
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

3.4 HASH TABLES

‣ basic ideas

‣ separate chaining

‣ linear probing

‣ hash functions

‣ context

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ basic ideas

‣ separate chaining

‣ linear probing

‣ hash functions

‣ context

3.4 HASH TABLES

ST implementations: summary

Q. Can we do better?

A. Yes, but with different access to the data.

3

implementation

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

average-case cost

(after N random inserts)

average-case cost

(after N random inserts)

average-case cost

(after N random inserts) ordered key
implementation

search insert delete search hit insert delete
iteration? interface

sequential search

(unordered list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black BST 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

Space vs. Time

Brute force

・Treat quote as a number.

– 180 character limit. 600 bits per quote.

・Need array of length 2600, or about 10180.

Issues

・Holographic principal provides bound on information density.

– No more than 1 bit per Planck unit of area.

– 1069 bits per square meter of surface area of a sphere.

– 14 gigaparsec universe contains no more than 10122 bits.

・Can also bound information with Bekenstein bound.

・Information density maximized with a black hole.

– Try to cram more bits than bound: Collapses into black hole.

4

quotes authors
The iron-folding doors of the small-room or oven were opened. Babbage

How to teach your horse to pretend hes a vicious animal and chase after others, even if he is Horse_ebooks
Does the body rule the mind or does the mind rule the body? I dunno... Morrissey

Seems bad, but if Moore’s law

were an actual law, it’d only take a

millennium.

Spies

Goal: Determining overlap

・Two spies have obtained a large cache of secret documents.

・They want to know which single document they have in common.

– Must match EXACTLY!

・Can only communicate via slips of paper discretely placed around town.

– High latency.

– Low bandwidth.

– Entire document transmission possible, but very tricky.

・Can coordinate plan before their mission.

Technique one

・One spy transmits entire text of document to the other.

– Very slow.

5

Technique two: Header transmission

Transmit all header

・Each spy transmits only the first 10 characters of each document.

・Issue 1:

– Not enough to establish equality.

– Fix:

・New issue:

– Worst case:

6

Technique three: Summary transmission

Transmit a summary

・

7

Hash functions

Essential idea:

・Given a document, calculate a summary.

・Transmit summaries.

・If two summaries match, transmit entire document.

Hash functions

・Converts large object into a small one.

・Desired properties:

– Deterministic.

– Differ inputs result in different outputs.

– Easy to compute.

8

Using hash functions for indexing

Essential idea:

・Given a document, calculate its hash.

・Transmit hashes.

・If two hashes match, transmit entire document.

Storing a quote

・Maintain quote and author arrays.

・Quote in position i corresponds to author in position i.

・To insert a quote, calculate its hash.

– Store quote and author at a position determined by its hash.

9

hashCode()quote toIndex()

quotes[]

authors[]

reason: hashCode()

may be bigger than

array size

Example: put

10

hashCode()quote toIndex()

quotes[]

authors[]

reason: hashCode()

may be bigger than

array size

index quotes[] authors[]

0 “The iron-folding doors of the small-room or oven were opened.” Babbage

1

2

"By convention there is sweetness, by convention bitterness, by convention color, in
reality only atoms and the void.” - The Intellect (Democritus)

7517633

Hash code. An int between -231 and 231 - 1.

Hash function. An int between 0 and M - 1 (for use as array index).

11

Modular hashing

typically a prime or power of 2

 private int hash(Key key)
 { return key.hashCode() % M; }

bug

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % M; }

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % M; }

correct

1-in-a-billion bug

hashCode() of "polygenelubricants" is -231

Example: put

12

hashCode()quote toIndex()

quotes[]

authors[]

index quotes[] authors[]

0 “The iron-folding doors of the small-room or oven were opened.” Babbage

1

2
“By convention there is sweetness, by convention bitterness, by convention color, in

reality only atoms and the void.”
Democritus

"By convention there is sweetness, by convention bitterness, by convention color, in
reality only atoms and the void.” - The Intellect (Democritus)

7517633 2

7517633 % 3 = 2

Symbol table development

First attempt

・See code

Issues

・How do we write a hash function? (later)

・What do we do in the event of a hash collision?

・What do we do when the table becomes full?

13

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ basic ideas

‣ separate chaining

‣ linear probing

‣ hash functions

‣ context

3.4 HASH TABLES

Use an array of M < N linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and M - 1.

・Insert: put at front of ith chain (if not already there).

・Search: need to search only ith chain.

15

Separate chaining symbol table

Hashing with separate chaining for standard indexing client

st[]
0

1

2

3

4

S 0X 7

E 12A 8

P 10L 11

R 3C 4H 5M 9

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

Put

16

Which put method do you like better?

A. Top [43446]
B. Bottom [43704]

pollEv.com/jhug text to 37607

Symbol table development

Sequential Chaining Hash Table

・See code

Issues

・How do we write a hash function? (later)

・What do we do in the event of a hash collision?

・What do we do when the table becomes full?

Performance

・N << M: Constant time get and put.

・N >> M: Linear time.

17

Objective

・Keep lists short.

・Don’t waste memory on empty lists.

Approach

・Increase size of array when N exceeds some constant factor of M.

・Decrease size of array when N decreases below some constant factor of M.

Resizing

18

A0

1

2

3

B

A

0

1

2

3

4

5

16 20

7

In which bin will the apple

appear after resizing?

0 [9575]
1 [9597]
2 [9609]
3 [9635]
4 [9637]
5 [9643]

pollEv.com/jhug text to 37607

H

13

Objective

・Keep lists short.

・Don’t waste memory on empty lists.

Approach

・Increase size of array when N exceeds some constant factor of M.

・Decrease size of array when N decreases below some constant factor of M.

Resizing

19

A0

1

2

3

B

H

A

0

1

2

3

4

5

16 20

13

7
A

16

B

20

H

13

A

7

Resize

20

Will the resize method above work correctly?

A. Yes [46372]
B. No [1431]

pollEv.com/jhug text to 37607

Symbol table analysis

Sequential Chaining Hash Table

・See code

Performance

・N << M: Constant time get and put.

・N >> M: Linear time.

・N within a small constant factor of M.

Analysis

・How full are the bins?

– Average bin.

– Worst case bin.

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

21

These cases are now impossible.

Requires COS 340 math.

Proposition. Under uniform hashing assumption, prob. that the number of

keys in a list is within a constant factor of N / M is extremely close to 1.

Pf sketch. Distribution of list size obeys a binomial distribution.

Consequence. Number of probes for search/insert is proportional to N / M.

・M too large ⇒ too many empty chains.

・M too small ⇒ chains too long.

・Typical choice: M ~ N / 5 ⇒ constant-time ops.

22

Analysis of separate chaining

M times faster than

sequential search

equals() and hashCode()

Binomial distribution (N = 104 , M = 103 , ! = 10)

.125

0

0 10 20 30

(10, .12511...)

N/M

23

Other consequences of uniform hashing

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Birthday problem. Expect two balls in the same bin after ~ π M / 2 tosses.

Coupon collector. Expect every bin has ≥ 1 ball after ~ M ln M tosses.

Load balancing. After M tosses, expect most loaded bin has

Θ (log M / log log M) balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N proportional to

sqrt(M) gives no

collisions.

N proportional to M gives worst case

expected performance of log M / log log M.

24

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and M - 1.

Bins and balls. Throw balls uniformly at random into M bins.

Hash value frequencies for words in Tale of Two Cities (M = 97)

Java's String data uniformly distribute the keys of Tale of Two Cities

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Expect largest

bin to grow as

log N / log log N

ST implementations: summary

25

implementation

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

average case

(after N random inserts)

average case

(after N random inserts)

average case

(after N random inserts) ordered key
implementation

search insert delete search hit insert delete
iteration? interface

sequential search

(unordered list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

separate chaining 3-5 * 3-5 * 3-5 * no
equals()

hashCode()

* expected under uniform hashing assumption

* * *

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ basic ideas

‣ separate chaining

‣ linear probing

‣ hash functions

‣ context

3.4 HASH TABLES

Open addressing. [Amdahl-Boehme-Rocherster-Samuel, IBM 1953]

When a new key collides, find next empty slot, and put it there.

27

Collision resolution: open addressing

null

null

linear probing (M = 30001, N = 15000)

jocularly

listen

suburban

browsing

st[0]

st[1]

st[2]

st[30000]

st[3]

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Linear probing hash table demo

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

linear probing hash table

Hash. Map key to integer i between 0 and M-1.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Linear probing hash table demo

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

search

hash(K) = 5

K

K

search miss

(return null)

Hash. Map key to integer i between 0 and M-1.

Insert. Put at table index i if free; if not try i+1, i+2, etc.

Search. Search table index i; if occupied but no match, try i+1, i+2, etc.

Note. Array size M must be greater than number of key-value pairs N.

30

Linear probing hash table summary

0 1 2 3 4 5 6 7 8 9

st[]

10 11 12 13 14 15

M = 16

S EA C H R XMP L

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 private void put(Key key, Value val) { /* next slide */ }

 public Value get(Key key)
 {
 for (int i = hash(key); keys[i] != null; i = (i+1) % M)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
 }

}

Linear probing ST implementation

31

array doubling and

halving code omitted

public class LinearProbingHashST<Key, Value>
{
 private int M = 30001;
 private Value[] vals = (Value[]) new Object[M];
 private Key[] keys = (Key[]) new Object[M];

 private int hash(Key key) { /* as before */ }

 private Value get(Key key) { /* previous slide */ }

 public void put(Key key, Value val)
 {
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % M)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
 }

}

Linear probing ST implementation

32

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

33

Clustering

Model. Cars arrive at one-way street with M parking spaces.

Each desires a random space i : if space i is taken, try i + 1, i + 2, etc.

Q. What is mean displacement of a car?

Half-full. With M / 2 cars, mean displacement is ~ 3 / 2.

Full. With M cars, mean displacement is ~ π M / 8 .

34

Knuth's parking problem

displacement = 3

Proposition. Under uniform hashing assumption, the average # of probes

in a linear probing hash table of size M that contains N = α M keys is:

Pf.

Parameters.

・M too large ⇒ too many empty array entries.

・M too small ⇒ search time blows up.

・Typical choice: α = N / M ~ ½.

35

Analysis of linear probing

⇥ 1
2

�
1 +

1
1� �

⇥
⇥ 1

2

�
1 +

1
(1� �)2

⇥

search hit search miss / insert

probes for search hit is about 3/2

probes for search miss is about 5/2

ST implementations: summary

36

implementation

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

worst-case cost

(after N inserts)

average case

(after N random inserts)

average case

(after N random inserts)

average case

(after N random inserts) ordered key
implementation

search insert delete search hit insert delete
iteration? interface

sequential search

(unordered list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.38 lg N 1.38 lg N ? yes compareTo()

red-black tree 2 lg N 2 lg N 2 lg N 1.00 lg N 1.00 lg N 1.00 lg N yes compareTo()

separate chaining lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no
equals()

hashCode()

linear probing lg N * lg N * lg N * 3-5 * 3-5 * 3-5 * no
equals()

hashCode()

* under uniform hashing assumption

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ basic ideas

‣ separate chaining

‣ linear probing

‣ hash functions

‣ context

3.4 HASH TABLES

38

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

・Efficiently computable.

・Each table index equally likely for each key.

Ex 1. Phone numbers.

・Bad: first three digits.

・Better: last three digits.

Ex 2. Social Security numbers.

・Bad: first three digits.

・Better: last three digits.

Practical challenge. Need different approach for each key type.

thoroughly researched problem,

still problematic in practical applications

573 = California, 574 = Alaska

(assigned in chronological order within geographic region)

key

table

index

39

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

Default implementation. Memory address of x.

Legal (but poor) implementation. Always return 17.

Customized implementations. Integer, Double, String, File, URL, Date, …

User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

40

Implementing hash code: integers, booleans, and doubles

public final class Integer
{
 private final int value;
 ...

 public int hashCode()
 { return value; }
}

convert to IEEE 64-bit representation;

xor most significant 32-bits

with least significant 32-bits

public final class Double
{
 private final double value;
 ...

 public int hashCode()
 {
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
 }
}

public final class Boolean
{
 private final boolean value;
 ...

 public int hashCode()
 {
 if (value) return 1231;
 else return 1237;
 }
}

Java library implementations

・Horner's method to hash string of length L: L multiplies/adds.

・Equivalent to h = s[0] · 31L–1 + … + s[L – 3] · 312 + s[L – 2] · 311 + s[L – 1] · 310.

Ex.

public final class String
{
 private final char[] s;
 ...

 public int hashCode()
 {
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
 }
}

41

Implementing hash code: strings

3045982 = 99·313 + 97·312 + 108·311 + 108·310

 = 108 + 31· (108 + 31 · (97 + 31 · (99)))

(Horner's method)

ith character of s

String s = "call";
int code = s.hashCode();

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

Java library implementation

Performance optimization.

・Cache the hash value in an instance variable.

・Return cached value.

public final class String
{
 private int hash = 0;
 private final char[] s;
 ...

 public int hashCode()
 {
 int h = hash;
 if (h != 0) return h;
 for (int i = 0; i < length(); i++)
 h = s[i] + (31 * hash);
 hash = h;
 return h;
 }
}

42

Implementing hash code: strings

return cached value

cache of hash code

store cache of hash code

43

Implementing hash code: user-defined types

public final class Transaction implements Comparable<Transaction>
{
 private final String who;
 private final Date when;
 private final double amount;

 public Transaction(String who, Date when, double amount)
 { /* as before */ }

 ...

 public boolean equals(Object y)
 { /* as before */ }

 public int hashCode()
 {
 int hash = 17;
 hash = 31*hash + who.hashCode();
 hash = 31*hash + when.hashCode();
 hash = 31*hash + ((Double) amount).hashCode();
 return hash;
 }
} typically a small prime

nonzero constant

for primitive types,

use hashCode()

of wrapper type

for reference types,

use hashCode()

44

Hash code design

"Standard" recipe for user-defined types.

・Combine each significant field using the 31x + y rule.

・If field is a primitive type, use wrapper type hashCode().

・If field is null, return 0.

・If field is a reference type, use hashCode().

・If field is an array, apply to each entry.

In practice. Recipe works reasonably well; used in Java libraries.

In theory. Keys are bitstring; "universal" hash functions exist.

Basic rule. Need to use the whole key to compute hash code;

consult an expert for state-of-the-art hash codes.

or use Arrays.deepHashCode()

applies rule recursively

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ basic ideas

‣ separate chaining

‣ linear probing

‣ hash functions

‣ context

3.4 HASH TABLES

String hashCode() in Java 1.1.

・For long strings: only examine 8-9 evenly spaced characters.

・Benefit: saves time in performing arithmetic.

・Downside: great potential for bad collision patterns.

46

War story: String hashing in Java

public int hashCode()
{
 int hash = 0;
 int skip = Math.max(1, length() / 8);
 for (int i = 0; i < length(); i += skip)
 hash = s[i] + (37 * hash);
 return hash;
}

http://www.cs.princeton.edu/introcs/13loop/Hello.java
http://www.cs.princeton.edu/introcs/13loop/Hello.class
http://www.cs.princeton.edu/introcs/13loop/Hello.html
http://www.cs.princeton.edu/introcs/12type/index.html

47

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?

A. Obvious situations: aircraft control, nuclear reactor, pacemaker.

A. Surprising situations: denial-of-service attacks.

Real-world exploits. [Crosby-Wallach 2003]

・Bro server: send carefully chosen packets to DOS the server,

using less bandwidth than a dial-up modem.

・Perl 5.8.0: insert carefully chosen strings into associative array.

・Linux 2.4.20 kernel: save files with carefully chosen names.

malicious adversary learns your hash function

(e.g., by reading Java API) and causes a big pile-up

in single slot that grinds performance to a halt

Goal. Find family of strings with the same hash code.

Solution. The base 31 hash code is part of Java's string API.

48

Algorithmic complexity attack on Java

2N strings of length 2N that hash to same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

49

Diversion: one-way hash functions

One-way hash function. "Hard" to find a key that will hash to a desired

value (or two keys that hash to same value).

Ex. MD4, MD5, SHA-0, SHA-1, SHA-2, WHIRLPOOL, RIPEMD-160, ….

Applications. Digital fingerprint, message digest, storing passwords.

Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = args[0];
MessageDigest sha1 = MessageDigest.getInstance("SHA1");
byte[] bytes = sha1.digest(password);

/* prints bytes as hex string */

Separate chaining vs. linear probing

Separate chaining.

・Easier to implement delete.

・Performance degrades gracefully.

・Clustering less sensitive to poorly-designed hash function.

Linear probing.

・Less wasted space.

・Better cache performance.

Q. How to delete from linear probing?

Q. How to resize from linear probing?

50

Hashing: variations on the theme

Many improved versions have been studied.

Two-probe hashing. (separate-chaining variant)

・Hash to two positions, insert key in shorter of the two chains.

・Reduces expected length of the longest chain to log log N.

Double hashing. (linear-probing variant)

・Use linear probing, but skip a variable amount, not just 1 each time.

・Effectively eliminates clustering.

・Can allow table to become nearly full.

・More difficult to implement delete.

Cuckoo hashing. (linear-probing variant)

・Hash key to two positions; insert key into either position; if occupied,

reinsert displaced key into its alternative position (and recur).

・Constant worst case time for search.

51

Based on second hash function

Hash tables vs. balanced search trees

Hash tables.

・Simpler to code.

・No effective alternative for unordered keys.

・Faster for simple keys (a few arithmetic ops versus log N compares).

・Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.

・Stronger performance guarantee.

・Support for ordered ST operations.

・Easier to implement compareTo() correctly than equals() and hashCode().

Java system includes both.

・Red-black BSTs: java.util.TreeMap, java.util.TreeSet.

・Hash tables: java.util.HashMap, java.util.IdentityHashMap.

52

