
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

4.4 SHORTEST PATHS

‣ APIs

‣ shortest-paths properties

‣ Dijkstra's algorithm

‣ edge-weighted DAGs

‣ negative weights

Given an edge-weighted digraph, find the shortest path from s to t.

2

Shortest paths in an edge-weighted digraph

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

Related to, but not the

same as the MST problem

Google maps

3

Car navigation

4

・PERT/CPM.

・Map routing.

・Seam carving.

・Robot navigation.

・Texture mapping.

・Typesetting in TeX.

・Urban traffic planning.

・Optimal pipelining of VLSI chip.

・Telemarketer operator scheduling.

・Routing of telecommunications messages.

・Network routing protocols (OSPF, BGP, RIP).

・Exploiting arbitrage opportunities in currency exchange.

・Optimal truck routing through given traffic congestion pattern.

5

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

・Single source: from one vertex s to every other vertex.

・Single sink: from every vertex to one vertex t.

・Source-sink: from one vertex s to another t.

・All pairs: between all pairs of vertices.

Restrictions on edge weights?

・Nonnegative weights.

・Euclidean weights.

・Arbitrary weights.

Cycles?

・No directed cycles.

・No "negative cycles."

Simplifying assumption. Shortest paths from s to each vertex v exist.

6

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ shortest-paths properties

‣ Dijkstra's algorithm

‣ edge-weighted DAGs

‣ negative weights

4.4 SHORTEST PATHS

8

Weighted directed edge API

Idiom for processing an edge e: int v = e.from(), w = e.to();

v
weight

w

 public class DirectedEdge public class DirectedEdge public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

String toString() string representation

9

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{
 private final int v, w;
 private final double weight;

 public DirectedEdge(int v, int w, double weight)
 {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int from()
 { return v; }

 public int to()
 { return w; }

 public int weight()
 { return weight; }
}

from() and to() replace

either() and other()

10

Edge-weighted digraph API

Conventions. Allow self-loops and parallel edges.

 public class EdgeWeightedDigraph public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V)EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

EdgeWeightedDigraph(In in)EdgeWeightedDigraph(In in) edge-weighted digraph from input stream

void addEdge(DirectedEdge e)addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v)adj(int v) edges pointing from v

int V()V() number of vertices

int E()E() number of edges

Iterable<DirectedEdge> edges()edges() all edges

String toString()toString() string representation

11

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph representation

adj
0

1

2

3

4

5

6

7

0 2 .26 0 4 .38

Bag objects

reference to a
DirectedEdge

object

8
15
4 5 0.35
5 4 0.35
4 7 0.37
5 7 0.28
7 5 0.28
5 1 0.32
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29

2 7 .34

3 6 .52

4 7 .37 4 5 .35

5 1 .32 5 7 .28 5 4 .35

6 4 .93 6 0 .58 6 2 .40

7 3 .39 7 5 .28

tinyEWD.txt
V

E

12

Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

public class EdgeWeightedDigraph
{
 private final int V;
 private final Bag<DirectedEdge>[] adj;

 public EdgeWeightedDigraph(int V)
 {
 this.V = V;
 adj = (Bag<DirectedEdge>[]) new Bag[V];
 for (int v = 0; v < V; v++)
 adj[v] = new Bag<DirectedEdge>();
 }

 public void addEdge(DirectedEdge e)
 {
 int v = e.from();
 adj[v].add(e);
 }

 public Iterable<DirectedEdge> adj(int v)
 { return adj[v]; }
}

add edge e = v→w to

only v's adjacency list

13

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)

{
 StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));

 for (DirectedEdge e : sp.pathTo(v))
 StdOut.print(e + " ");

 StdOut.println();
}

 public class SP public class SP public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?

14

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

% java SP tinyEWD.txt 0
0 to 0 (0.00):

0 to 1 (1.05): 0->4 0.38 4->5 0.35 5->1 0.32
0 to 2 (0.26): 0->2 0.26

0 to 3 (0.99): 0->2 0.26 2->7 0.34 7->3 0.39
0 to 4 (0.38): 0->4 0.38

0 to 5 (0.73): 0->4 0.38 4->5 0.35
0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52

0 to 7 (0.60): 0->2 0.26 2->7 0.34

 public class SP public class SP public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ shortest-paths properties

‣ Dijkstra's algorithm

‣ edge-weighted DAGs

‣ negative weights

4.4 SHORTEST PATHS

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

・ distTo[v] is length of shortest path from s to v.

・ edgeTo[v] is last edge on shortest path from s to v.

16

Data structures for single-source shortest paths

shortest-paths tree from 0
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

parent-link representation

Compare to MST problem

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

・ distTo[v] is length of shortest path from s to v.

・ edgeTo[v] is last edge on shortest path from s to v.

17

Data structures for single-source shortest paths

 public double distTo(int v)

 { return distTo[v]; }

 public Iterable<DirectedEdge> pathTo(int v)

 {

 Stack<DirectedEdge> path = new Stack<DirectedEdge>();

 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])

 path.push(e);

 return path;

 }

Kruskal’s Algorithm on Directed Graphs

Starting from a list containing all edges sorted in ascending weight order.

・Iterate through list in ascending order. Add to the SPT unless this

creates a cycle.

18

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

3
12

20

13

11

9

v distTo[] edgeTo[]

0 0.0 -

1 ∞ -

2 ∞ -

3 ∞ -

4 ∞ -

5 ∞ -

6 ∞ -

7 ∞ -

Q: Is this algorithm correct?

A. No
B. Yes

Lazy Prim’s Algorithm on Directed Graphs

Starting from a list containing all edges sorted in ascending weight order.

・Iterate through list in ascending order. Add to the SPT unless the target

vertex is already marked.

19

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

3
12

20

13

11

9

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0

2 14.0 5

3 17.0 2

4 9.0 0

5 13.0 4

6 26.0 3

7 9.0 1

Q: Is this algorithm correct?

A. No
B. Yes

Lazy Prim’s Algorithm on Directed Graphs

Starting from a list containing all edges sorted in ascending weight order.

・Iterate through list in ascending order. Add to the SPT unless the target

vertex is already marked.

20

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

3
12

20

13

11

9

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0

2 14.0 5

3 17.0 2

4 9.0 0

5 13.0 4

6 26.0 3

7 9.0 1

Observation for e = 0→7

e.weight = 8.0
distTo[7] = 9.0

Easy shortcut!

Lazy Prim’s Algorithm on Directed Graphs

Starting with a priority queue containing s’s outgoing edges.

・Remove min edge from PQ. Add to the SPT unless this creates a cycle.

・Enqueue any discovered edges.

21

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

3
12

20

13

11

9

v distTo[] edgeTo[]

0 0.0 -

1 ∞ -

2 ∞ -

3 ∞ -

4 ∞ -

5 ∞ -

6 ∞ -

7 ∞ -

Q: Is this algorithm correct?

A. No
B. Yes

Lazy Prim’s Algorithm on Directed Graphs

Starting with a priority queue containing s’s outgoing edges.

・Remove min edge from PQ. Add to the SPT unless this creates a cycle.

・Enqueue any discovered edges.

22

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

3
12

20

13

11

9

Q: Is this algorithm correct?

A. No
B. Yes

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0

2 16.0 5

3 19.0 3

4 9.0 0

5 15.0 7

6 28.0 3

7 9.0 1

Lazy Prim’s Algorithm on Directed Graphs

Starting with a priority queue containing s’s outgoing edges.

・Remove min edge from PQ. Add to the SPT unless this creates a cycle.

・Enqueue any discovered edges.

23

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

3
12

20

13

11

9

Observation for e = 0→7

e.weight = 8.0
distTo[7] = 9.0

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0

2 16.0 5

3 19.0 3

4 9.0 0

5 15.0 7

6 28.0 3

7 9.0 1

Same easy shortcut!

Lazy Prim’s Algorithm on Directed Graphs

Fundamental distinction between MST and SPT

・SPT: What matters is the distance from the source, not the distance to

the tree!

・Non-obvious fact: We’d like a way to deal with incorrect choices.

– Want some way to allow 0-7 to take over from 1-7.

24

0

4

7

1 3

5

2

6

s

9

8

5
4

15

12

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0

2 ∞ -

3 ∞ -

4 9.0 0

5 ∞ -

6 ∞ -

7 ∞ -

Relax edge e = v→w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v→w gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

v# distTo[] edgeTo[]

...

9 3.1 [omitted]

12 7.2 6

25

Edge relaxation

black edges

are in edgeTo[]

0

3.1

7.2
4.4

6

v→w successfully relaxes

1.3

9

12
4.4 9

s

v

w

Table of known paths

but maybe not shortest

(i.e. examine edge and use if better)

26

Edge relaxation

Relax edge e = v→w.

・ distTo[v] is length of shortest known path from s to v.

・ distTo[w] is length of shortest known path from s to w.

・ edgeTo[w] is last edge on shortest known path from s to w.

・If e = v→w gives shorter path to w through v,

update both distTo[w] and edgeTo[w].

 private void relax(DirectedEdge e)
 {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 }
 }

(i.e. examine edge and use if better)

27

Shortest-paths optimality conditions	

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().

Pf. ⇐ [necessary]

・Suppose that distTo[w] > distTo[v] + e.weight() for some edge e = v→w.

・Then, e gives a path from s to w (through v) of length less than

distTo[w].

s

3.1

7.2 distTo[w]

1.3

v

w

distTo[v]

No easy shortcuts exist!

Necessary condition rephrased: If the graph is optimal, there are no easy shortcuts.

28

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distTo[] are the shortest path distances from s iff:

・For each vertex v, distTo[v] is the length of some path from s to v.

・For each edge e = v→w, distTo[w] ≤ distTo[v] + e.weight().

Pf. ⇒ [sufficient]

・Suppose that s = v0 → v1 → v2 → … → vk = w is a shortest path from s to w.

・Then,

・Add inequalities; simplify; and substitute distTo[v0] = distTo[s] = 0:

 distTo[w] = distTo[vk] ≤ e1.weight() + e2.weight() + … + ek.weight()

・Thus, distTo[w] is the weight of shortest path to w. !

weight of shortest path from s to w

weight of some path from s to w

distTo[v1] ≤ distTo[v0] + e1.weight()

distTo[v2] ≤ distTo[v1] + e2.weight()

...

distTo[vk] ≤ distTo[vk-1] + ek.weight()

ei = ith edge on shortest

path from s to w

Sufficient condition rephrased: If there are no easy shortcuts, the graph is optimal.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.

・Throughout algorithm, distTo[v] is the length of a simple path from s

to v (and edgeTo[v] is last edge on path).

・Each successful relaxation decreases distTo[v] for some v.

・The entry distTo[v] can decrease at most a finite number of times. !

29

Generic shortest-paths algorithm

Optimality conditions:

1. distTo[] is the length of some path (not infinity)

2. No easy shortcuts exist.

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

 - Relax any edge.

Generic algorithm (to compute SPT from s)

Efficient implementations. How to choose which edge to relax?

Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman-Ford algorithm (no negative cycles).

30

Generic shortest-paths algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

 - Relax any edge.

Generic algorithm (to compute SPT from s)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ shortest-paths properties

‣ Dijkstra's algorithm

‣ edge-weighted DAGs

‣ negative weights

4.4 SHORTEST PATHS

32

Edsger W. Dijkstra: select quotes

Edsger W. Dijkstra

Turing award 1972

“ The competent programmer is fully aware of the strictly limited
 size of his own skull; therefore he approaches the programming
 task in full humility, and among other things he avoids clever
 tricks like the plague. ”

“ In their capacity as a tool, computers will be but a ripple on the
 surface of our culture. In their capacity as intellectual challenge,
 they are without precedent in the cultural history of mankind. ”

“ The use of COBOL cripples the mind; its teaching should,
 therefore, be regarded as a criminal offence. ”

“ It is practically impossible to teach good programming to
 students that have had a prior exposure to BASIC: as potential
 programmers they are mentally mutilated beyond hope of
 regeneration. ”

http://www.cs.utexas.edu/users/EWD/transcriptions/

33

Edsger W. Dijkstra: select quotes

・Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

34

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

3
12

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

・Consider vertices in increasing order of distance from s

(non-tree vertex with the lowest distTo[] value).

・Add vertex to tree and relax all edges pointing from that vertex.

Dijkstra's algorithm demo

35

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Book also calls this “relaxing the vertex”

Dijkstra's algorithm visualization

36

Dijkstra's algorithm visualization

37

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted

digraph with nonnegative weights.

Pf.

・Each edge e = v→w is relaxed exactly once (when v is relaxed),

leaving distTo[w] ≤ distTo[v] + e.weight().

・Inequality holds until algorithm terminates because:

– distTo[w] cannot increase

– distTo[v] will not change

・Thus, upon termination, shortest-paths optimality conditions hold. !

Dijkstra's algorithm: correctness proof

38

we choose lowest distTo[] value at each step

(and edge weights are nonnegative)

distTo[] values are monotone decreasing

39

Dijkstra's algorithm: Java implementation

public class DijkstraSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;
 private IndexMinPQ<Double> pq;

 public DijkstraSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];
 pq = new IndexMinPQ<Double>(G.V());

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 pq.insert(s, 0.0);
 while (!pq.isEmpty())
 {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }
 }

relax vertices in order

of distance from s

Essentially the same thing

as an ExtrinsicMinPQ

40

Dijkstra's algorithm: Java implementation

 private void relax(DirectedEdge e)
 {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert (w, distTo[w]);
 }
 }

update PQ

41

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

Bottom line.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・4-way heap worth the trouble in performance-critical situations.

・Fibonacci heap best in theory, but not worth implementing.

Dijkstra's algorithm: which priority queue?

† amortized

PQ implementation insert delete-min decrease-key total

unordered array 1 V 1 V2

binary heap log V log V log V E log V

d-way heap
(Johnson 1975)

d logd V d logd V logd V E logE/V V

Fibonacci heap
(Fredman-Tarjan 1984)

1 † log V † 1 † E + V log V

V inserts V delete-mins E decrease-keys

Dijkstra vs. Prim summary

Dijkstra’s and Prim’s are essentially the same algorithm.

・Both are in a family of algorithms that compute a spanning tree for a

graph.

Main distinction: Rule used to choose next vertex for the tree.

・Prim’s: Closest vertex to the tree (via an undirected edge).

・Dijkstra’s: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in this family of algorithms.

42

43

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

・Maintain a set of explored vertices S.

・Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.

BFS. Take edge from vertex which was discovered least recently.

Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.

Challenge. Express this insight in reusable Java code.

S

e

s

v

w

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ shortest-paths properties

‣ Dijkstra's algorithm

‣ edge-weighted DAGs

‣ negative weights

4.4 SHORTEST PATHS

Q. Suppose that an edge-weighted digraph has no directed cycles.

Is it easier to find shortest paths than in a general digraph?

A. Yes!

45

Acyclic edge-weighted digraphs

・Consider vertices in topological order.

・Relax all edges pointing from that vertex.

Acyclic shortest paths demo

46

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted DAG

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

・Consider vertices in topological order.

・Relax all edges pointing from that vertex.

Acyclic shortest paths demo

47

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

0 1 4 7 5 2 3 6

Proposition. Topological sort algorithm computes SPT in any edge-

weighted DAG in time proportional to E + V.

Pf.

・Each edge e = v→w is relaxed exactly once (when v is relaxed),

leaving distTo[w] ≤ distTo[v] + e.weight().

・Inequality holds until algorithm terminates because:

– distTo[w] cannot increase

– distTo[v] will not change

・Thus, upon termination, shortest-paths optimality conditions hold. !

48

Shortest paths in edge-weighted DAGs

because of topological order, no edge pointing to v

will be relaxed after v is relaxed

distTo[] values are monotone decreasing

edge weights

can be negative!

49

Shortest paths in edge-weighted DAGs

public class AcyclicSP
{
 private DirectedEdge[] edgeTo;
 private double[] distTo;

 public AcyclicSP(EdgeWeightedDigraph G, int s)
 {
 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 Topological topological = new Topological(G);
 for (int v : topological.order())
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }

topological order

Seam carving. [Avidan and Shamir] Resize an image without distortion for

display on cell phones and web browsers.

50

Content-aware resizing

http://www.youtube.com/watch?v=vIFCV2spKtg

Seam carving. [Avidan and Shamir] Resize an image without distortion for

display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

51

Content-aware resizing

To find vertical seam:

・Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.

・Weight of pixel = energy function of 8 neighboring pixels.

・Seam = shortest path (sum of vertex weights) from top to bottom.

52

Content-aware resizing

To find vertical seam:

・Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.

・Weight of pixel = energy function of 8 neighboring pixels.

・Seam = shortest path (sum of vertex weights) from top to bottom.

53

Content-aware resizing

seam

To remove vertical seam:

・Delete pixels on seam (one in each row).

54

Content-aware resizing

seam

To remove vertical seam:

・Delete pixels on seam (one in each row).

55

Content-aware resizing

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ shortest-paths properties

‣ Dijkstra's algorithm

‣ edge-weighted DAGs

‣ negative weights

4.4 SHORTEST PATHS

Dijkstra. Doesn’t work with negative edge weights.

Re-weighting. Add a constant to every edge weight doesn’t work.

Conclusion. Need a different algorithm.

57

Shortest paths with negative weights: failed attempts

0

3

1

2

4

2-9

6 Dijkstra selects vertex 3 immediately after 0.

But shortest path from 0 to 3 is 0→1→2→3.

0

3

1

11

13

20

15
Adding 9 to each edge weight changes the

shortest path from 0→1→2→3 to 0→3.

Def. A negative cycle is a directed cycle whose sum of edge weights is

negative.

Proposition. A SPT exists iff no negative cycles.

58

Negative cycles

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

assuming all vertices reachable from s

s

for (int i = 0; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);

59

Bellman-Ford algorithm

pass i (relax each edge)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:
 - Relax each edge.

Bellman-Ford algorithm

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

60

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

0

4

7

1 3

5

2

6

s

69

8

4

5

7

1

5
4

15

312

20

13

11

9

an edge-weighted digraph

Repeat V times: relax all E edges.

Bellman-Ford algorithm demo

61

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

62

Bellman-Ford algorithm visualization

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes

Proposition. Dynamic programming algorithm computes SPT in any edge-

weighted digraph with no negative cycles in time proportional to E × V.

Pf idea. After pass i, found shortest path containing at most i edges.

63

Bellman-Ford algorithm: analysis

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat V times:
 - Relax each edge.

Bellman-Ford algorithm

64

Observation. If distTo[v] does not change during pass i,

no need to relax any edge pointing from v in pass i+1.

FIFO implementation. Maintain queue of vertices whose distTo[] changed.

Overall effect.

・The running time is still proportional to E × V in worst case.

・But much faster than that in practice.

Bellman-Ford algorithm: practical improvement

be careful to keep at most one copy

of each vertex on queue (why?)

65

Single source shortest-paths implementation: cost summary

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.

algorithm restriction typical case worst case extra space

topological sort
no directed

cycles
E + V E + V V

Dijkstra
(binary heap)

no negative

weights
E log V E log V V

Bellman-Ford
no negative

E V E V V

Bellman-Ford
(queue-based)

cycles
E + V E V V

66

Finding a negative cycle

Negative cycle. Add two method to the API for SP.

boolean hasNegativeCycle() is there a negative cycle?

Iterable <DirectedEdge> negativeCycle() negative cycle reachable from s

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

An edge-weighted digraph with a negative cycle

4->5 0.35
5->4 -0.66
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

digraph

5->4->7->5
negative cycle (-0.66 + 0.37 + 0.28)

0->4->7->5->4->7->5...->1->3->6
shortest path from 0 to 6

s

67

Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop,

updating distTo[] and edgeTo[] entries of vertices in the cycle.

Proposition. If any vertex v is updated in phase V, there exists a negative

cycle (and can trace back edgeTo[v] entries to find it).

In practice. Check for negative cycles more frequently.

edgeTo[v]

s 3

v

2 6

1

4

5

Problem. Given table of exchange rates, is there an arbitrage opportunity?

Ex. $1,000 ⇒ 741 Euros ⇒ 1,012.206 Canadian dollars ⇒ $1,007.14497.

68

Negative cycle application: arbitrage detection

USD EUR GBP CHF CAD

USD

EUR

GBP

CHF

CAD

1 0.741 0.657 1.061 1.011

1.350 1 0.888 1.433 1.366

1.521 1.126 1 1.614 1.538

0.943 0.698 0.620 1 0.953

0.995 0.732 0.650 1.049 1

1000 × 0.741 × 1.366 × 0.995 = 1007.14497

Currency exchange graph.

・Vertex = currency.

・Edge = transaction, with weight equal to exchange rate.

・Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.

69

Negative cycle application: arbitrage detection

An arbitrage opportunity

USD

0.
74
1 1.

35
0

0.888

1.126

0.
62
0

1.
61
4

1.049

0.953

1.011
0.995

0.
65
0

1.
53
8

0.
73
2

1.
36
6

0.657

1.5211.061

0.943

1.433

0.698

EUR

GBP

CHFCAD

0.741 * 1.366 * .995 = 1.00714497

Model as a negative cycle detection problem by taking logs.

・Let weight of edge v→w be - ln (exchange rate from currency v to w).

・Multiplication turns to addition; > 1 turns to < 0.

・Find a directed cycle whose sum of edge weights is < 0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!

A negative cycle that represents
an arbitrage opportunity

USD

.2
99
8 -.

30
01

.1188

-.1187

.4
78
0

-.
47
87

-.0478

.0481

-.0109
.0050

.4
30
8

-.
43
05

.3
12
0

-.
31
19

.4201

-.4914-.0592

.0587

-.3598
.3595

EUR

GBP

CHFCAD

replace each
weight w

with !ln(w)

.2998 - .3119 + .0050 = -.0071

-ln(.741) -ln(1.366) -ln(.995)

70

Negative cycle application: arbitrage detection

Shortest paths summary

Dijkstra’s algorithm.

・Nearly linear-time when weights are nonnegative.

・Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

・Arise in applications.

・Faster than Dijkstra’s algorithm.

・Negative weights are no problem.

Negative weights and negative cycles.

・Arise in applications.

・If no negative cycles, can find shortest paths via Bellman-Ford.

・If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

71

BFS code but with Stack -- DFS?

72

 private void mysterySearch(Graph G, Iterable<Integer> sources) {
 Stack<Integer> q = new Stack<Integer>();
 for (int s : sources) {
 q.push(s);
 marked[s] = true;
 }
 while (!q.isEmpty()) {
 int v = q.pop();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 q.push(w);
 marked[w] = true;
 }
 }
 }
 }

Q: What sort of search does the code above perform?
A. DFS
B. BFS
C. Some other type of search

Problem to be discussed at end of class Tuesday, November 12th

No this won’t be on the exam...

Running BFS code with a stack instead of a queue

73

0

4

7

1 3

5

2

6

s

v distTo[] edgeTo[]

0 0 -

1 - -

2 - -

3 - -

4 - -

5 - -

6 - -

7 - -

0

stack

Running BFS code with a stack instead of a queue

74

0

4

7

1 3

5

2

6

s

v distTo[] edgeTo[]

0 0 -

1 - -

2 - -

3 - -

4 - -

5 - -

6 - -

7 - -

0

stack

Running BFS code with a stack instead of a queue

75

0

4

7

1 3

5

2

6

s

v distTo[] edgeTo[]

0 0 -

1 1 0

2 - -

3 - -

4 1 0

5 - -

6 - -

7 1 0

stack

7

4

1

Running BFS code with a stack instead of a queue

76

0

4

7

1 3

5

2

6

s

v distTo[] edgeTo[]

0 0 -

1 1 0

2 2 1

3 2 1

4 1 0

5 - -

6 - -

7 1 0

stack

7

4

2

3

Running BFS code with a stack instead of a queue

77

0

4

7

1 3

5

2

6

s

v distTo[] edgeTo[]

0 0 -

1 1 0

2 2 1

3 2 1

4 1 0

5 - -

6 3 3

7 1 0

stack

7

4

2

6

Q: What sort of search does the code above perform?
A. DFS
B. BFS
C. Some other type of search - Sort of like a leaky DFS.

You get the idea.

Running BFS code with a stack instead of a queue

78

0

4

7

1 3

5

2

6

s

v distTo[] edgeTo[]

0 0 -

1 1 0

2 2 1

3 2 1

4 1 0

5 - -

6 3 3

7 1 0

stack

7

4

2

6

Q: What sort of search does the code above perform?
C. Some other type of search - Sort of like a leaky DFS.

Fixing the problem

・Only add one edge to the stack at a time (trickier than you’d think!)

・Use a stack of edges instead of a stack of vertices.

・Use a fancier stack (see the Jiang technique on the booksite for 4.1)

http://algs4.cs.princeton.edu/41undirected/NonrecursiveDFS.java.html

