3

♥ 5

♦ 4

3

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 3

♥ 5

♦ 9

3

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 3

♥ 5

♦ 9

12

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 3

♥ 5

♦ 9

12

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.

Not used!



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♠ Lauren

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 4

♥ 5

♦ 9

12

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.

Not used!



Optimization
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♠ Lauren

♥ Delbert

0

1

2

3

4

5

6

7

8

9

10

11

♣ 0

♠ 4

♥ 6

♦ 9

12

Counts And

Starting Points

0

1

2

3

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.

Not used!



Key-indexed counting
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♠ Lauren

♥ Delbert

♦ Glaser

♣ Edith

♠ JS

♦ Sandra

♥ Swimp

♥ James

♣ Lee

♥ Dave

♣ Bearman

♦ Lisa

♣ Edith

♣ Lee

♣ Bearman

♠ Lauren

♠ JS

♥ Delbert

♥ Swimp

♥ James

♥ Dave

♦ Glaser

♦ Sandra

♦ Lisa

0

1

2

3

4

5

6

7

8

9

10

11

♣ 3

♠ 5

♥ 9

♦ 12

12

Counts And

Starting Points

0

1

2

3

Not used!

Can save memory

・Replace our two helper arrays by one array that does both jobs.

Two phase construction

・Create counts as before, but offset by 1 position.

・Convert count array into a cumulant array.



Key-indexed counting:  Book Implementation

Assumption.  Keys are integers between 0 and R - 1.

Implication.  Can use key as an array index.

Reminder. char datatype is really just an int in disguise.

・System.out.println(‘a’ == 97).

– Prints true

53



Goal.  Sort an array a[] of N integers between 0 and R - 1.

・Count frequencies of each letter using key as index.

・Compute frequency cumulates which specify destinations.

・Access cumulates using key as index to move items.

・Copy back into original array.

 int N = a.length;
 int[] count = new int[R+1];

 for (int i = 0; i < N; i++)
    count[a[i]+1]++;

 for (int r = 0; r < R; r++)
    count[r+1] += count[r];

 for (int i = 0; i < N; i++)
    aux[count[a[i]]++] = a[i];

 for (int i = 0; i < N; i++)
    a[i] = aux[i];

54

Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

R = 6

0

1

2

3

4

5

a

b

c

d

e

f

use       for

for

for

for

for

for



Key-indexed counting:  analysis

Proposition.  Key-indexed counting uses  ~ 11 N + 4 R array accesses to sort

N items whose keys are integers between 0 and R - 1.

Proposition.  Key-indexed counting uses extra space proportional to N + R.

Stable?

55

   
               
               
Anderson  2       Harris    1
Brown     3       Martin    1
Davis     3       Moore     1
Garcia    4       Anderson  2
Harris    1       Martinez  2
Jackson   3       Miller    2
Johnson   4       Robinson  2
Jones     3       White     2
Martin    1       Brown     3
Martinez  2       Davis     3
Miller    2       Jackson   3
Moore     1       Jones     3
Robinson  2       Taylor    3
Smith     4       Williams  3
Taylor    3       Garcia    4
Thomas    4       Johnson   4
Thompson  4       Smith     4
White     2       Thomas    4
Williams  3       Thompson  4
Wilson    4       Wilson    4

Distributing the data (records with key 3 highlighted)

  count[]
1  2  3  4
0  3  8 14
0  4  8 14
0  4  9 14
0  4 10 14
0  4 10 15
1  4 10 15
1  4 11 15
1  4 11 16
1  4 12 16
2  4 12 16
2  5 12 16
2  6 12 16
3  6 12 16
3  7 12 16
3  7 12 17
3  7 13 17
3  7 13 18
3  7 13 19
3  8 13 19
3  8 14 19
3  8 14 20

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
   aux[count[a[i].key(d)]++] = a[i];

✔
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Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1  STRING SORTS



String Keys

Alphabet Case.

・Keys belong to a finite ordered alphabet.

String Case.

・Keys are a sequence of characters from a finite ordered alphabet.
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♠♠ Lauren

♥♦ Delbert

♦♣ Glaser

♣♥ Edith

♠♥ JS

♦♣ Sandra

♥♠ Swimp

♥♦ James

♣♠ Lee

♥♣ Dave

♣♠ Bearman

♦♠ Lisa

42387 Lauren

34163 Delbert

123 Glaser

43415 Edith

9918 JS

767 Sandra

3 Swimp

634 James

724 Lee

2346 Dave

457 Bearman

312 Lisa

horse Lauren

elf Delbert

cat Glaser

crab Edith

monkey JS

rhino Sandra

raccoon Swimp

cat James

fish Lee

tree Dave

virus Bearman

human Lisa

letters suits decimal 

integers

Can use key-indexed counting directly.

Key insight: Can repeatedly use key-indexed counting!  



LSD Sort Example

String Case.

・Keys are a sequence from a finite ordered alphabet.

– Example: {♣, ♠, ♥, ♦}

・LSD Sort

– Sort by each digit independently, starting with the least significant.

– Each sort is performed with key-indexed counting.
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♠♠ Lauren

♥♦ Delbert

♦♣ Glaser

♣♥ Edith

♠♥ JS

♦♣ Sandra

♥♠ Swimp

♥♦ James

♣♠ Lee

♥♣ Dave

♣♠ Bearman

♦♠ Lisa

♦♣ Glaser

♦♣ Sandra

♥♣ Dave

♥♠ Swimp

♠♠ Lauren

♣♠ Lee

♣♠ Bearman

♦♠ Lisa

♠♥ JS

♣♥ Edith

♥♦ James

♥♦ Delbert

♣♠ Lee

♣♠ Bearman

♣♥ Edith

♠♠ Lauren

♠♥ JS

♥♣ Dave

♥♠ Swimp

♥♦ James

♥♦ Delbert

♦♣ Glaser

♦♣ Sandra

♦♠ Lisa



LSD Sort Example

String Case.

・Keys are a sequence from a finite ordered alphabet.

– Example: {1, 2, 3, 4}

・LSD Sort

– Sort by each digit independently, starting with the least significant.

– Each sort is performed with key-indexed counting.
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11 Lauren

24 Delbert

41 Glaser

13 Edith

23 JS

41 Sandra

32 Swimp

34 James

12 Lee

31 Dave

12 Bearman

42 Lisa

41 Glaser

41 Sandra

31 Dave

32 Swimp

22 Lauren

12 Lee

12 Bearman

42 Lisa

23 JS

13 Edith

34 James

34 Delbert

12 Lee

12 Bearman

13 Edith

22 Lauren

23 JS

31 Dave

32 Swimp

34 James

34 Delbert

41 Glaser

41 Sandra

42 Lisa



LSD Sort Example

String Case.

・Keys are a sequence from a finite ordered alphabet.

– Example: {1, 2, 3, 4}

・LSD Sort

– Sort by each digit independently, starting with the least significant.

– Each sort is performed with key-indexed counting.
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11 Lauren

24 Delbert

41 Glaser

13 Edith

23 JS

41 Sandra

32 Swimp

34 James

12 Lee

31 Dave

12 Bearman

42 Lisa

41 Glaser

41 Sandra

31 Dave

32 Swimp

22 Lauren

12 Lee

12 Bearman

42 Lisa

23 JS

13 Edith

34 James

34 Delbert

12 Lee

12 Bearman

13 Edith

22 Lauren

23 JS

31 Dave

32 Swimp

34 James

34 Delbert

41 Glaser

41 Sandra

42 Lisa

Q: If we used heapsort instead of key-indexed counting, would LSD sort still work?

A. Yes.   [689723]
B. No.    [689734]

pollEv.com/jhug              text to 37607
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LSD string sort:  correctness proof

Proposition.  LSD sorts fixed-length strings in ascending order.

Pf.  [by induction on i]

After pass i, strings are sorted by last i characters.

・If two strings differ on sort key,

key-indexed sort puts them in proper

relative order.

・If two strings agree on sort key,

stability keeps them in proper relative order.

Proposition.  LSD sort is stable.

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sorted from

previous passes

(by induction)

sort key



LSD and fixed length strings

Q.  What do we do if the strings are of different lengths?

・A1. Pad arrays with empty space at front. Treats shorter Strings as 

smaller.

・A2. Separately sort arrays of each observed length.

・A3. Use a different strategy than left-to-right sorting (coming up soon).

62
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LSD string sort:  Java implementation

key-indexed counting

public class LSD
{
   public static void sort(String[] a, int W)
   {
      int R = 256;
      int N = a.length;
      String[] aux = new String[N];

      for (int d = W-1; d >= 0; d--)
      {
         int[] count = new int[R+1];
         for (int i = 0; i < N; i++)
            count[a[i].charAt(d) + 1]++;
         for (int r = 0; r < R; r++)
            count[r+1] += count[r];
         for (int i = 0; i < N; i++)
            aux[count[a[i].charAt(d)]++] = a[i];
         for (int i = 0; i < N; i++)
            a[i] = aux[i];
      }
   }
}

do key-indexed counting

for each digit from right to left

radix R

fixed-length W strings



Summary of the performance of sorting algorithms

Frequency of operations.

Q.  How does LSD compare to Quicksort?

・Need to think about number of charAt() calls for Quicksort.
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algorithm
worst case 

data

random

data
extra space stable? operations on keys

insertion sort ½ N2 ¼ N2 1 yes compareTo()

mergesort N lg N N lg N N yes compareTo()

quicksort 1.39 N lg N * 1.39 N lg N c lg N no compareTo()

heapsort 2 N lg N 2 N lg N 1 no compareTo()

LSD † 2 W N 2 W N N + R yes charAt()

*  probabilistic

†  fixed-length W keys



Summary of the performance of sorting algorithms

Order of growth of operation frequency.
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algorithm
worst case 

data

random

data
extra space stable? operations on keys

quicksort N lg N * N lg N lg N no compareTo()

quicksort W N lg N N log2 N lg N no charAt()

LSD † W N W N N + R yes charAt()

*  probabilistic

†  fixed-length W keys

charAt() is not the whole story

・Caching

・Data movement (e.g. copying aux back to a vs. partitioning)

・Experiments probably best to assess suitability to data set!



All data is strings

Consider the integer 31,992:

Lexicographic order may not be correct semantic order:

・Top bit should be treated differently than the rest!

66
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String sorting interview question

Problem.  Sort a billion 32-bit integers.

Ex.  Google (or presidential) interview (see Coursera).

Which sorting method to use?

・Insertion sort.

・Mergesort.

・Quicksort.

・Heapsort.

・LSD string sort.

Q: If we use LSD sort to sort a billion integers, and use a 256 character alphabet, 

how many charAt() calls will we need to make?

A. 1 billion      [689800]     C. 4 billion      [689813]
B. 2 billion      [689812]     D. 8 billion      [689814]
                               E. 32 billion     [689815]

pollEv.com/jhug              text to 37607

algorithm
worst case 

data

random

data
operations on keys

LSD † 2 W N 2 W N charAt()
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String sorting interview question

Problem.  Sort a billion 32-bit integers.

Ex.  Google (or presidential) interview (see Coursera).

Which sorting method to use?

・Insertion sort.

・Mergesort.

・Quicksort.

・Heapsort.

・LSD string sort.

Q: If we use LSD sort to sort a billion integers, and use a 256 character alphabet, 

how many charAt() calls will we need to make?

C. 8 billion

256 characters is 8 bits. Treat each integer as a string of four 
8-bit numbers, and thus: W=4. There are therefore 4 billion total 
characters, each of which is considered exactly twice.

pollEv.com/jhug              text to 37607

algorithm
worst case 

data

random

data
operations on keys

LSD † 2 W N 2 W N charAt()



Integer sorting performance summary

69

Comparing int sorting performance of quicksort for a billion integers.

   LSD Sort:   8 billion charAt() calls.

   Quicksort: 1.39 109 lg 109  = 42 billion int compareTo() calls.

   Quicksort with integer as String: ~160 billion charAt() calls.  

algorithm
worst case 

data

alphabet 

size

operations on 

keys
number of ops time/op

quicksort 1.39 N lg N * 4 billion compareTo() 160 billion c1

quicksort 1.39 W N lg N 256 charAt() 42 billion c2

LSD † 2 W N 256 charAt() 8 billion c2

*  probabilistic

†  fixed-length W keys

if we think of entire number as a digit



70

How to take a census in 1900s?

1880 Census.  Took 1,500 people 7 years to manually process data.

Herman Hollerith.  Developed counting and sorting machine to automate.

・Use punch cards to record data (e.g., gender, age).

・Machine sorts one column at a time (into one of 12 bins).

・Typical question:  how many women of age 20 to 30?

1890 Census.  Finished months early and under budget!

punch card (12 holes per column)Hollerith tabulating machine and sorter
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How to get rich sorting in 1900s?

Punch cards.  [1900s to 1950s]

・Also useful for accounting, inventory, and business processes.

・Primary medium for data entry, storage, and processing.

Hollerith's company later merged with 3 others to form Computing 

Tabulating Recording Corporation (CTRC); company renamed in 1924.

IBM 80 Series Card Sorter (650 cards per minute)



LSD string sort:  a moment in history (1960s)

72

card punch punched cards card reader mainframe line printer

Lysergic Acid Diethylamide
(Lucy in the Sky with Diamonds)

not related to sorting
To sort a card deck

   -  start on right column

   -  put cards into hopper

   -  machine distributes into bins

   -  pick up cards (stable)

   -  move left one column

   -  continue until sorted

card sorter
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‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1  STRING SORTS



Left to right?
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a l b a t r o s s g o d

u m r e l l a e l l a s



0

1

2

3

4

5

6

7

8

9

10

11

sort key

75

Moving left to right

0 d a b

1 a d d

2 c a b

3 f a a

4 f e e

5 b e e

6 d a d

7 b a d

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a a

10 f e e

11 f e d

sort key

Correct?

0

1

2

3

4

5

6

7

8

9

10

11

sort key



0

1

2

3

4

5

6

7

8

9

10

11

sort key
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Moving left to right

0 d a b

1 a d d

2 c a b

3 f a a

4 f e e

5 b e e

6 d a d

7 b a d

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a a

10 f e e

11 f e d

sort key

Q: If we sort by the most significant digit (as shown above), then the middle digit, 

then finally the least significant digit, will we arrive at a correct result?

A. Yes.   
B. No.    
C. Depends on whether the sort is stable.   

Correct?

0

1

2

3

4

5

6

7

8

9

10

11

sort key



0 b a d

1 c a b

2 d a b

3 d a d

4 f a a

5

6

7 a d d

8

9

10

11

sort key
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Moving left to right

0 d a b

1 a d d

2 c a b

3 f a a

4 f e e

5 b e e

6 d a d

7 b a d

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a a

10 f e e

11 f e d

sort key

Correct?

0 f a a

1

2

3

4

5

6

7

8

9

10

11

sort key

Q: If we sort by the most significant digit (as shown above), then the middle digit, 

then finally the least significant digit, will we arrive at a correct result?

B. No.
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MSD string (radix) sort.

・Partition array into R pieces according to first character

(use key-indexed counting).

・Recursively sort all strings that start with each character

(key-indexed counts delineate subarrays to sort).

Most-significant-digit-first string sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b e e

6 d a d

7 b a d

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort subarrays

recursively

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12

b a d

b e e

b e d

d a b

d a d

f a d

f e d

f e e

a c e

a d d



79

MSD string sort:  example

she
sells
seashells
by
the
sea
shore
the
shells
she
sells
are
surely
seashells

are
by
she
sells
seashells
sea
shore
shells
she
sells
surely
seashells
the
the

are
by
sells
seashells
sea
sells
seashells
she
shore
shells
she
surely
the
the

input

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

output

are
by
seashells
sea
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shore
shells
she
surely
the
the

are
by
seas
seashells
seashells
sells
sells
she
shells
shore
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
shore
she
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
shells
she
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

Trace of recursive calls for MSD string sort (no cutoff for small subarrays, subarrays of size 0 and 1 omitted)

end-of-string
goes before any

char value

need to examine
every character
in equal keys

d

lo

hi



Variable-length strings

Treat strings as if they had an extra char at end (smaller than any char).

C strings.  Have extra char '\0' at end  ⇒  no extra work needed.
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0 s e a -1

1 s e a s h e l l s -1

2 s e l l s -1

3 s h e -1

4 s h e -1

5 s h e l l s -1

6 s h o r e -1

7 s u r e l y -1

she before shells

private static int charAt(String s, int d)
{
   if (d < s.length()) return s.charAt(d);
   else return -1;
}

why smaller?
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Most-significant-digit-first string sort

Q: If we used a non-stable sort instead of key indexed counting, would MSD still 

work?

A. Yes.   [72755]
B. No.    [72827]

pollEv.com/jhug              text to 37607

95

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b e e

6 d a d

7 b a d

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

b a d

b e e

b e d

d a b

d a d

f a d

f e d

f e e

a c e

a d d
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Most-significant-digit-first string sort

Q: If we used a non-stable version of key-indexed counting, would MSD still work?

A. Yes.

Each little array is sorted independently!

pollEv.com/jhug              text to 37607

95

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b e e

6 d a d

7 b a d

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

b a d

b e e

b e d

d a b

d a d

f a d

f e d

f e e

a c e

a d d
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Most-significant-digit-first string sort

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12

b a d

b e e

b e d

a c e

a d d

count[]

a 0

b 0

c 0

d 1

e 2

f 2

- 2

count[]

a 0

b 0

c 0

d 0

e 1

f 3

- 3

Q: In the worst case, how much memory will our count arrays use? (Order of growth)

1. R N      [73779]             3. R log N      [73815]
2. R W      [73790]             4. R log W      [73819]
                                5. R N W        [73824]
Let: N = number of strings. W = width of widest string. R = radix.

pollEv.com/jhug              text to 37607

a c

a d d
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Most-significant-digit-first string sort

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b e e

3 b a d

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12

b a d

b e e

b e d

count[]

a 0

b 0

c 0

d 0

e 1

f 3

- 3

Q: In the worst case, how much memory will our count arrays use?

B. R W

Number of count arrays = recursion depth = W. 
Size of count arrays = R.

pollEv.com/jhug              text to 37607
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MSD string sort:  Java implementation

public static void sort(String[] a)
{
   aux = new String[a.length]; 
   sort(a, aux, 0, a.length, 0);
}

private static void sort(String[] a, String[] aux, int lo, int hi, int d)
{
   if (hi <= lo) return;
   int[] count = new int[R+2];
   for (int i = lo; i <= hi; i++)
      count[charAt(a[i], d) + 2]++;
   for (int r = 0; r < R+1; r++)
      count[r+1] += count[r];
   for (int i = lo; i <= hi; i++)
      aux[count[charAt(a[i], d) + 1]++] = a[i];
   for (int i = lo; i <= hi; i++)
      a[i] = aux[i - lo];
   
   for (int r = 0; r < R; r++)
      sort(a, aux, lo + count[r], lo + count[r+1] - 1, d+1);
}

key-indexed counting

sort R subarrays recursively

can recycle aux[] array

but not count[] array
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 MSD string sort:  potential for disastrous performance

Observation 1.  Much too slow for small subarrays.

・Each function call needs its own count[] array.

・ASCII (256 counts):  100x slower than copy pass for N = 2.

・Unicode (65,536 counts):  32,000x slower for N = 2.

Observation 2.  Huge number of small subarrays

because of recursion.

a[]

0 b

1 a

count[]

aux[]

0 a

1 b

   int[] count = new int[R+2];
   for (int i = lo; i <= hi; i++)
      count[charAt(a[i], d) + 2]++;
   for (int r = 0; r < R+1; r++)
      count[r+1] += count[r];
   for (int i = lo; i <= hi; i++)
      aux[count[charAt(a[i], d) + 1]++] = a[i];
   for (int i = lo; i <= hi; i++)
      a[i] = aux[i - lo];

Consider hi = 1, lo = 0
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Cutoff to insertion sort

Solution.  Cutoff to insertion sort for small subarrays.

・Insertion sort, but start at dth character.

・Implement less() so that it compares starting at dth character.

   public static void sort(String[] a, int lo, int hi, int d)
   {
      for (int i = lo; i <= hi; i++)
         for (int j = i; j > lo && less(a[j], a[j-1], d); j--)
            exch(a, j, j-1);
   }

   private static boolean less(String v, String w, int d)
   {  return v.substring(d).compareTo(w.substring(d)) < 0;  }

Warning: In Java 7, this could be very slow!



Number of characters examined.

・MSD examines just enough characters to sort the keys.

・Number of characters examined depends on keys.

・Can be sublinear in input size!
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 MSD string sort:  performance

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

compareTo() based sorts

can also be sublinear!

Here, input size is total 

number of characters.



Summary of the performance of sorting algorithms

Frequency of operations.
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algorithm guarantee random extra space stable? operations on keys

quicksort W N lg N N log2 N lg N no charAt()

LSD † N W N W N + R yes charAt()

MSD ‡ N W N log R N N + D R yes charAt()

*  probabilistic

†  fixed-length W keys

‡  average-length W keys

D = function-call stack depth

(length of longest prefix match)

charAt() is not the whole story

・Caching

・Creating count arrays

・Data movement (e.g. copying aux back to a vs. partitioning)
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MSD string sort vs. quicksort for strings

Disadvantages of MSD string sort.

・Extra space for aux[].

・Extra space for count[].

– Really bad if you have long prefix matches!

・Inner loop has a lot of instructions.

・Accesses memory "randomly" (cache inefficient).

Disadvantage of quicksort.

・Linearithmic number of string compares (not linear).

・Has to rescan many characters in keys with long prefix matches.

Goal.  Combine advantages of MSD and quicksort.

Doesn’t create counting arrays!Doesn’t rescan anything!

R D space, 

D is longest match



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1  STRING SORTS



she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells

Overview.  Do 3-way partitioning on the dth character.

・Less overhead than R-way partitioning in MSD string sort.

・Does not re-examine characters equal to the partitioning char

(but does re-examine characters not equal to the partitioning char).

92

3-way string quicksort (Bentley and Sedgewick, 1997)

partitioning item

use first character to

partition into

"less", "equal", and "greater"

subarrays recursively sort subarrays,

excluding first character

for middle subarray

by

are

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

Instead of sorting!



she

sells

seashells

by

the

sea

shore

the

shells

she

sells

are

surely

seashells
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3-way string quicksort:  trace of recursive calls

by

are

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

Trace of first few recursive calls for 3-way string quicksort (subarrays of size 1 not shown)

partitioning item

are

by

seashells

she

seashells

sea

shore

surely

shells

she

sells

sells

the

the

are

by

seashells 

sea

seashells

sells

sells

shells

she

surely

shore

she

the

the

are

by

seashells

sells

seashells 

sea

sells

shells

she

surely

shore

she

the

the
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3-way string quicksort:  Java implementation

 private static void sort(String[] a)
 {  sort(a, 0, a.length - 1, 0);  }

 private static void sort(String[] a, int lo, int hi, int d)
 { 
    if (hi <= lo) return;
    int lt = lo, gt = hi;
    int v = charAt(a[lo], d);
    int i = lo + 1;
    while (i <= gt)
    {
       int t = charAt(a[i], d);
       if      (t < v) exch(a, lt++, i++);
       else if (t > v) exch(a, i, gt--);
       else            i++;
    }

    sort(a, lo, lt-1, d);
    if (v >= 0) sort(a, lt, gt, d+1);
    sort(a, gt+1, hi, d);
 }

3-way partitioning

(using dth character)

sort 3 subarrays recursively

to handle variable-length strings



Standard quicksort.

・Uses ~ 2 N ln N string compares on average.

・Costly for keys with long common prefixes (and this is a common case!)

3-way string (radix) quicksort.

・Uses ~ 2 N ln N character compares on average for random strings.

・Avoids re-comparing long common prefixes.
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3-way string quicksort vs. standard quicksort

Jon L. Bentley* Robert Sedgewick# 

Abstract 
We present theoretical algorithms for sorting and 

searching multikey data, and derive from them practical C 
implementations for applications in which keys are charac- 
ter strings. The sorting algorithm blends Quicksort and 
radix sort; it is competitive with the best known C sort 
codes. The searching algorithm blends tries and binary 
search trees; it is faster than hashing and other commonly 
used search methods. The basic ideas behind the algo- 
rithms date back at least to the 1960s but their practical 
utility has been overlooked. We also present extensions to 
more complex string problems, such as partial-match 
searching. 

1. Introduction 
Section 2 briefly reviews Hoare’s [9] Quicksort and 

binary search trees. We emphasize a well-known isomor- 
phism relating the two, and summarize other basic facts. 

The multikey algorithms and data structures are pre- 
sented in Section 3. Multikey Quicksort orders a set of II 
vectors with k components each. Like regular Quicksort, it 
partitions its input into sets less than and greater than a 
given value; like radix sort, it moves on to the next field 
once the current input is known to be equal in the given 
field. A node in a ternary search tree represents a subset of 
vectors with a partitioning value and three pointers: one to 
lesser elements and one to greater elements (as in a binary 
search tree) and one to equal elements, which are then pro- 
cessed on later fields (as in tries). Many of the structures 
and analyses have appeared in previous work, but typically 
as complex theoretical constructions, far removed from 
practical applications. Our simple framework opens the 
door for later implementations. 

The algorithms are analyzed in Section 4. Many of the 
analyses are simple derivations of old results. 

Section 5 describes efficient C programs derived from 
the algorithms. The first program is a sorting algorithm 

Fast Algorithms for Sorting and Searching Strings 

that is competitive with the most efficient string sorting 
programs known. The second program is a symbol table 
implementation that is faster than hashing, which is com- 
monly regarded as the fastest symbol table implementa- 
tion. The symbol table implementation is much more 
space-efficient than multiway trees, and supports more 
advanced searches. 

In many application programs, sorts use a Quicksort 
implementation based on an abstract compare operation, 
and searches use hashing or binary search trees. These do 
not take advantage of the properties of string keys, which 
are widely used in practice. Our algorithms provide a nat- 
ural and elegant way to adapt classical algorithms to this 
important class of applications. 

Section 6 turns to more difficult string-searching prob- 
lems. Partial-match queries allow “don’t care” characters 
(the pattern “so.a”, for instance, matches soda and sofa). 
The primary result in this section is a ternary search tree 
implementation of Rivest’s partial-match searching algo- 
rithm, and experiments on its performance. “Near neigh- 
bor” queries locate all words within a given Hamming dis- 
tance of a query word (for instance, code is distance 2 
from soda). We give a new algorithm for near neighbor 
searching in strings, present a simple C implementation, 
and describe experiments on its efficiency. 

Conclusions are offered in Section 7. 

2. Background 
Quicksort is a textbook divide-and-conquer algorithm. 

To sort an array, choose a partitioning element, permute 
the elements such that lesser elements are on one side and 
greater elements are on the other, and then recursively sort 
the two subarrays. But what happens to elements equal to 
the partitioning value? Hoare’s partitioning method is 
binary: it places lesser elements on the left and greater ele- 
ments on the right, but equal elements may appear on 
either side. 

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill. 
NJ 07974; jlb@research.bell-labs.com. 

# Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu. 

Algorithm designers have long recognized the desir- 
irbility and difficulty of a ternary partitioning method. 
Sedgewick [22] observes on page 244: “Ideally, we would 
llke to get all [equal keys1 into position in the file, with all 

360 
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3-way string quicksort vs. MSD string sort

MSD string sort.

・Is cache-inefficient.

・Too much memory storing count[].

・Too much overhead reinitializing count[] and aux[].

3-way string quicksort.

・Has a short inner loop.

・Is cache-friendly.

・Is in-place.

・Performs more charAt() calls.

– But this doesn’t matter!

Bottom line.  3-way string quicksort is method of choice for sorting strings.

library of Congress call numbers

Flipped lecture this week:

Experiments to see when this is true. 



Summary of the performance of sorting algorithms

Frequency of operations.
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algorithm guarantee random extra space stable? operations on keys

quicksort W N lg N N log2 N lg N no charAt()

LSD † N W N W N + R yes charAt()

MSD ‡ N W N log R N N + D R yes charAt()

3-way string 

quicksort
1.39 W N lg R * 1.39 N lg N log N + W no charAt()

*  probabilistic

†  fixed-length W keys

‡  average-length W keys



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ strings in Java

‣ key-indexed counting

‣ LSD radix sort

‣ MSD radix sort

‣ 3-way radix quicksort

‣ suffix arrays

5.1  STRING SORTS



Given a text of N characters, preprocess it to enable fast substring search

(find all occurrences of query string context).

Applications.  Linguistics, databases, web search, word processing, ….

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
    ⋮
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Challenge #1: Keyword-in-context search



Given a text of N characters, preprocess it to enable fast substring search

(find all occurrences of query string context).

Applications.  Linguistics, databases, web search, word processing, ….

% java KWIC tale.txt 15
search
o st giless to search for contraband
her unavailing search for your fathe
le and gone in search of her husband
t provinces in search of impoverishe
 dispersing in search of other carri
n that bed and search the straw hold

better thing
t is a far far better thing that i do than
 some sense of better things else forgotte
was capable of better things mr carton ent

100

Keyword-in-context search

characters of

surrounding context
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Suffix sort

i t w a s b e s t i t w a s w

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 i t w a s b e s t i t w a s w
1 t w a s b e s t i t w a s w
2 w a s b e s t i t w a s w
3 a s b e s t i t w a s w
4 s b e s t i t w a s w
5 b e s t i t w a s w
6 e s t i t w a s w
7 s t i t w a s w
8 t i t w a s w
9 i t w a s w
10 t w a s w
11 w a s w
12 a s w
13 s w
14 w

form suffixes

3 a s b e s t
12 a s w
5 b e s t i t w a s w
6 e s t i t w a s w
0 i t w a s b e s t i t w a s w
9 i t w a s w
4 s b e s t i t w a s w
7 s t i t w a s w
13 s w
8 t i t w a s w
1 t w a s b e s t i t w a s w
10 t w a s w
14 w
2 w a s b e s t i t w a s w
11 w a s w

sort suffixes to bring repeated substrings together

Non-trivial Java task! See Burrows-Wheeler

assignment on Coursera if you’re interested.



・Preprocess:  suffix sort the text.

・Query:  binary search for query; scan until mismatch.
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Keyword-in-context search:  suffix-sorting solution

⋮
632698 s e a l e d _ m y _ l e t t e r _ a n d _ …
713727 s e a m s t r e s s _ i s _ l i f t e d _ …
660598 s e a m s t r e s s _ o f _ t w e n t y _ …
67610 s e a m s t r e s s _ w h o _ w a s _ w i …
4430 s e a r c h _ f o r _ c o n t r a b a n d …
42705 s e a r c h _ f o r _ y o u r _ f a t h e …
499797 s e a r c h _ o f _ h e r _ h u s b a n d …
182045 s e a r c h _ o f _ i m p o v e r i s h e …
143399 s e a r c h _ o f _ o t h e r _ c a r r i …
411801 s e a r c h _ t h e _ s t r a w _ h o l d …
158410 s e a r e d _ m a r k i n g _ a b o u t _ …
691536 s e a s _ a n d _ m a d a m e _ d e f a r …
536569 s e a s e _ a _ t e r r i b l e _ p a s s …
484763 s e a s e _ t h a t _ h a d _ b r o u g h …

⋮

KWIC search for "search" in Tale of Two Cities
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Challenge #2: Longest repeated substring

Given a string of N characters, find the longest repeated substring. 

Applications.  Bioinformatics, cryptanalysis, data compression, ...

a a c a a g t t t a c a a g c a t g a t g c t g t a c t a 
g g a g a g t t a t a c t g g t c g t c a a a c c t g a a 
c c t a a t c c t t g t g t g t a c a c a c a c t a c t a 
c t g t c g t c g t c a t a t a t c g a g a t c a t c g a 
a c c g g a a g g c c g g a c a a g g c g g g g g g t a t 
a g a t a g a t a g a c c c c t a g a t a c a c a t a c a 
t a g a t c t a g c t a g c t a g c t c a t c g a t a c a 
c a c t c t c a c a c t c a a g a g t t a t a c t g g t c 
a a c a c a c t a c t a c g a c a g a c g a c c a a c c a 
g a c a g a a a a a a a a c t c t a t a t c t a t a a a a
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Challenge #2: Longest repeated substring:  a musical application

Visualize repetitions in music.  http://www.bewitched.com

        

Mary Had a Little Lamb

Bach's Goldberg Variations

Simple Solution: Form sorted suffixes array and scan. D2N

Linearithmic Solution: Use special sequence of sorts (Manber-Myers): N lg N

D

N

Very cool algorithm! 

See Coursera for details.



String sorting summary

We can develop linear-time sorts (e.g. LSD).

・Key compares not necessary for string keys.

・Use characters as index in an array.

We can develop sublinear-time sorts (e.g. MSD, 3-way radix quicksort).

・Input size is amount of data in keys (not number of keys).

・Not all of the data has to be examined.

3-way string quicksort is asymptotically optimal.

・1.39 N lg N chars for random data.

Long strings are rarely random in practice.

・Goal is often to learn the structure!

・May need specialized algorithms.
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