A 1 g Or 1 t h Ims ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED GRAPHS

» introduction
» digraph AP
» digraph search

Algorithms

» topological sort

» sfrong components

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» infroduction

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

directed path @
from 0 to 2 \

vertex of
outdegree 4
and indegree 2

N\

Road network

Vertex = intersection; edge = one-way street.

vJ el AL~ § Nl . ~ &
t § 5 % = S/ & %, /
E 7 % & S Mo
g c 2, = Q (S S
@) (-3 l 2] & @
@ & 2 &P ~ < <
— % 'S ~)
Vesl O g 72 — () O/~
ry St ')G Canal § & 9/) &
o T 7 o Station [1] / /¢ Q\S‘, ~
Vi) 4
f J s Y\ | ol [t N /;
-
=~ @
-aight f @ < Canal St /
ant St ‘5 Station [A,C E] 7 ~
& Laigh 5 m s
s oSt v = A 7
';.-, | Laight gy G’Go
= A — i
F $ o = Laight St — 0'@,
berist — = f 5 cn 7 S
— %) = <
— J & 5)
% Hubert st / s LIE $
p 5 ¢ 5 @ A0 <
g] 2] ~ York S béb %‘9/ 4 éo\ '
@ =
] = S o) £ & & 4
5 o e (5) s & ()
o (&} k=) © — @ (€) L
8 2 } s
each >
St X r 7 $
Encsson st —, 7 P>
l 8, l’%eo
h o () T a’o’ o
Moore 5 t “ 9, Sy 7 S, o,
t kej & 0*9/& v "oy
! N Moore g (/sps
(%] N Moore St > 7 oe’d f
1~y é ™ ‘ Canal St Stati
3 f / o N N/Q.R W)
] 5 =
s Franklin S Franklin' St S =S
P A~ T station 1 '05“‘ o 2 %//r /
g Franklin sy Q;‘o Y)3> ;OQ e’\S‘,
g \“ ./S\ 3 d’g R 4{5\
3 B =3
amson St o r " 2 § -~ o‘bb
Q
Harrison St (so 5 : u, Q,\
= N > . By,
o8 1/ DAt by eS8
| @ Sy N =
@ N
E / Z
(%) ~ C)
— & ©2008 Google - Map data ©20Q8 Sanbori, NAVTEQ™ - Terms of Use

Taxi flow patterns (Uber)

http://blog.uber.com/2012/01/09/uberdata-san-franciscomics/

Bonila Cove Treasure
Island
Golden Gafte
MERe s o
Presidio TR\ - "
South Bay 7 o y
i
3=
= n
\ Gate Park
S
=== arm Water
ove Park
SU\SG/U #
= i/ A | ~) \
-~ West \ 07 8.) \‘ \‘ Iddia Bagin
n ‘ 7 ﬂ-.‘ ' -
g Bayview =
2 _ Isitaci
Braoks Park A @2y co
Amazon \ Tan
Recreation Area

Uber cab service

Proportion of Demand

0.02

o
o
-t

0.03r m SF: Financial District

M NYC: Financial District

Sun Mon Tue Wed Thu Fri Sat Sun

Day of Week (beginning at 0:00)

» Left Digraph: Color is the source neighborhood (no arrows).

* Right Plot: Digraph analysis shows financial districts have similar demand.

Reverse engineering criminal organizations (LogAnalysis)

“The analysis of reports supplied by mobile phone service providers makes it possible to reconstruct

the network of relationships among individuals, such as in the context of criminal organizations. It

is possible, in other terms, to unveil the existence of criminal networks, sometimes called rings,

identifying actors within the network together with their roles” — Cantanese et. al

wn
e w1y seond
WL i 208
s " AN -~ e
mune el T
90! xlom $0004
"wn m‘wl:
% s 2604 i yeoos
urm 201%‘\ j Hn S0 zw:o:
n
" ‘
g ook
\uug) e ’. ¥
"Ny W ~jun
® a

Lo

I
zmu ~—— phios | sl |

“nn hood / Jendo \ sams
LM "
i“lﬁ.‘l e ‘ -
b
sun - phoos ! ..,.“
e -
SN - \.“
u(2 \ -
19284 uhn l““ sinns .“ i e
16458 ’ / / Fdhes \ N
¥ nen *rvok \ e Tea
" - \ - &
am W8 » 1407 434 28 1607
Kl = es
u."ﬂ Bid oo l'—‘i R el Q2010

° !} am
i 0 y0e hannt

L]

12133 u“‘" 6226 ato

-
" S0 A
L ‘u“]
LTt

PRI
o

200
wioh

e

‘quc
2rre

s “u:n
Forensic Analysis of Phone Call Networks, Salvatore Cantanese,
http://arxiv.org/abs/1303.1827

Field Description
IMEI IMEI code MS
called called user
calling calling user

date/time start

date/time start calling (GMT)

date/time end

date/time end calling (GMT)

type sms, mms, voice, data etc.
IMSI calling or called SIM card
CGI Lat. long. BTS company

Table 1 An example of the structure of a log file.

Combinational circuit

Vertex = logical gate; e

dge = wire.

T >

e

WordNet graph

Vertex = synset; edge = hypernym relationship.

event

happening occurrence occurrent natural_event

miracle
act human_action human_activity
change alteration modification miracle \
/ \ \ group_action

damage harm impairment transition increase forfeitforfeiture sacrlﬁce action
y \
resistance opposmon transgression
leap jump saltation jumpleap
change
demotion variation

motion movement move

TS~

| ; locomotion travel descent
Ny
7 4 runrunning jump parachuting

i

http:/ /wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide

Afghanistan Stability / COIN Dynamics

Population/Popular Support
Infrastructure, Economy, & Services
Government

Afghanistan Security Forces
Insurgents

Crime and Narcotics

Coalition Forces & Actions

Physical Environment

Significant
#" = Delay

ANSF &
Coalition
amage
Casra ties
v

—

ISR/ Open
Sourcep0p54~\sT°'al

== OUTSIDE SUPPORT
. —\"__TO INSURGENT
Force T

e B e b Fe FACTIONS

H Ability t L
NV Gperate V' EnabRoront

Counter Narcotics/
Crime Ops

Tactical i Secu
i &

(Hrif‘y’

[o iorities ol

pacty Effectiveness Ena
| anpowerg ANSF Avgr)

Coalition i

»>>\< ofins. \
Ins. Coordination N
n i 8 mong Ins. Insurgent
0 Retention rofession Territory Not Presence Factions Terrai
Adjustment N~ skill, Disci Und. 0 \\ Ins. fhsbraet errain
Appropriate R Righan 2}(’ /& Moralé cer ov (Clear & Hold] \ 9
dé?ance of 9 S ‘ANS Pakistan)

Leadership, i Advantage
Training, Skill Recruiting,
AN
forte Training &
lentoring

N

& Casualties , N
Cicar) Gov'IANSF/ \
Coalition N
Coalition Leadershi 3 Policin%: \ Repercussion “‘
) >

Retention,

‘AN$F/_* B X&Expenence Ma&nSoner
\\M INSTITUTIONAL P'_ .“ et 3 INSURGENTS

Dot RN I curpions |V s e —

s

Prior_ities:&
Effectiveness

Ins. Targeted
%tlacks o
rogress. Nrrt e
77 P ived ‘Support i Likelihood
Coalition = Funding’ 't Darﬁgz;ee"s’?Use forpov'(Relanve/'lnsurgems C_I elihood o
ity to Adequacy u
>~

rime/Violence'
of Force b¥ Popular i
Gov’t& Coalitio:
Strength & Insurgents

SR | P s, wrbyment
POPULATION ™ . 3
CON DITIONS | Population Neutral/On Population

n w

Quality &
Investment

Gov't ¥s Ins.

CENTRAL ass GOVERNMENT

Fraction of
Overall Gov't

e Cigne PallyGualty Exceuton
'COALITION &Faimess = Capacity & golog
Sen!a‘ — I\ Structures Cultural Erosiol
BDOMESTIC \ Displacement
SUPPORT - it

w/ Gains in_
Security, Services
mployment Visible Gains
N Ideology; In S -
Ethnic/Tribal Tribal / N ImSecurity,
Coauuon | Cormuntion & Rivaly~__ Sucties) Employmen)
Dev. Ops- _Tribal Fayoritisr structures& Path Expectations
Infrastructure; Beliefs for Security,
Service: Average Services,
Econ. Connectedness Percetved Employment
Ad of Populatior Socuri RN :
i g,

T

Infr, Services, Econ: ‘
Policy & Execution
Provide [Perciived Faimess ‘
Humanitarian

Relief

Sympathizing the Fence pathizin, Actively
Supportin
uagm) & BELIEFS .\', 0/ ot Jipa
5 > ear of Ins. F
Souppeegtri‘o'n?r GOV'T '/EP“C'W CAPAC lTY Relative \Message R;plé?ca‘fskéions A t
P\ | R g, el) POPULAR ~_peenid ‘
AR S “T s Integration of Veins " g~ “ —SAttractiveness Terrain
US Domestic |Coalition ov't Training Local Tribal ' Western > ofGovitvs. Harshness Duration|
Perceived | Support %?{L‘,";‘Eﬁa 7«‘Gc‘v\ Structures ag(i:'"(‘l’;'s‘}." Perception of. ‘ S U P PORT _winsurgent Path & Breadth of
Cost/Benefit Hiring Workforce ' Coalition Intent /> .
& Support % skill & Avai & Commitment Perception
US Domestic/| Transparency) ,(Of Gov't
Int'l Strategic Po(ov't Gov't 9

\“\‘—if oot

Satisfaction

WORKING DRAFT -V3
Consulting

Group
© PA Knowledge Limited 2009 Page 22

http:/ /www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide

Digraph applications

transportation

web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection

web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

directed edge
one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump

10

Some digraph problems

Path. Is there a directed path from s to ¢? ° P‘F’I*IH TI

Y
.

Shortest path. What is the shortest directed path from sto ¢?

Topological sort. Can you draw a digraph so that all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?
Transitive closure. For which vertices v and w is there a path from vto w?

PageRank. What is the importance of a web page?

11

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» digraph AP

Digraph API

public class Digraph

Digraph(int V)
Digraph(In 1in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO
int EQ
Digraph reverse()

String toString()

In in = new InCargs[0]);

create an empty digraph with V vertices
create a digraph from input stream
add a directed edge v—w
vertices pointing from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from

A

Digraph G = new Digraph(in);

for (int v = 0; v < G.VO; v++)

input stream

print out each

A

for (int w : G.adj(v))
StdOut.println(v + "->" + w);

edge (once)

13

Digraph API

tinyDG. txt
V\13 E
2 5

®

B

2
3
2
0
0 (6)
0
2

E—
e

=
T OO WRARONOONRNOOWN A
'_\
o

In in = new InCargs[0]);

% java Digraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
3->2
4->3
4->2
5->4

11->4

11->12
12-9

read digraph from

A

Digraph G = new Digraph(in);

for (int v = 0; v < G.VO; v++)

input stream

print out each

for (int w : G.adj(v)) <
StdOut.println(v + "->" + w);

edge (once)

14

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists.

adj[

]

O 00 N o Ui Ao W N BB O

=
o

=
=

=
N

VI

5 1
0 3
5 2
3 2
4
9 || 4
6 9
6
11 10
12
4 12

15

Do you slumber?

Suppose we are given an arbitrary Digraph G and a path of length V given

by int[] P.

@/

05423168791011 12

~ =]

~[0 (3]
~ 2]
nElngEl
~{4]

oY)

o
[SS]
—

i 0 e g K 0

0 N O U1 A W N B O

~e (o]
~[e]
~[12}~{10]
(2]
~[4—+{22]
~]

"N

—~(2

\e]

=
o

/AN

=
[EY

=
N

pollEv.com/jhug text to 37607

Q: What is the worst case run time to check validity of a path P for a

general graph with V vertices?

A. 1
B. V

[445 655] C. V2 [445 657]
[445 656]

16

Adjacency-lists graph representation (review): Java implementation

public class Graph

{

private final int V;

private final Bag<Integer>[] adj;

public Graph(int V)

{
this.V = V;

adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)

}
{
adj[v].add(w);
adj[w].add(v);
}

public Iterable<Integer> adj(int v)

{ return adjl[v];

}

adjacency lists

create empty graph
with V vertices

add edge v-w

iterator for vertices

adjacent to v

17

Adjacency-lists digraph representation: Java implementation

public class Digraph
{

private final int V;

private final Bag<Integer>[] adj;

public Digraph(int V)

adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; V++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)

{
this.V = V;
}
{
adj[v].add(w);
}

public Iterable<Integer> adj(int v)

{ return adjl[v];

}

adjacency lists

create empty digraph
with V vertices

add edge v—w

iterator for vertices

pointing from v

18

Digraph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices pointing from v.
« Real-world digraphs tend to be sparse.

N

huge number of vertices,
small average vertex degree

_ insert edge edge from iterate over vertices
representation

fromvtow v to w? pointing from v?

list of edges E 1 E E
adjacency matrix V2 1t 1 Y
adjacency lists E+V 1 outdegree(v) outdegree(v)

t disallows parallel edges

19

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» digraph search

Reachability

Problem. Find all vertices reachable from s along a directed path.

S

o > - @« - >@
NERNAN

Y

® >~0< @& >0 >0« O« ¢ >0O
A A A A

Y Y

¢ >0 @< @@=« @<« @ »O
* A A A

Y Y \

’4 o< @ >’ >’ >0—>@0—@

Y Y Y |

o >0« - r< ’ >¢<—’—>‘

Y Y Y

¢< 0 >0 >0< 0 >0 >0 >0
A A A

\ Y Y

> @ < ’ >’ >‘<—QA - @

Y Y

I—»‘—»#<—Q—>O =<0

21

Depth-first search in digraphs

Same method as for undirected graphs.
* Every undirected graph is a digraph (with edges in both directions).
 DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w pointing from v.

Difficulty level.
* Exactly the same problem for computers.
* Harder for humans than undirected graphs.
- Edge interpretation is context dependent!

22

The man-machine

’ > @ >I< I< ’4 I< I »-@ Q—»I—»I - @ = I< I »-@
A
Y Y \
® »>0=< @O >0 »>0< O6< €& >0 o >0« & > i« -9
A A A A A A A A
\ Y Y Y \
® »>0=< @ >0« O0=< 0=« © >0 e >0 @< @<« Q=< @ »@
A A A A A A A A
\ Y Y Y \ Y \
*<—0<0 >0 >0 >0 >0 >0 <0< >0 >0 >0 >0 >9¢
A A A A A A A
Y Y Y Y Y Y \ Y
O > @<« @<= r< ’ > @ < ’) [+< 74 ’ >‘<—’—>‘
\ Y Y Y Y Y \
@< O >0 »>0< @ >+ @@ @< © >0 »0< O » 0@
A A A A A A A
\ Y Y \ Y
® >0 >0« ’ >’ @ < 74 ® ‘—>+< ’ »’ >Q<—’<—Q
Y Y Y \
1 >0 —> 0@ >0<—I—>G<—¢ I—»0—>¢< >0 < I >9<=0

Difficulty level.
* Exactly the same problem for computers.
 Harder for humans than undirected graphs.
- Edge interpretation is context dependent!

23

Depth-first search demo

To visit a vertex v

 Mark vertex v as visited. @

« Recursively visit all unmarked vertices pointing from v.

a directed graph

11—=12
12—9
9—10
9—11

10—12
11—4

24

Depth-first search demo

To visit a vertex v :
 Mark vertex v as visited.

« Recursively visit all unmarked vertices pointing from v.

¥

reachable from 0

reachable

from vertex O

V marked[] edgeTol]
0 T -
1 T 0
—2—> | T 3
3 T 4
4 T 5
5 T 0
6 F -
7 F -
8 F ~
9 F -
10 F -
11 F -
12 F -

25

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked;

public DepthFirstSearch(Graph G, int s)

{

marked = new boolean[G.V()];

dfs(G, s);
}
private void dfs(Graph G, int v)
{

marked[v] = true;

for (int w : G.adj(v))

if (Imarked[w]) dfs(G, w);

}

public boolean visited(int v)
{ return marked[v]; }

true if connected to s

constructor marks

vertices connected to s

recursive DFS does the work

client can ask whether any

vertex is connected to s

26

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute Digraph for Graph]

public class DirectedDFS
{
private boolean[] marked; <«<—+— true if path from s
public DirectedDFS(Digraph G, int s)
{
marked = new boolean[G.V()]; 7 Conétrucmr marks
dfs(G, s): vertices reachable from s
3
private void dfs(Digraph G, int v) <€«——F— recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
3
public boolean visited(int v) PEE L CUUSE B T e
{ return marked[v]; 3} vertex is reachable from s
}

Reachability application: program control-flow analysis

Every program is a digraph.

* Vertex = basic block of instructions (straight-line program).

 Edge = jump.
Dead-code elimination.
Find (and remove) unreachable code.

e Cow.java:5: unreachable statement

Infinite-loop detection.

Determine whether exit is unreachable.

e Trivial?

* Doable by student?
 Doable by expert?
* Intractable?
 Unknown?

* Impossible?

1121314110

42: <=

11121314110

16: t5<= 1214
30: 13<= 13

1121314110

1112131415110

t213t51 110111

32: 7<= 16

112131517 110111

34: <= 17

2315110111

36: <=

23101

40: <=1114

121314110

18: 8<= 15

1112131415810

12131516 10111 20 9<= 18

1121314151910

22: <= 19

11213415110

t213t51101t11

28: 6<= 15 24: tM1<=14

1112t315110t11

26: <=

\\‘ 11213110 t11

38: t4<=t11

Ni‘altsnom

0: <=
on
A\
2:13<=
3011
\J
4:td<=
13t4r0r1
\
6:tl<=1r0
1t3dn
A\
8:<=t114
teun
v
10: 2<=n1
11121314

\J
12: 110 <=

11121314110

14 <=

13110

3110

44: 10 <= t10

e

3r0

'

46: r1<=13

rort

'

48: 0 <= r1r0

28

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.
* Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

29

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
 Mark: mark all reachable objects.
» Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

SlOOJ

30

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
v ¢ Reachability.
* Path finding.
 Topological sort.
* Directed cycle detection.

Basis for solving difficult digraph problems.
« 2-satisfiability.
e Directed Euler path.
» Strongly-connected components.

SIAM J. CompurT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k, , k,, and k5, where Vis the number of vertices and E is the number
of edges of the graph being examined.

31

Breadth-first search in digraphs

Same method as for undirected graphs.
* Every undirected graph is a digraph (with edges in both directions).
 BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a digraph in time proportional to £ + V.

32

Directed breadth-first search demo

Repeat until queue is empty: @
« Remove vertex v from queue.

* Add to queue all unmarked vertices pointing from v and mark them.

tinyDG2. txt

@ > 2 P T E
8/

50

2 4

3 2

12

01

v 4 3

: T ;s

0 2

graph G

Directed breadth-first search demo

Repeat until queue is empty:
« Remove vertex v from queue.

* Add to queue all unmarked vertices pointing from v and mark them.

done

\%

edgeTo[] distTo[]

vl M W N

w N DM O O

DN W

34

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source
vertices, find shortest path from any vertex in the set to each other vertex.

Ex. S={1,7,10}. @
» Shortest path to 4 is 7—=6—4. @

* Shortest path to 5 is 7—=6—0—5. @

(2)
e Shortest path to 12 is 10—12. 9
P ~0
&)

Q. How to implement multi-source shortest paths algorithm?
A. Use BFS, but initialize by enqueuing all source vertices.

35

Java implementation of BFS

public class BreadthFirstPaths
{

private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Digraph G, int s) {

36

Java implementation of BFS

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Digraph G, Iterable<Integer> sources) {
Queue<Integer> q = new Queue<Integer>();
for (int s : sources) {
g.enqueue(s);
marked[s] = true;
distTo[s] = O;
}
while (!q.isEmpty()) {
int v = gq.dequeue();
for (int w : G.adj(v)) {
if (Imarked[w]) {
g.enqueue(w) ;
marked[w] = true;
edgeTo[w] V;
distTo[w] = distTo[v] + 1;

37

Java implementation of BFS

private void mysterySearch(Graph G, Iterable<Integer> sources) {
Stack<Integer> g = new Stack<Integer>();
for (int s : sources) {
q.push(s);
marked[s] = true;
}
while (!q.isEmpty()) {
int v = q.pop(Q);
for (int w : G.adj(v)) {
if (!'marked[w]) {
q.push(w) ;
marked[w] = true;
}
3
}

Problem to be discussed at beginning of class Tuesday, November 12th

Q: What sort of search does the code above perform?
A. DFS

B. BFS

C. Some other type of search

38

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
* Choose root web page as source s.
* Maintain a Queue of websites to explore.
* Maintain a SET of discovered websites.
 Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

39

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(); -
SET<String> marked = new SET<String>(Q); «—F—
String root = "http://www.princeton.edu";
queue.enqueue(root); «—F
marked.add(root);
while (!queue.isEmpty())
{
String v = queue.dequeue();
StdOut.println(v); E
In in = new In(v);
String input = in.readAl1(Q);
String regexp = "http://QO\w+\\.D+O\\w+)";
Pattern pattern = Pattern.compile(regexp);
Matcher matcher = pattern.matcher(input);
while (matcher.find(Q))
{
String w = matcher.group(Q);
if (!'marked.contains(w))
{
marked.add(w) ;
qgueue.enqueue(w) ; T
}
¥
}

queue of websites to crawl
set of marked websites

start crawling from root website

read in raw html from next

website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz

[crude pattern misses relative URLSs]

if unmarked, mark it and put
on the queue

40

BFS Webcrawler Output

http://www.princeton.edu

http://www.w3.0rg

http://ogp.me

http://giving.princeton.edu

http://odoc.princeton.edu

http://blogs.princeton.edu

http://www.facebook.com

http://twitter.com

http://www.princetonartmuseum.org

http://www.goprincetontigers.com
http://library.princeton.edu

http://helpdesk.princeton.edu

http://tigernet.princeton.edu

http://alumni.princeton.edu

http://dradschool.princeton.edu

http://vimeo.com

http://princetonusg.com

http://artmuseum.princeton.edu

http://jobs.princeton.edu

http://www.youtube.com

http://deimos.apple.com

http://geprize.org

http://en.wikipedia.org

41

DFS Webcrawler Output

http://www.princeton.edu

http://deimos.apple.com [dead end]

http://www.youtube.com

http://www.google.com

http://news.google.com

http://csi.gstatic.com

http://googlenewsblog.blogspot.com
http://labs.google.com

http://groups.google.com

http://img1.blogblog.com

http://feeds.feedburner.com

http://buttons.googlesyndication.com

http://static.googleusercontent.com

http://searchresearch1.blogspot.com

http://feedburner.google.com

http://www.dot.ca.gov

http://www.getacross80.com

http://www.TahoeRoads.com

http://www.lLakeTahoeTransit.com

http://www.laketahoe.com

http://ethel.tahoeguide.com

http://fusion.google.com

http://insidesearch.blogspot.com

http://agoogleaday.com

42

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» topological sort

Depth first orders

Observation. Depth first search visits (marks) each vertex exactly once.
* Order in which these visits occur can be useful

Orderings.
* Preorder: Put vertex on a queue before recursive call.
* Postorder: Put vertex on a queue after recursive call.
» Reverse Postorder: Put vertex on a stack after recursive call.

Examples.
« Written on board.
« Alternately: See book chapter 4.2.

44

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms

1. Complexity Theory

. Artificial Intelligence
Intro to CS
Cryptography

Scientific Computing

OO v W N

Advanced Programming

1/

%

e

®

tasks

precedence constraint graph

® O-®

feasible schedule

45

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

!
!
OJo¥e

directed edges DAG

Solution. DFS. What else?

topological order

Topological sort demo

* Run depth-first search.
e Return vertices in reverse postorder.

a directed acyclic graph

®

47

Topological sort intuitive proof

* Run depth-first search.
» Return vertices in reverse postorder. g

* Why does it work? /

- Last item in postorder has indegree 0. Good starting point.
- Second to last can only be pointed to by last item. Good follow-up.

postorder

4 1 2 5 0 6 3

topological order

3 605 2 1 4

6 See book / online slides for foolproof full proof.
48

More honest proof that reverse postorder is a topological order

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs(v) is called:
dfs(0)

dfs(1)
dfs(4)
e Case 1: dfs(w) has already been called and returned. 4 done

1 done
Thus, w was done before v. dfs(2)

2 done
dfs(5)

 Case 2: dfs(w) has not yet been called.
5 done

dfs(w) will get called directly or indirectly 0 done
by dfs(v) and will finish before dfs(v).

Thus, w will be done before v. v=3 — > dfs(3)

case 1 é

* Case 3: dfs(w) has already been called, case 2 = dfs(6)
6 done
but has not yet returned. 3 done

Can’t happen in a DAG: function call stack contains

path from w to v, so v—w would complete a cycle. done

all vertices pointing from 3 are done before 3 is done,
so they appear after 3 in topological order

49

Topological sort demo

pollEv.com/jhug

postorder

4 1 2 5 0 6 3

topological order

3 605 2 1 4

text to 37607

© O-®

topological order

Q: Is the reverse postorder the only valid topological order for this graph?

A. No [493477]
B. Yes [493478]

50

Topological sort demo

postorder

4 1 2 5 0 6 3

© O-®

topological order

36 05 2 1 4 0

pollEv.com/jhug text to 37607 topological order

Q: Is the reverse postorder the only valid topological order for this graph?
A. No [493477]

Example: Could move 1 down one step. 0 — 1 still points up.

51

Depth-first search order

For a version with error checking (i.e. graph is a DAG), see:

http://algs4.cs.princeton.edu/44sp/Topological.java.html

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder(Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.VQ; v++)
if (!'marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (Imarked[w]) dfs(G, w);
reversePost.push(v);

}

public Iterable<Integer> reversePost()
{ return reversePost; }

e

L returns all vertices in

“reverse DFS postorder”

52

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

 If directed cycle, topological order impossible.

» If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

53

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java
{ A.java:1l: cyclic inheritance
involving A
} public class A extends B { }
A
1 error

public class B extends C

{
}

public class C extends A

{
}

54

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

OX® Workbook1
<> A B C D

1 "=B1+1" "=Cl1+1" "=Al+1"

2

3

4

5

6

7 Microsoft Excel cannot calculate a formula.

M Cell references in the formula refer to the formula's
8 e result, creating a circular reference. Try one of the
9 following:
« If you accidentally created the circular reference, click
10 OK. This will display the Circular Reference toolbar and
help for using it to correct your formula.
1 1 « To continue leaving the formula as it is, click Cancel.
12 (" Cancel \ (OK)
13
14
15
16
17
18
"1 Sheetl 'Sheet2 Sheet3 [

55

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» sfrong components

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v. Every node is strongly connected
to itself.

Key property. Strong connectivity is an equivalence relation:
* v is strongly connected to v.
e If vis strongly connected to w, then w is strongly connected to v.

e If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

@) (2

Examples of strongly-connected digraphs: 1 strong component

0§

58

Strongly-connected components

Def. Vertices v and w are strongly connected if there is both a directed path
from v to w and a directed path from w to v. Every node is strongly connected

to itself.

pollEv.com/jhug text to 37607

Q: How many strong components does a DAG on V vertices and E edges have?
A. O [494241] C. E [494243]
B. 1 [494242] D. V [494246]

59

Connected components vs. strongly-connected components

v and w are connected if there is

a path between v and w

3 connected components

how??

connected component id (trivial to compute with DFS)

1 2 3 4 5 6 7 8 91011 12
id[] O 0 0001 1 1 2 2 2 2

public int connected(int v, int w)
{ return id[v] == id[w]; }

A

I

constant-time client connectivity query

v and w are strongly connected if there is both a directed

path from v to w and a directed path from w to v

5 strongly-connected components

strongly-connected component id (how to compute?)

4 6 8
1 3 3

N O

1 2 3 5 / 10 11 12
1d[] 0 1 1 1 4 2 2 2

public int stronglyConnected(int v, int w)
{ return id[v] == id[w]; }
A

I
constant-time client strong-connectivity query
60

Strongly connected components

Analysis of Yahoo Answers
* Edge is from asker to answerer.
* “Alarge SCC indicates the presence of a community where many users

interact, directly or indirectly.”

Table 1: Summary statistics for selected QA net-

works
Category | Nodes Edges | Avg. | Mutual SCC
deg. edges
Wrestling | 9,959 | 56,859 | 7.02 1,898 | 13.5%
Program. | 12,538 | 18,311 | 1.48 0 | 0.01%
Marriage | 45,090 | 164,887 | 3.37 179 | 4.73%

Knowledge sharing and yahoo answers: everyone knows something, Adamic et al (2008)

61

Strongly connected components

Understanding biological control systems
» Bacillus subtilis spore formation control network.
» SCC constitutes a functional module.

High T

‘ : Phosphorylation
SpOOE - Regulated by sigA v
- Regulated by sigH : Blocks activity

- Regulated by both : o” Transcription

\L : o' Transcription

Josh Hug: Qualifying exam talk (2008)

62

Strong components algorithms: brief history

1960s: Core OR problem.
* Widely studied; some practical algorithms.
 Complexity not understood.

1972: linear-time one-pass DFS algorithm (Tarjan).
» Classic algorithm.
* Level of difficulty: Algs4++.
 Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
* Forgot notes for lecture; developed algorithm in order to teach it!
* Later found in Russian scientific literature (1972).

1990s: easier one-pass linear-time algorithms.
* Gabow: fixed old OR algorithm.
e Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

63

Intuitive solution to finding strongly connected components.

ST °

e

64

Intuitive solution to finding strongly connected components.

Example
Run DFS(1), get the SCC: {1}.
Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC.
Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}.

IR0
©

N S50
By

o

P

@/’

65

Intuitive solution to finding strongly connected components.

W%

C
pollEv.com/jhug text to 37607
Q: Which DFS call should come next?
A. DFS(7) [496641]
B. DFS(6) or DFS(8) [497301]

C. DFS(9), DFS(10), DFS(11), or DFS(12) [497302]

66

Intuitive solution to finding strongly connected components.

Example
Run DFS(1), get the SCC: {1}.
Run DFS(0), get {0, 1, 2, 3, 4, 5} - not an SCC.
Run DFS(1), then DFS(0), get SCC {1} and SCC {0, 2, 3, 4, 5}.

57 ST

@OW
s JooPpe 00 A
O EC

67

Punchline. A Magic Sequence of DFS calls yields SCC (MSDFSSCCQC)

Intuitive solution to finding strongly connected components.

DFS. Calling DFS wantonly is a problem. Never want to leave your SCC.

0-SCCs. There’s always some set of SCCs with outdegree 0, e.g. {1}. Calling
DFS on any node in a 0-SCCs finds only nodes in that 0-SCC.

Number is not the out degree. It’s the hierarchy level! \ .
also known as: a sink

1-SCCs. After calling DFS on and identifying all 0-SCCs, if any vertices are
unmarked, there’s at least one SCC that only points at 0-SCCs.

first vertex is a sink

e (has no edges pozntmgfrom it)

O, (2) A
5| O 6
9 0-SCC B 4-5CC
@ @ 1 scc 2-SCC 3CC

digraph G and its strong components Treat SCCs as one big node. Kernel DAG.
Arrows only connect SCCs. Graph is acyclic.

68

Kosaraju-Sharir algorithm: intuitive example

Kernel DAG. Topological sort of kernelDAG(G) is A, B, C, D, E.

MSDFSSCC. Call DFS on element from E, D, C, B, A. Valid MSDFSSCC.
For example, DFS(1), DFS(2), DFS(9), DFS(6), DFS(7).

Summary.

 An MSDFSSCC is given by reverse of the topological sort of kernelDAG(G).

0 first vertex is a sink

e (has no edges pozntmgfrom it)

Ul
@ G -SCC
e T 1 SCC 2-SCC BCC

digraph G and its strong components kernel DAG of G. Topological order: A, B, C, D, E.
69

We don’t have a kernel

Kosaraju-Sharir algorithm: intuition (general) DAG, we just have G!!

7?7

Kernel DAG. MSDFSSCC is given by reverse of topological sort of kernelDAG(G).
-_

Reverse Graph Lemma. Reverse of topological sort of kernalDAG(G) is given by

reverse postorder of G® (see book), where G® is G with all edges flipped around.

Slippery little lemma! You’re not required to understand the proof.

Punchline.
« MSDFSSCC: The reverse postorder of G-.

0 first vertex is a sink

e (has no edges pozntmgfrom it)

@) (2) A
5| O G
9 0-SCC B 4-5CC
@ @ 1 scc 2-SCC 35CC

digraph G and its strong components kernel DAG of G (in reverse topological order)

70

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G~.

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G-.

0

®

N

digraph G

71

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in G~.
1 0 2 45 3 11 9 12 10 6 7 8

reverse digraph GR

72

Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G-.

Y% id[]
0 1
1 0
2 1
3 1
4 1
5 1
6 3
7/ 4
8 3
9 2
10 2
done 11 2
12 2

73

Kosaraju-Sharir algorithm: intuition
: B A
O=0
E
C
Owumu®

digraph G

reverse digraph GR

During DFS of reverse graph, D was the second to

. . : last component to be completely explored.
first vertex is a sink

(has no edges pointing from it) /
£ C A ED C B A
0 Q 1 02 45311 9 12 10 6 7 8

kernel DAG of G (in reverse topological order)

74

Kosaraju-Sharir algorithm (alternate explanation slide #1)

Simple (but mysterious) algorithm for computing strong components.
 Phase 1: run DFS on G® to compute reverse postorder.
* Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

@bv

check unmarked vertices in the order reverse postorder for use in second dfs ()
012345678910 11 12 10245311912106738

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

Kosaraju-Sharir algorithm (alternate explanation slide #2)

Simple (but mysterious) algorithm for computing strong components.

 Phase 1: run DFS on G® to compute reverse postorder.

e Phase 2: run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

Y 3

check unmarked vertices in the order

102453119121067 8

idarray

dfs (1)
1 done

dfs(0)

dfs(5)
dfs(4)
dfs(3)
check 5
dfs(2)
check 0
check 3
2 done
3 done
check 2
4 done
5 done
check 1

0 done

dfs(11)
check 4
dfs(12)
dfs(9)
check 11
dfs(10)
check 12
10 done
9 done
12 done
11 done

dfs(6) dfs(7)
check 9 check 6
check 4 check 9
dfs(8) 7 done

check 6

8 done
check 0

6 done

76

Kosaraju-Sharir algorithm

Proposition. Kosaraju-Sharir algorithm computes the strong components of
a digraph in time proportional to E + V.

Pf.
* Running time: bottleneck is running DFS twice (and computing GR).
« Correctness: tricky, see textbook (2" printing).
 Implementation: easy!

77

Connected components in an undirected graph (with DFS)

public class CC
{

private boolean marked[];
private int[] id;
private int count;

pubTlic CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.VQO];
for (int v = 0; v < G.VQ; v++)
{
if (!marked[v])
{
dfs(G, v);
count++;
}
}
}
private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);
}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }
}

78

Strong components in a digraph (with two DFSs)

public class KosarajuSharirSCC

{

}

private boolean marked[];
private int[] id;
private int count;

public KosarajuSharirSCC(Digraph G)
{
marked = new boolean[G.V()];
id = new int[G.VQO];
DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
for (int v : dfs.reversePost())
{
if (!marked[v])
{
dfs(G, v);
count++;
h
ks
ks

private void dfs(Digraph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!marked[w])
dfs(G, w);

3

public boolean stronglyConnected(int v, int w)
{ return id[v] == id[w]; }

79

Digraph-processing summary: algorithms of the day

single-source
reachability DFS
in a digraph

topological sort

. DFS
in a DAG
strong CW : :
©) / Kosaraju-Sharir
components (10) .
in a digraph @\) DFS (twice)
| g VA (D))

Warning on Terminology

Terms used in this lecture, but nowhere else:
« MSDFSSCC
* 0-SCC, 1-SC(C, etc.

81

