How is the pacing of lectures overall? Skip this question if you do not attend lecture. Answer with respect to how well they are paced for you, not how well you think they are paced for the class as a whole.

Answered: $\mathbf{8 0}$ Skipped: 1

Algorithms

3.1 Symbol Tables

- API
- elementary implementations
- ordered operations

3.1 Symbol Tables

- API
- elementary implementations
ordered operations

Algorithms

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

Symbol tables

Key-value pair abstraction.

- Insert a value with specified key.
- Given a key, search for the corresponding value.

Ex. DNS lookup.

- Insert URL with specified IP address.
- Given URL, find corresponding IP address.

URL	IP address
www.cs.princeton.edu	128.112 .136 .11
www.princeton.edu	128.112 .128 .15
www.yale.edu	130.132 .143 .21
www.harvard.edu	128.103 .060 .55
www.simpsons.com	209.052 .165 .60
\uparrow	\uparrow
key	value

Symbol table applications

application	purpose of search	key	value
dictionary	find definition	word	definition
book index	find relevant pages	term	list of page numbers
file share	find song to download	name of song	computer ID
financial account	process transactions	account number	transaction details
web search	find relevant web pages	keyword	list of page names
compiler	find properties of variables	variable name	type and value
routing table	route Internet packets	destination	best route
DNS	find IP address given URL	URL	IP address
reverse DNS	find URL given IP address	IP address	URL
genomics	find markers	DNA string	known positions
file system	find file on disk	filename	location on disk

Basic symbol table API

Associative array abstraction. Associate one value with each key.
public class ST<Key, Value>

	ST()	create a symbol table
voi	put(Key key, Value val)	put key-value pair into the table (remove key from table if value is nu11)
Valu	get (Key key)	value paired with key (null if key is absent)
voi	delete(Key key)	remove key (and its value) from table
boolea	contains(Key key)	is there a value paired with key?
boolea	isEmpty()	is the table empty?
in	size()	number of key-value pairs in the table
Iterable<Key>	keys()	all the keys in the table

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input and print out one that occurs with highest frequency.

```
% more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair
% java FrequencyCounter 1 < tinyTale.txt
it 10
% java FrequencyCounter 8 < tale.txt
business }12
% java FrequencyCounter 10 < leipzig1M.txt
government 24763
```


tiny example (60 words, 20 distinct)
real example
(135,635 words, 10,769 distinct)
real example
(21,191,455 words, 534,580 distinct)

Conventions

- Values are not nut1.
- Method get() returns null if key not present.
- Method put() overwrites old value with new value.

Intended consequences.

- Easy to implement contains().

```
pub1ic boolean contains(Key key)
```

\{ return get(key) != null; \}

- Can implement lazy version of delete().

```
public void delete(Key key)
{ put(key, nul1); }
```


Keys and values

Value type. Any generic type.
specify Comparable in API.
Key type: several natural assumptions.

- Assume keys are Comparable, use compareTo().
- Assume keys are any generic type, use equals() to test equality.
- Assume keys are any generic type, use equals() to test equality; use hashCode() to scramble key.

(stay tuned)

Best practices. Use immutable types for symbol table keys.

- Immutable in Java: Integer, Double, String, java.io.File, ...
- Mutable in Java: StringBuilder, java.net.URL, arrays, ...

Equality test

All Java classes inherit a method equals().

- $x . e q u a l s(y)$ works for any objects x and y, even if different class.

Java requirements. For any references x, y and z :

- Reflexive: x.equals(x) is true.
- Symmetric: $x . e q u a 1 s(y)$ iff y.equals(x).
- Transitive: if x.equals(y) and y.equals(z), then x.equals(z).
- Non-null: $\quad x . e q u a 1 s(n u 11)$ is false.
do x and y refer to
the same object?
Default implementation. ($x==y$)

```
x = new Point(0, 0);
y = new Point(0, 0);
x.equals(y); //returns false
```

Customized implementations. Integer, Doub7e, String, java.io.File, ...
User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems easy.

```
public class Date implements Comparable<Date>
{
    private final int month;
    private final int day;
    private final int year;
    public boolean equals(Date that)
    {
            if (this.day != that.day ) return false;
            if (this.month != that.month) return false;
            if (this.year != that.year ) return false;
            return true;
    }
}
```


Implementing equals for user-defined types

Seems easy, but requires some care.
typically unsafe to use equals() with inheritance (would violate symmetry)

```
public final class Date implements Comparable<Date>
{
    private final int month;
    private final int day;
    private final int year;
    public boolean equals(Object y)
    {
        if (y == this) return true;
    if (y == nul1) return false; }\longleftarrow~\mathrm{ check for nul1
    if (y.getClass() != this.getClass())
        return false;
    Date that = (Date) y;
    if (this.day != that.day ) return false;
    if (this.month != that.month) return false;
    if (this.year != that.year ) return false;
    return true;
    }
}
```


Equals design

"Standard" recipe for user-defined types.

- Optimization for reference equality.
- Check against nut1.
- Check that two objects are of the same type and cast.
- Compare each significant field:
- if field is a primitive type, use ==
- if field is an object, use equals() \quad (apply rule recursively
- if field is an array, apply to each entry \longleftarrow alternatively, use Arrays.equals (a, b) or Arrays.deepEquals (a, b),
but not a.equals(b)
Best practices.
e.g. cached Manhattan() distance
- No need to use calculated fields that depend on other fields.
- Compare fields mostly likely to differ first.
- Make compareTo() consistent with equals().
$x . e q u a 1 s(y)$ if and only if (x.compareTo $(y)==0$)

3.1 Symbol Tables

- APH
- elementary implementations

Algorithms

ordered operations

Sequential search in a linked list

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

Trace of linked-list ST implementation for standard indexing client

Elementary ST implementations: summary

| ST implementation | worst-case cost
 (after N inserts) | average case
 (after N random inserts) | | ordered
 iteration? | key
 interface |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | search | insert | search hit | insert | |

Challenge. Efficient implementations of both search and insert.

Binary search in an ordered array

- Data structure. Maintain two arrays: One for keys, one for values.
- Keys are kept in order.
- Values kept at same index as corresponding key.

equal to the index of k if it is in keys[]

Trace of binary search for rank in an ordered array

Binary search: Java implementation

```
public Value get(Key key)
{
    if (isEmpty()) return nul1;
    int i = rank(key);
    if (i < N && keys[i].compareTo(key) == 0) return vals[i];
    else return null;
}
private int rank(Key key) number of keys < key
{
        int lo = 0, hi = N-1;
        while (lo <= hi)
        {
            int mid = 10 + (hi - 1o) / 2;
            int cmp = key.compareTo(keys[mid]);
            if (cmp < 0) hi = mid - 1;
            else if (cmp > 0) lo = mid + 1;
            else if (cmp == 0) return mid;
    }
    return 1o;
```

\}

Binary search: trace of standard indexing client

Problem. To insert, need to shift all greater keys over.

Elementary ST implementations: summary

ST implementation	worst-case cost (after N inserts)		average case (after N random inserts)		ordered iteration?	$\begin{gathered} \text { key } \\ \text { interface } \end{gathered}$
	search	insert	search hit	insert		
sequential search (unordered list)	N	N	N/2	N	no	equals()
binary search (ordered array)	$\log N$	N	$\log N$	$N / 2$	yes	compareTo()

Challenge. Efficient implementations of both search and insert.

3.1 Symbol Tables

Algorithms

-APH

- elementary implementations
- ordered operations

Examples of ordered symbol table API

	keys	values
$\min () \longrightarrow$	09:00:00	Chicago
	09:00:03	Phoenix
	09:00:13	Houston
$\operatorname{get}(09: 00: 13)$	09:00:59	Chicago
	09:01:10	Houston
floor(09:05:00) $\longrightarrow 09$	09:03:13	Chicago
	09:10:11	Seattle
select(7) \longrightarrow	09:10:25	Seattle
	09:14:25	Phoenix
	09:19:32	Chicago
	09:19:46	Chicago
keys(09:15:00, 09:25:00) \longrightarrow	09:21:05	Chicago
	09:22:43	Seattle
	09:22:54	Seattle
	09:25:52	Chicago
ceiling(09:30:00) \longrightarrow	09:35:21	Chicago
	09:36:14	Seattle
$\max () \longrightarrow 0$	09:37:44	Phoenix
size(09:15:00, 09:25:00) is 5 rank(09:10:25) is 7		

Ordered symbol table API

```
    public class ST<Key extends Comparable<Key>, Value>
            ST() create an ordered symbol table
            void put(Key key, Value val) putkey-value pair into the table
                            (remove key from table if value is nul1)
    value paired with key
    (nul1 if key is absent)
    remove key (and its value) from table
    is there a value paired with key?
    is the table empty?
    number of key-value pairs
    smallest key
    largest key
    largest key less than or equal to key
    smallest key greater than or equal to key
    number of keys less than key
    key of rank k
    delete smallest key
    delete largest key
    number of keys in [10...hi]
Iterable<Key> keys(Key 1o, Key hi) keys in [1o..hi], in sorted order
Iterable<Key> keys()
    all keys in the table, in sorted order
```

Binary search: ordered symbol table operations summary

	sequential search	binary search
search	N	$\lg N$
insert / delete	N	N
\min / \max	N	1
floor / ceiling	N	$\lg N$
rank	N	$\lg N$
select	N	1
ordered iteration	$N \lg N$	N

order of growth of the running time for ordered symbol table operations

Algorithms

3.2 Binary Search Trees

- BSTs
- deletion
- ordered operations (optional)

3.2 Binary Search Trees

- BSTs
- deletion
- ordered operations (optiónal)

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List

- Slow to find items we want (even though we're in order)

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List

- Slow to find items we want (even though we're in order)
- Adding (random) express lanes: Skip list (won’t discuss in 226)

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

- Slow to find items we want (even though we're in order)
- Move pointer to middle: Can't see earlier elements

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

- Slow to find items we want (even though we're in order).
- Pointer in middle, flip left links: Search time is halved.

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

- Slow to find items we want (even though we're in order).
- Pointer in middle, flip left links: Search time is halved.
- Can do better: Dream big!

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

- Slow to find items we want (even though we're in order).
- Pointer in middle, flip left links: Search time is halved.
- Allow every node to make big jumps.

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

- Slow to find items we want (even though we're in order).
- Pointer in middle, flip left links: Search time is halved.
- Allow every node to make big jumps.

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

- Slow to find items we want (even though we're in order).
- Pointer in middle, flip left links: Search time is halved.
- Allow every node to make big jumps.

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

Binary search tree demo

Search. If less, go left; if greater, go right; if equal, search hit.

successful search for H

Binary search tree demo

Insert. If less, go left; if greater, go right; if null, insert.
insert G

How many BSTs?

pollEv.com/jhug
text to 37607

How many of the figures above are BSTs?
A. 1
[907808]
C. 3
D. 4
[907810]
B. 2
[907809]
[907811]

BST representation in Java

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:

- A Key and a value.
- A reference to the left and right subtree.


```
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
        this.key = key;
        this.val = val;
    }
}
```


[^0]
BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value>
{
            private Node root;
    private class Node
    { /* see previous slide */ }
    public void put(Key key, Value val)
    { /* see next slides */ }
    public Value get(Key key)
    { /* see next slides */ }
    public void delete(Key key)
    { /* see next slides */ }
    public Iterable<Key> iterator()
    { /* see next slides */ }
}
```


BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key) {
    return get(root, key);
}
```

```
public Value get(Node x, Key key) {
    if (x == nul1) return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return get(x.left, key);
    if (cmp > 0) return get(x.right, key);
    if (cmp == 0) return x.value;
}
```

don't write if statements like this! Use else instead!

This code is like this to match the pseudocode on the board.

Cost. Number of compares is equal to $1+$ depth of node.

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key) {
    return get(root, key);
}
```

```
public Value get(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return get(key, x.left);
    else if (cmp > 0) return get(key, x.right);
    else return x.value;
}
```

Cost. Number of compares is equal to $1+$ depth of node.

BST search: Java implementation

Style warning. Don't be afraid to rely on your base cases!

```
public Value get(Key key) {
    return get(root, key);
}
```

```
public Value get(Node x, Key key) {
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        if (x.left == null) return null;
        else
    if (cmp > 0)
        if (x.right == nul1) return nul1;
        else return get(key, x.right);
    else return x.value;
}
```

KdTree. This will be very important for assignment 5 (due after break)!

BST search: Java implementation

Iterative version.

- More intuitive for novices.
- Slightly better performance.
- Harder to prove correctness for experts.
- Much more complex code for fancier trees (stay tuned).

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return nul1;
}
```


BST insert

Put. Associate value with key.

Search for key, then two cases:

- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.
public void put(Key key, Value val) \{ put(root, key, val);
\}
private Node put(Node x, Key key, Value val) \{
\}
inserting L

create new node \rightarrow

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

```
public void put(Key key, Value val)
    { root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
    if (x == nul7) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else x.value = val;
    return x;
}
```

Cost. Number of compares is equal to $1+$ depth of node.

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to $1+$ depth of node.

Remark. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order.

Sorting using a BST

Proposed sort for arbitrary data.

- Insert all items into a binary search tree.
- Print out the tree in order (takes N time, algorithm in a few slides).
pollEv.com/jhug text to 37607
What is the runtime of this sort? (May be more than one right answer)
$O(N \log N): \quad A l w a y s$ runs in $N \log N$ time or less. 907734 $0\left(N^{2}\right)$:

Always runs in N^{2} time or less. 907735
$\Omega(N \log N): A l w a y s$ runs in $N \log N$ time or more. 907736
$\Theta(N \log N): \quad A l w a y s$ runs in exactly $N \log N$ time. 907737

Correspondence between BSTs and quicksort partitioning

0	1	2	3	4	5	6	7	8	9	10	11	12	13
P	S	E	U	D	0	M	Y	T	H	1	C	A	L
P	S	E	U	D	0	M	Y	T	H	1	C	A	L
H	L	E	A	D	0	M	C	1	P	T	Y	U	S
D	C	E	A	H	0	M	L	1	P	T	Y	U	S
A	C	D	E	H	0	M	L	I	P	T	Y	U	S
A	C	D	E	H	0	M	L	I	p	T	Y	U	S
A	C	D	E	H	0	M	L	I	P	T	Y	U	S
A	C	D	E	H	0	M	L	I	P	T	Y	U	S
A	C	D	E	H	1	M	L	0	p	T	Y	U	S
A	C	D	E	H	1	M	L	0	P	T	Y	U	S
A	C	D	E	H	I	L	M	0	P	T	Y	U	S
A	C	D	E	H	I	L	M	0	P	T	Y	U	S
A	C	D	E	H	I	L	M	0	P	S	T	U	Y
A	C	D	E	H	I	L	M	0	P	S	T	U	Y
A	C	D	E	H	1	L	M	0	P	S	T	U	Y
A	C	D	E	H	1	L	M	0	P	S	T	U	Y
A	C	D	E	H	1	L	M	0	P	S	T	U	Y

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1-1 correspondence with quicksort partitioning (optional: see recurrence relation in book for full proof).

Proposition. [Reed, 2003] If N distinct keys are inserted in random order, expected height of tree is $\sim 4.311 \ln N$.

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France
reed@moka.ccr.jussieu.fr

ABSTRACT
Let H_{n} be the height of a random binary search tree on n nodes. We show that there exists constants $\alpha=4.31107$.. and $\beta=1.95 \ldots$ such that $\mathrm{E}\left(H_{n}\right)=\alpha \log n-\beta \log \log n+$ $O(1)$, We also show that $\operatorname{Var}\left(H_{n}\right)=O(1)$.

But... Worst-case height is N. (exponentially small chance when keys are inserted in random order)

ST implementations: summary

Why don't we just shuffle to ensure probabilistic guarantee of height 4.311 In N?

3.2 Binary Search Trees

Algorithms

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

ST implementations: summary

implementation	guarantee			average case			ordered iteration?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	$1.39 \lg \mathrm{~N}$		yes	compareTo()

Next. Deletion in BSTs.

BST deletion: lazy approach

To remove a node with a given key:

- Set its value to null.
- Leave key in tree to guide search (but don't consider it equal in search).

Cost. $\sim 2 \ln N^{\prime}$ per insert, search, and delete (if keys in random order), where N^{\prime} is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone (memory) overload.

Hibbard deletion

To delete a node with key k : search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

Example. delete(H)

Available for garbage collection
Recursive Call. Much like put(), visited nodes return a new pointer used by parent. Example: When $x=I: x .1 e f t=\operatorname{delete}(x .1 e f t, H)$;

When $x=H$: return null;

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 1. [1 child] Delete t by replacing parent link.

Example. de7ete(R)

Available for garbage collection

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 2. [2 children] Delete t by replacing parent link.

Example. de7ete(L)

pollEv.com/jhug text to 37607 Which key could we move into L's place and still have a BST?

A	$[907394]$
H	$[907395]$
K	$[907396]$
R	$[907397]$
P	$[907398]$
N	$[907399]$

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 2. [2 children] Delete t by replacing parent link.

Example. de7ete(L)

Choosing a replacement.

- Successor: N
- Predecessor: K

Hibbard deletion

To delete a node with key k : search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. de7ete(L)

Choosing a replacement.

- Successor: N [by convention]
- Predecessor: K

Hibbard deletion

To delete a node with key k : search for node t containing key k .

Case 2. [2 children] Delete t by replacing parent link.

Example. de7ete(L)

Smallest item in right subtree

Four pointers must change.
Available for garbage collection

- Parent of deleted node
- Parent of successor
- Left child of successor
- Right child of successor

```
public void delete(Key key)
{ root = delete(root, key); }
private Node delete(Node x, Key key) {
    if (x == nul1) return null;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = delete(x.left, key);
    else if (cmp > 0) x.right = delete(x.right, key);
    else {
        if (x.right == null) return x.left;
        if (x.left == null) return x.right;
        Node t = x;
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.count = size(x.left) + size(x.right) + 1;
    return x;
}
```


Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) \Rightarrow sqrt (N) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

implementation	guarantee			average case			ordered iteration?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo()
BST	N	N	N	$1.39 \lg \mathrm{~N}$	$1.39 \lg N$		yes	compareTo()

Next lecture. Guarantee logarithmic performance for all operations.

3.2 Binary Search Trees

Algorithms

- BSTs

- deletion
- ordered operations (optional)

Robert Sedgewick । Kevin Wayne
http://algs4.cs.princeton.edu

Minimum and maximum

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```
public Iterable<Key> keys()
{
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}
private void inorder(Node x, Queue<Key> q)
{
        if (x == nul1) return;
        inorder(x.left, q);
        q.enqueue(x.key);
        inorder(x.right, q);
}
```


Property. Inorder traversal of a BST yields keys in ascending order.

Floor and ceiling

Floor. Largest key \leq a given key.
Ceiling. Smallest key \geq a given key.

Q. How to find the floor / ceiling?

Computing the floor of k

Case 1. [k equals the key at root] The floor of k is k.

Case 2. [k is less than the key at root] The floor of k is in the left subtree.

Case 3. [k is greater than the key at root] The floor of k is in the right subtree (if there is any key $\leq k$ in right subtree); otherwise it is the key in the root.

Computing the floor

```
public Key floor(Key key)
{
    Node x = floor(root, key);
    if (x == null) return null;
    return x.key;
}
private Node floor(Node x, Key key)
{
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if (cmp == 0) return x;
    if (cmp < 0) return floor(x.left, key);
    Node t = floor(x.right, key);
    if (t != null) return t;
    else
        return x;
}
```

finding floor (G)

on the right
suorree is null

Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node; to implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().

BST implementation: subtree counts

private class Node \{
private Key key;
private Value val;
private Node left;
private Node right;
private int count;
\}

```
public int size()
{ return size(root); }
```

private int size(Node x)
\{
if ($x==$ nul1) return 0 ;
return x.count; ok to call
\} when x is null
private Node put(Node x, Key key, Value val)
\{
if $(x==n u 11)$ return new Node(key, val);
int cmp = key.compareTo(x.key);
if (cmp < 0) x.1eft = put(x.1eft, key, val);
else if (cmp > 0) x.right $=$ put(x.right, key, val);
else if (cmp ==0) x.val = val;
x.count = 1 + size(x.left) + size(x.right);
return x;
\}

Rank

Rank. How many keys < k ?

Easy recursive algorithm (3 cases!)


```
public int rank(Key key)
{ return rank(key, root); }
private int rank(Key key, Node x)
{
    if (x == nul1) return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0) return rank(key, x.left);
    else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
    else if (cmp == 0) return size(x.left);
}
```


BST: ordered symbol table operations summary

order of growth of running time of ordered symbol table operations

[^0]: Key and Va7ue are generic types; Key is Comparable

