Midterm exam

In-class midterm. 11-12:20pm on Tuesday, October 22.
* Rooms TBA.
* No makeups.

including associated
Rules readings and assignments

3.2 BINARY SEARCH TREES

(but no serious Java programming)

* Closed book, closed note.

» Covers all material thru Lecture 10 (hashing).
* No computers or other computational devices.
* 8.5-by-11 cheatsheet (one side, in your own handwriting).

Even better, warn us by email

before asking so we can think AlgOrltth

Midterm preparation. about them ahead of time!

» Study guide. Especially the old midterm and final problems!
- Form a study group! See “Search for Teammates” on Piazza. / ROPET SERGEVICR | KeviN W
http://algs4.cs.princeton.edu
* Leave A level problems to me, Bob or Guna. Some are very hard!
» Bring questions to precept, office hours, or review session.—

* No assignment this week specifically so you can start studying!

TBA

Inorder traversal

» Traverse left subtree.
* Print key.
» Traverse right subtree.

3.2 BINARY SEARCH TREES g v e ez 2

if (x == null) return;
inorder(x.left, q);
System.out.print(x.key + “ “);
inorder(x.right, q);

3

Algorithms
& » inorder traversal (oops!) ACEHRSX

Interpretation:
ROBERT SEDGEWICK | KEVIN WAYNE

http:/ /algsArcs.peincetdn.edu * Crawl around the graph counterclockwise, and yell when you see the
underside of a node.

Property. Inorder traversal of a BST yields keys in ascending order.




A 1 go r i th m S ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs
» B-frees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Symbol table review

Last time:
» BSTs are a huge step forward from an array or linked list.

Performance issues with BSTs:
e 1:
o 2:

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. deTete(L)

Choosing a replacement.
e Successor: N
* Predecessor: K

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. deTete(L)

Choosing a replacement.
* Successor: N [by convention]
* Predecessor: K




Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. deTete(L)

Smallest item in right subtree

Four pointers must change Available for garbage collection

« Parent of deleted node  Left child of successor

» Parent of successor » Right child of successor

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N =150

max = 16
avg = 9.3
opt=6.4

Surprising consequence. Trees not random (!) = sqrt (V) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

Symbol table review

worst-case cost average case
implementation (after N inserts) (after N random inserts) ordered key
) ) ) iteration? interface
search | insert | delete | search hit insert delete
N N N N

sequential search
g . N/2 N/2 no equalsQ
(unordered list)
binary search
Ig N N N IgN N/2 N/2 yes compareTo()
(ordered array)
BST N N N 1.39I1gN 1.391IgN ? yes compareTo()
BST, after
N N N VN JN JN yes compareTo()
many deletes
goal log N log N log N log N log N log N yes compareTo()

Challenge. Guarantee performance.

This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees (optional).

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu




2-3 tree

Allow 1 or 2 keys per node.
e 2-node: one key, two children.
* 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

\
How???

All shall be revealed.
2-node

smaller than E

null link

between E and J

2-3 tree demo

Search.
* Compare search key against keys in node.

O

* Find interval containing search key.
* Follow associated link (recursively).

search for H

2-3 Trees

M

Insert M (into 2-node)
* Mis bigger than H, and H.right is null.
* M joins H.
- Important: Never create new nodes at the bottom!

2-3 Trees

H
(E)

Insert H (into 3-node)
* Hjoins.
* [VIOLATION] 4 node created.
- Send R to its parent.
- Create two new 2-nodes from the debris.

* Important: Other than empty tree, only way to make new nodes.




2-3 Trees

(€ R) ay
L
(ac)  Cue)™ (s (ac)  GHLRY  (sx)

Insert L (into 3-node with 3-node parent)
e [VIOLATION] HLP created.

2-3 Trees

Insert L (into 3-node with 3-node parent)
* [VIOLATION] HLP created. Send L up, create H and P.
e [VIOLATION] ELR created.
* Send L to join parent (no parent, so new root)
- Create two new 2-nodes E-R from the debris.

- Each gets custody of two nodes.

* Important: Only way to increase tree height is by splitting the root.

2-3 Trees

Insert L (into 3-node with 3-node parent)
* [VIOLATION] HLP created. Send L up, create H and P.
e [VIOLATION] ELR created.

2-3 tree construction demo

insert S @




2-3 tree construction demo

2-3 tree

2-3 Tree Construction

Your turn.
* Insert B, I, M. Which tree do you get?

pollEv.com/jhug text to 37607

Which is the correct 2-3 tree?

[484710] [484711]

2-3 Tree Construction

One more.
* Suppose we insert 5 nodes and get the tree shown below:

(C
T

pollEv.com/jhug text to 37607
Which insertion sequence resulted in the tree above?
. ABCDE [489691]
CABDE [489700]
. ACEDB [489895]
None of these and the 2-3 tree is valid. [489896]
None of these and the 2-3 tree 1is invalid. [489897]

vi D W NP

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b cd
less between\  /between\ /between\ /between greater
than a aandb b and c candd dande than e
a ce
less between between between between greater
than a aandb b and c candd dande than e




Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

root parent is a 3-node

oo Ieft (T o) (bd )

@)
@),
|
©)
®
@,
@,

parent s a 2-node

left e @ middle ace
R 6 o R Ry @ R

right (3 right (3 B) (ab )
o ™ 3 —™qQ
bcd OO, X Q@ T

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
* Worst case:
* Best case:

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
* Worst case: IgN. [all 2-nodes]
logs N =.6311g N. [all 3-nodes]

* Between 12 and 20 for a million nodes.

* Best case:

* Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation . . .
) ) iteration? interface
delete | search hit delete

worst-case cost average case
(after N inserts) (after N random inserts) ordered key

sequential search

N N N/2 N N/2 equals
(unordered list) / / no 9 0
binary search N N Ig N N/2 N/2 es  compareToQ)
(ordered array) 9 9 yes
BST N N N 1.391gN 1.39IgN ? yes compareTo()
BST, after
N N JN JN JN yes compareTo()
many deletes
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo()

I

constants depend upon implementation




2-3 tree: implementation?

Direct implementation is complicated, because:
* Maintaining multiple node types is cumbersome.
* Need multiple compares to move down tree.
* Need to move back up the tree to split 4-nodes.

 Large number of cases for splitting. 3.3 BALANCED SEARCH TREES

fantasy code

public void put(Key key, Value val)
{ » red-black BSTs
Node x = root;
while (x.getTheCorrectChild(key) != null) o
: Algorithms
x = x.getTheCorrectChildKey(;
if (x.is4Node()) x.split(Q;

}
if (x.is2Node()) x.make3Node(key, val); ROBERT SEDGEWICK | KEVIN WAYNE
else if (x.is3Node()) x.make4Node(key, val);

} http://algs4.cs.princeton.edu

Bottom line. Could do it, but there's a better way.

The problem with 2-3 trees Leftleaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)
Hard to implement 1. Represent 2-3 tree as a BST.
* Multiple node types, 2-node, 3-node, 4-node 2. Use "internal" left-leaning links as "glue" for 3-nodes.

e Three children (leads to lots more cases)

3-node 0 N larger key is root
Goal: Represent as binary tree / (a)

less between greater greater
. Approach 1: Glue nodes than a aandb than b (Thtlll b
’ ’ less between -
- Wasted space, wasted link. e o thana ) (aandb
/

- Code probably messy. Z

y2

red links "glue" black links connect
. I u
* Approach 2: Build a regular BST. . Wm?in AP 2-nodes and 3-nodes
\
- Cannot map from BST back to 2-3 tree. 0 /

- No way to tell a 3-node from a 2-node. h

z

» Approach 3: BST with glue links.

7/
)
. s . 2-3 tree corresponding red-black BST
- Arbitrary restriction: Red links lean left. Vs

- Used widely in practice.
N




An equivalent definition

A BST such that:
* No node has two red links connected to it.
* Every path from root to null link has the same number of black links.
* Red links lean left. \

"perfect black balance"

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red-black tree

2-3 tree

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).

but runs faster
because of better balance

public Val get(Key key)
{
Node x = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = Xx.right;
else return x.val;
}
return null;
}

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =
can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node "

{ h.left.color e .
Key key; is RED G E}r}sggf/iél?wr
Value val; G
Node Teft, right; OO G
boolean color; // color of parent Tink
}

private boolean isRed(Node x)
{

if (x == null) return false;

return x.color == RED;
}

null links are black




Thought experiment on link color for new nodes

Should we use a red or a black link when inserting to the left of a 2-node?
* Red link.

What about in other cases (right of a 2-node, into a 3-node)?

* Red link. Because:
- Never create new nodes in a 2-3 tree except when splitting a 4 node.
- Every path to null must have the same number of black links.

& 5

/N 1
D)

Thought experiment on right insertions

What is the problem here?
* Red links must lean left (by definition).

How do we fix the problem?
* Swap roles of S and E
- Can generalize role-swapping for non-leaf nodes as left rotation.

o o

4 l

Easy Case 2: Inserting to the right of a 2-node

What is the problem here?
» Red links must lean left (by definition)

How do we fix the problem?
* Swap roles of S and E
- Can generalize role-swapping for non-leaf nodes as left rotation.
- Usefulness of rotation will become clear.

_

B —
A

More general approach

2-3 Tree Violations o
» Existence of 4-nodes.

Operations for fixing 2-3 tree violations

(E2)
* Splitting a 4 node. o o
O

LLRB Violations

» Two red children. G o
« Two consecutive red links. o o o o
(E)

 Right red child (breaks LL rule). o

Operations for fixing LLRB violations
* Left rotation. o
* Right rotation.
» Color flipping.
Overall strategy. Maintain 1-1 correspondence with 2-3 trees by
applying elementary red-black BST operations.

40




Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

bef
(beer) private Node rotateLeft(Node h)

{
assert isRed(h.right);
Node x = h.right;

X h.right = x.left;
less x.left = h;
than E x.color = h.color;
h.color = RED;
between greater return x;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

41

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

f
efen private Node rotatelLeft(Node h)
{
X assert isRed(h.right);
Node x = h.right;
h h.right = x.left;
greater x.left = h;
than S x.color = h.color;
h.color = RED;
less between return X;
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

42

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

bef
(before) private Node rotateRight(Node h)
{
h assert isRed(h.left);
Node x = h.left;
X h.left = x.right;
greater x.right = h;
than S x.color = h.color;
h.color = RED;
less between return X;
than E Eand S }

Invariants. Maintains symmetric order and perfect black balance.

43

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

f
(after) private Node rotateRight(Node h)
{
X assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
less x.right = h;
than E x.color = h.color;
h.color = RED;
between greater return x;
Eand S than S ¥

The node being rotated always ends up lower!

Invariants. Maintains symmetric order and perfect black balance.

44




Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors(Node h)
{
assert !isRed(h);
assert isRed(h.left);
assert isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater 3
than A Aand E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

45

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node h)
{
assert !isRed(h);
assert isRed(h.left);
assert isRed(h.right);
h.color = RED;
h.left.color = BLACK;
h.right.color = BLACK;

less between between greater i
than A Aand E Eand S than S

Invariants. Maintains symmetric order and perfect black balance.

46

right link red

(rotate E left)

47

Case 1: Two red children

What is the problem here?
e [LLRB VIOLATION] Two red links touching a single node.
e [2-3 VIOLATION] 4 node.
How to Resolve?
» Color flip.
» Equivalent to splitting 4 node. o

ooooo




Case 2: Consectutive red left children

What is the problem here?
. Two red links touching a single node.
. 4 node.

How to Resolve?
* Rotate F right (back to case 1: two red children).

(F)
0 (?)
CAEF)
(E?)

Case 3a: Red right child and black left child (alternate)

What is the problem here?
. Red link leans right.
* No 2-3 violation.

How to Resolve?
* Rotate A left. Done.

Case 3b: Red right child and black left child

What is the problem here?
. Two red links touching a single node.
. 4 node.

How to Resolve?
* Rotate A left. Puts us right back into Case 2.

PG

Red-black BST construction demo

insert S

2




Red-black BST construction demo

red-black BST

Insertion in a LLRB tree: Java implementation

Same code for all cases. ;(Q

* Right child red, left child black: rotate left.

h
* Left child, left-left grandchild red: rotate right. fe "
» Both children red: flip colors. h rotate ;&

\righr
rotate ﬂip
&\Q colors
private Node put(Node h, Key key, Value val)

{ insert at bottom
if (h == null) return new Node(key, val, RED); «— )
int cmp = key.compareTo(h.key); andlceloiiiech
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else if (cmp == 0) h.val = val;
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h); <——— lean left
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h); «<——— balance 4-node
if (isRed(h.left) && isRed(h.right)) flipColors(h); <—t— split 4-node
return h; T

} only a few extra lines of code provides near-perfect balance

Insertion in a LLRB tree: visualization

N =255
max = 8
avg = 7.0
opt=7.0

AOAAONN

A0

ATTe

i

255 insertions in ascending order

Insertion in a LLRB tree: visualization

N =255
max = 8
avg = 7.0
opt=7.0

AOGAONAAARARGAA

255 insertions in descending order




Insertion in a LLRB tree: visualization Balance in LLRB trees

Proposition. Height of tree is <2 1g N in the worst case.

Pf.
* Every path from root to null link has same number of black links.
* Never two red links in-a-row.

N =255

max = 10
avg =7.3
opt=7.0

M) "‘ “‘ .‘ t "‘. f“ "‘Y A"

255 random insertions

Property. Height of tree is ~ 1.00 Ig N in typical applications.

ST implementations: summary War story: why red-black?

Xerox PARC innovations. [1970s]
« Alto.

worst-case cost average case
(after N inserts) (after N random inserts) ordered key * GUL
implementation . .
. . iteration? interface * Ethernet. XEROX.
search | insert | delete search hit insert delete
N

sequential seérch N N N/2 N N/2 no equalsQ * |nterPress.
(unordered list)
* Laser printing.
binary search i i Xerox Alto
compareTo * Bitmapped display.
(ordered array) IgN N N Ig N N/2 N/2 yes p 6] pPp play
* WYSIWYG text editor.
BST (no deletes) N N N 1.39IgN 1.391gN ? yes compareTo() o
A DICHROMATIC FRAMEWORK FOR BALANCED TREES
2-3 tree clgN clgN clgN clgN clgN clgN yes compareTo() Lco J. Guibas Robert Sedgewick®
Xerox Palo Alto Rescarch Center, Program in Computer Science
Palo Alto, California, and and Brown University
Carnegie-Mellon University Providence, R. 1.
red-black BST 2IgN  2IgN  2IgN 1.00IgN* 1.00lgN* 1.001gN* yes compareTo() N e A e il st e ot
the way down towards a leaf. As we will sce, this has a number
ABSTRACT :lgmﬁc{m\ adv; over the older methods. We shail examine a

number of variations on a common theme and cxhibit full
implementations  which are notable for their brevity. One

implementation is camined carcfully, and some propertics about its

T this paper we present a aniform framework for the implementation
and study of hakanced tree algorithms. We show how to imbed i this

* exact value of coefficient unknown but extremely close to 1




War story: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
* Red-black BST search and insert; Hibbard deletion.

» Exceeding height limit of 80 triggered error-recovery process.
allows for up to 240 keys

Hibbard deletion
/was the problem
* Main cause = height bounded exceeded!

* Telephone company sues database provider.
* Legal testimony:

Extended telephone service outage.

“ If implemented properly, the height of a red-black BST
with N keys is at most 2 Ilg N. ”  — expert witness

I

3.3 BALANCED SEARCH TREES

» B-trees (optional)

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access
data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to M - 1 key-link pairs per node.

* At least 2 key-link pairs at root.
» At least M /2 key-link pairs in other nodes.
* External nodes contain client keys.

choose M as large as possible so
that M links fit in a page, e.g., M = 1024

* Internal nodes contain copies of keys to guide search.

sentinel key internal 3-node

each red key is a copy
of min key in subtree

external
3-node

N external 5-node (full) external 4-node
[*IBIC |[D[ETF J[HIT]3 J[KIMINTOTPT T [QIRIT J[UwXY ]
client keys (black) all nodes except the root are 3-, 4- or 5-nodes

are in external nodes

Anatomy of a B-tree set (M = 6)




Searching in a B-tree

 Start at root.
* Find interval for search key and take corresponding link.
» Search terminates in external node.

searching for E

follow this link because
E is between * and K ~_

Sfollow this link because
_—E® between D and H

search for E in e

this external node

Searching in a B-tree set (M = 6)

Insertion in a B-tree

* Search for new key.
* Insert at bottom.
* Split nodes with M key-link pairs on the way up the tree.

inserting A “TATKIQTU

[*IBICIETFIA] [HITI3 J[KMNOP J[QRT ] [UTw X ]
*ABCELF
ow key (A) causes — newkey (C) causes
o e Cjujkjo overflow and spli
[=IalB ] [CTETF ]

root split causes
a new root to be created

Inserting a new key into a B-tree set

65
Balance in Btree
Proposition. A search or an insertion in a B-tree of order M with N keys
requires between logx-1 N and logu2 N probes.
Pf. All internal nodes (besides root) have between M /2 and M -1 links.
In practice. Number of probes is at most 4. <—— M=1024; N = 62 billion

logmz N < 4
Optimization. Always keep root page in memory.
67

Building a large B tree

white: unoccupied portion of page

each line shows the result =
of inserting one key ————-
in some page

_— black: occupied portion of page

s full page, about to split

full page splits into
two half -full pages
then a new key is added
to one of them




Balanced trees in the wild

Red-black trees are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
e C++ STL: map, multimap, multiset.
e Linux kernel: completely fair scheduler, 1inux/rbtree.h.
* Emacs: conservative stack scanning.

B-tree variants. B+ tree, B*tree, B# tree, ...

B-trees (and variants) are widely used for file systems and databases.
* Windows: HPFS.
e Mac: HFS, HFS+.
e Linux: ReiserFS, XFS, Ext3FS, JFS.
» Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

69

Red-black BSTs in the wild

Common sense. Sixth sense.
Together they're the
FBI's newest team.

70

Red-black BSTs in the wild

ACT FOUR
FADE IN:
48 INT. FBI EQ - NIGHT 48

Antonio is at THE COMPUTER as Jess explains herself to Nicole
and Pollock. The CONFERENCE TABLE is covered with OPEN
REFERENCE BOOKS, TOURIST GUIDES, MAPS and REAMS OF PRINTOUTS.

JESS
It was the red door again.

POLLOCK
I thought the red door was the storage
container.

But it wasn't red anymore. It was
black.

ANTONIO
So red turning to black means...
what?

POLLOCK
Budget deficits? Red ink, black
ink?

NICOLE
Yes. I'm sure that's what it is.
But maybe we should come up with a
couple other options, just in case.

Antonio refers to his COMPUTER SCREEN, which is filled with
mathematical equations.

ANTONIO
It could be an algorithm from a binary
search tree. A red-black tree tracks
every simple path from a node to a
descendant leaf with the same number
of black nodes.

JESS
Does that help you with girls?

71




