
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

2.3  QUICKSORT

‣ quicksort

‣ practical improvements

‣ defeating quicksort (optional)



2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

・Full scientific understanding of their properties has enabled us

to develop them into practical system sorts.

・Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Mergesort.

・Java sort for objects.

・Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort.

・Java sort for primitive types. 

・C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

last lecture

this lecture



3

Quicksort t-shirt



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ practical improvements

‣ defeating quicksort (optional)

2.3  QUICKSORT



5

Partitioning - the heart of Quicksort

Partitioning.

・To Partition an array a[] on element x=a[i] is to rearrange it such that

– x moves to position j (may be the same as i)

– All entries to the left of x are <= x.

– All entries to the right of x are >= x.

Q: Which partitions are valid?
A:     [103370]                      A, B, C:     [103407]
A, B:  [103400]                      A, B, C, D:  [103424] 

     NONE: [103425]

pollEv.com/jhug              text to 37607

5 550 10 4 10 9 330

4 5 9 10 10 330 550

5 9 10 4 10 550 330

5 4 9 10 10 550 330

5 9 10 4 10 550 330

A.
B.

C.
D.



On board

・Partition based sorting (a.k.a. quicksort)?

・How do we partition?

6



Partition!

7

2 4 5 3 1 6 7 8

1 2 5 3 4

Q: How many total compares were made while partitioning on 2?
A. 3      [104701]        D. 6     [104757]
B. 4      [104734]        E. 7     [104765]
C. 5      [104736]

pollEv.com/jhug                                                                              text to 37607



8

Quicksort:  Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
   int i = lo, j = hi+1;
   while (i < j)
   {
      while (less(a[++i], a[lo]))
         if (i == hi) break;

      while (less(a[lo], a[--j]))
         if (j == lo) break;
     
      if (i >= j) break;
      exch(a, i, j);
   }

   exch(a, lo, j);
   return j;
} 

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview



9

Quicksort:  Java implementation

public class Quick
{
   private static int partition(Comparable[] a, int lo, int hi)
   {  /* see previous slide */  }

   public static void sort(Comparable[] a)
   {
      StdRandom.shuffle(a);
      sort(a, 0, a.length - 1);
   }

   private static void sort(Comparable[] a, int lo, int hi)
   {
      if (hi <= lo) return;
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
  }
} 

shuffle needed for 

performance guarantee

(stay tuned)



Quicksort animation

10

http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order



Compare analysis

On board

・Best case

・9/10ths case

・Worst case

・Average case recurrence relation

11



Worst case.  Number of compares is ~ ½ N 2 .

12

Quicksort:  worst-case analysis

random shuffle

initial values



13

Quicksort:  best-case analysis

Best case.  Number of compares is ~ N lg N.

random shuffle

initial values



Proposition.  The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf.  CN satisfies the recurrence C0 = C1 = 0 and for N  ≥  2:

・Multiply both sides by N and collect terms:

・Subtract from this equation the same equation for N - 1: 

・Rearrange terms and divide by N (N + 1):

14

Quicksort:  average-case analysis

CN

N + 1
=

CN�1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN�1)

NCN � (N � 1)CN�1 = 2N + 2CN�1

CN = (N + 1) +

�
C0 + CN�1

N

�
+

�
C1 + CN�2

N

�
+ . . . +

�
CN�1 + C0

N

�
partitioning

partitioning probability

left right



・Repeatedly apply above equation:

・Approximate sum by an integral:

・Finally, the desired result:

CN

N + 1
=

CN�1

N
+

2
N + 1

=
CN�2

N � 1
+

2
N

+
2

N + 1

=
CN�3

N � 2
+

2
N � 1

+
2
N

+
2

N + 1

=
2
3

+
2
4

+
2
5

+ . . . +
2

N + 1

15

Quicksort:  average-case analysis

CN � 2(N + 1) lnN ⇥ 1.39N lg N

previous equation

CN = 2(N + 1)
✓

1
3

+
1
4

+
1
5

+ . . .

1
N + 1

◆

⇠ 2(N + 1)
Z N+1

3

1
x

dx

substitute previous equation



Sounds of sorting

16

Quicksort (Compares)

Best Average Worst

~N2/2~N lg N ~1.39 N lg N 



Quicksort performance

Preserving randomness.  Shuffling provides probabilistic guarantee of 

average case behavior.

・More compares than Mergesort.

17

Quicksort (Compares)

Best Average Worst

~N2/2~N lg N ~1.39 N lg N 

Mergesort (Compares)

Best Average Worst

~N lg N~1/2 N lg N



18

Quicksort:  empirical analysis

Running time estimates:

・Home PC executes 108 compares/second.

・Supercomputer executes 1012 compares/second.

Lesson 1.  Good algorithms are better than supercomputers.

Lesson 2.  Great algorithms are better than good ones.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant



19

Quicksort:  implementation details

Partitioning in-place.  Using an extra array makes partitioning easier

(and stable), but is not worth the cost.

Terminating the loop.  Testing whether the pointers cross is a bit trickier 

than it might seem.

Preserving randomness.  Shuffling is needed for performance guarantee.

Equal keys.  When duplicates are present, it is (counter-intuitively) better

to stop scans on keys equal to the partitioning item's key.



Equal Keys.

20

Q: What is the result of partitioning:                                                          

pollEv.com/jhug              text to 37607

A A A A A A A

A A A A A A A

A A A A A A A

A A A A A A A

Correct Answer: The middle one!

・8 total compares

・3 swaps involving non-pivot As

・{1, 6}, {2, 5}, {3, 4}

・1 swap involving the pivot {1, 4}



Equal Keys.

21

Q: What is the result of partitioning if we do not stop on equal values?

pollEv.com/jhug              text to 37607

A A A A A A A

A A A A A A A

A A A A A A A

Correct Answer: The top one!

・At least 12 total compares

・Precise number depends on code

・1 swap involving the pivot and itself

Total running time?

・Order of growth: N2

A A A A A A A



22

Quicksort:  summary of performance characteristics

Worst case.  Number of compares is quadratic.

・ N + (N - 1) + (N - 2)  + … + 1  ~  ½ N 2.

・More likely that your computer is struck by lightning bolt.

Average case.  Number of compares is ~ 1.39 N lg N.

・39% more compares than mergesort.

・But faster than mergesort in practice because of less data movement.

Random shuffle.

・Probabilistic guarantee against worst case.

・Basis for math model that can be validated with experiments.

Caveat emptor.  Many textbook implementations go quadratic if array

・Is sorted or reverse sorted.

・Has many duplicates (even if randomized!)



Proposition.  Quicksort is an in-place sorting algorithm.

Pf.

・Partitioning:  constant extra space.

・Depth of recursion:  logarithmic extra space (with high probability).

Proposition.  Quicksort is not stable.

Pf.

23

Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee logarithmic depth by recurring

on smaller subarray before larger subarray



COS226: Quicksort vs. Mergesort

24

algorithm Mergesort Quicksort

Recursion Before doing work Do work first

Deterministic Yes No

Compares (worst) ~ N lg N ~N2 / 2

Compares (average) ~ 1.39 N lg N

Exchanges (average) N/A ~ 0.23 N lg N

Stable Yes No

Memory Use N In-place

Overall Performance Worse Better



COS226: Quicksort vs. Mergesort

25

Mergesort Quicksort

Beauty Motivation

EffortComprehension



COS226: Quicksort vs. Mergesort

26

Beauty Motivation

EffortComprehension

“Mathematics, rightly viewed, possesses not only truth, but 
supreme beauty — a beauty cold and austere, like that of 
sculpture, without appeal to any part of our weaker nature, 
without the gorgeous trappings of painting or music, yet sublimely 
pure, and capable of a stern perfection such as only the greatest 
art can show. The true spirit of delight, the exaltation, the sense of 
being more than Man, which is the touchstone of the highest 
excellence, is to be found in mathematics as surely as poetry” —  
Bertrand Russell (The Study of Mathematics. 1919)



Quicksort Inventor.

Tony Hoare.

・QuickSort invented in 1960 at age 26

– Used to help with machine translation project

・Also invented the null-pointer

・4 honorary doctorates

・1 real doctorate

・Knight

27

Sir Charles Antony Richard Hoare
1980 Turing Award

“ I call it my billion-dollar mistake. It was the invention of the null reference in 1965. 
At that time, I was designing the first comprehensive type system for references in an 
object oriented language (ALGOL W). My goal was to ensure that all use of 
references should be absolutely safe, with checking performed automatically by the 
compiler. But I couldn't resist the temptation to put in a null reference, simply because 
it was so easy to implement. This has led to innumerable errors, vulnerabilities, and 
system crashes, which have probably caused a billion dollars of pain and damage in 
the last forty years. ”    —  Tony Hoare (2009)



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ practical improvements

‣ defeating quicksort (optional)

2.3  QUICKSORT



29

Quicksort:  practical improvements

Median of sample.

・Best choice of pivot item = median.

・Estimate true median by taking median of sample.

・Median-of-3 (random) items.

 private static void sort(Comparable[] a, int lo, int hi)
 {
    if (hi <= lo) return;

    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);

    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
 }

~  12/7   N ln N compares (slightly fewer) 

~  12/35 N ln N exchanges (slightly more)



Insertion sort small subarrays.

・Even quicksort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 10 items.

・Note: could delay insertion sort until one pass at end.

 private static void sort(Comparable[] a, int lo, int hi)
 {
    if (hi <= lo + CUTOFF - 1)
    {
       Insertion.sort(a, lo, hi);
       return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
 }

30

Quicksort:  practical improvements



Quicksort with median-of-3 and cutoff to insertion sort:  visualization

31

partitioning element

Quicksort with median-of-3 partitioning and cuto! for small subarrays

input

result

result of
"rst partition

left subarray
partially sorted

both subarrays 
partially sorted

Q: Assume an array of length 
N and that we abort sorting 
for arrays less than length 
10.

How many inversions remain 
at the last step shown (to 
left) in the worst case?

A. Θ(N^2)     [104533]
B. Θ(cN^2)    [104539]
c. Θ(N)       [104545]
d. Θ(cN)      [104554]

pollEv.com/jhug          text to 37607



32

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

・Sort population by age.

・Remove duplicates from mailing list.

・Sort job applicants by college attended.

・Place children in magical residential colleges.

 Typical characteristics of such applications.

・Huge array.

・Small number of key values.

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key



33

Duplicate keys

Mergesort with duplicate keys.  Between ½ N lg N and N lg N compares.

Quicksort with duplicate keys.  Algorithm goes quadratic unless 

partitioning stops on equal keys!

which is why ours does!

(but many textbook implementations do not)

S T O P O N E Q U A L K E Y S

swap if we don't stop 

on equal keys

if we stop on 

equal keys



Duplicate keys:  the problem

Mistake.  Put all items equal to the partitioning item on one side.

Consequence.   ~ ½ N 2 compares when all keys equal.

Recommended.  Stop scans on items equal to the partitioning item.

Consequence.  ~ N lg N compares when all keys equal.

Desirable.  Put all items equal to the partitioning item in place.

34

B A A B A B B B C C D        A A A A A A A A A A A

B A A B A B C D B C B        A A A A A A A A A A A

A A A B B B B B C D C        A A A A A A A A A A A



Goal.  Partition array into 3 parts so that:

・Entries between lt and gt equal to partition item v.

・No larger entries to left of lt.

・No smaller entries to right of gt.

Dutch national flag problem.  [Edsger Dijkstra]

・Conventional wisdom until mid 1990s:  not worth doing.

・New approach discovered when fixing mistake in C library qsort().

・Now incorporated into qsort() and Java system sort.

35

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning



Key Insight

・Given an array of length N and k distinct items.

・How many times do you have to partition?

– k, each taking Θ(N) time.

・Order of growth: N

36

3-way partitioning

equal to partitioning element

Visual trace of quicksort with 3-way partitioning

Assumed constant



Real world considerations

Introsort

・Detect when sort goes quadratic (recursion depth exceeds some level).

– Switch to heapsort (or mergesort).

・Detect when subproblem is less than size 15 or so.

– Insertion sort is faster for small arrays.

Handling almost sorted arrays

・Can optimize Quicksort to handle this. Or...

– Timsort (fancy mergesort)

– Smoothsort

– Insertion Sort (if you’re feeling lucky!)

37



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ practical improvements

‣ defeating quicksort (optional)

2.3  QUICKSORT



Defeating deterministic Quicksort

Goal

・Find a sequence of integers such that pivot(s) always ends up within a 

constant distance of the left edge.

– Results in O(N2) runtime.

39

p

p

p

p

...



Defeating deterministic Quicksort

Evil Integer

・True form set at time of creation.

・Chosen form is chosen later.

– Permanent choice.

– Becomes solid after choice.

40

class EvilInteger {
int trueForm;
int chosenForm;
boolean solid;

EvilInteger(int value) {
trueForm = value;

}
} 

True 0 1 2 3 4

Chosen 10 7

Solid False False True True False



Comparing Evil Integers (three cases)

I. Both are solid.

・Compare with chosen value.

41

True 0 1 2 3 4

Chosen 10 7

Solid False False True True False



Comparing Evil Integers (three cases)

I. Both are solid.

・Compare with chosen value.

42

A[2] < A[3]?

10 < 7?

False

True 0 1 2 3 4

Chosen 10 7

Solid False False True True False



Comparing Evil Integers (three cases)

I. Both are solid.

・Compare with chosen value.

II. One is solid, one is not.

・Solid one is considered less.

・The gooey one gains ‘the mark’.

43

A[3] < A[1]?

True

  7 <           ?

True 0 1 2 3 4

Chosen 10 7

Solid False False True True False



Comparing Evil Integers (three cases)

I. Both are solid.

・Compare with chosen value

II. One is solid, one is not.

・Solid one is considered less.

・The gooey one gains ‘the mark’.

44

A[3] < A[1]?

  7 <           ?

True

True 0 1 2 3 4

Chosen 10 7

Solid False False True True False



Comparing Evil Integers (three cases)

I. Both are solid.

・Compare with chosen value

II. One is solid, one is not.

・Solid one is considered less.

・The gooey one gains ‘the mark’.

45

A[3] < A[0]?

  7 <           ?

True

True 0 1 2 3 4

Chosen 10 7

Solid False False True True False



True 0 1 2 3 4

Chosen 42 10 7

Solid False True True False

I. Both are solid.

・Compare with chosen value

II. One is solid, one is not.

・Solid one is considered less.

・The gooey one gains ‘the mark’.

III. Neither is solid.

・One chooses a value and becomes solid.

– Newly chosen value must be larger than all others.

– If either Evil Integer is marked, it preferentially solidifies.

・Go to case II.

42

Comparing Evil Integers (three cases)

46

A[0] < A[4]?

<        ?

Must be bigger than 7 and 10

FalseTrue



True 0 1 2 3 4

Chosen 42 10 7

Solid False True True False

I. Both are solid.

・Compare with chosen value

II. One is solid, one is not.

・Solid one is considered less.

・The gooey one gains ‘the mark’.

III. Neither is solid.

・One chooses a value and becomes solid.

– Newly chosen value must be larger than all others.

– If either Evil Integer is marked, it preferentially solidifies.

・Go to case II.

True

42

Comparing Evil Integers (three cases)

47

A[0] < A[4]?

<        ?

True



I. Both are solid.

・Compare with chosen value

II. One is solid, one is not.

・Solid one is considered less.

・The gooey one gains ‘the mark’.

III. Neither is solid.

・One chooses a value and becomes solid.

– Newly chosen value must be larger than all others.

– If either Evil Integer is marked, it preferentially solidifies.

・Go to case II.

True 0 1 2 3 4

Chosen 42 10 7

Solid True False True True False

Comparing Evil Integers (three cases)

48



Observations

・Evil integers that solidify first have smallest values.

・Evil integers tell a consistent story (not obvious!).

– Obey all the normal properties of an inequality.

– Example: If E0 < E1 at some point, E0 will always be less than E1.

Reminder

・Goal: Find a sequence of integers that causes Quicksort to go 

quadratic.

Comparing Evil Integers

49

True 0 1 2 3 4

Chosen 42 10 7

Solid True False True True False



Using first element as pivot.

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C

Quicksorting Evil Integers

50

L G



Using first element as pivot.

・A[L] < p?

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

51

L G



Using first element as pivot.

・A[L] < p?

– 23 <            ?

– Yes. 

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

52

L G



Using first element as pivot.

・A[L] < p?

– 23 <            ?

– Yes. 

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

53

L G



Using first element as pivot.

・A[L] < p?

– 23 <            ?

– Yes. 

・A[L] < p?

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

54

L G



Using first element as pivot.

・A[L] < p?

– 23 <            ?

– Yes. 

・A[L] < p?

–          < 24?

– No.

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

55

L G



Using first element as pivot.

・A[G] > p?

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

56

L G



Using first element as pivot.

・A[G] > p?

–          > 24?

– Yes!

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

57

GL



Using first element as pivot.

・A[G] > p?

–          > 24?

– Yes!

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

58

GL



Using first element as pivot.

・A[G] > p?

–          > 24?

– Yes!

・A[G] > p? 

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

59

GL



Using first element as pivot.

・A[G] > p?

–          > 24?

– Yes!

・A[G] > p?

–           > 24?

– Yes!

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

60

GL



Using first element as pivot.

・A[G] > p?

–          > 24?

– Yes!

・A[G] > p?

–           > 24?

– Yes!

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

61

GL



Using first element as pivot.

・A[G] > p?

–          > 24?

– Yes!

・A[G] > p?

–           > 24?

– Yes!

・A[G] > p?

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

62

G L



Using first element as pivot.

・A[G] > p?

–          > 24?

– Yes!

・A[G] > p?

–           > 24?

– Yes!

・A[G] > p?

– 23 > 24?

– No!

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

63

G L



Using first element as pivot.

・L and G have both stopped.

– L > G, so don’t swap A[L] and A[G].

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

64

G L



Using first element as pivot.

・L and G have both stopped.

– L > G, so don’t swap A[L] and A[G].

・Swap pivot (24) and A[G]

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 23

Quicksorting Evil Integers

65

G L



Using first element as pivot.

・L and G have both stopped.

– L > G, so don’t swap A[L] and A[G].

・Swap pivot (24) and A[G]

T 1 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 23 24

Quicksorting Evil Integers

66

Subproblem of size N-2



Using median of 3 as pivot.

・Median identification.

– Involves compares.

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 23 24

Quicksorting Evil Integers

67



Using median of 3 as pivot.

・Median identification.

– Involves compares.

– 23 < 24 <

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 23 24

Quicksorting Evil Integers

68



Using median of 3 as pivot.

・Median identification.

– Involves compares.

– 23 < 24 <

・Swap median (24) into pivot position.

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 23 24

Quicksorting Evil Integers

69



Using median of 3 as pivot.

・Median identification.

– Involves compares.

– 23 < 24 <

・Swap median (24) into pivot position.

T 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0

C 24 23

Quicksorting Evil Integers

70



Using median of 3 as pivot.

・L will immediately stop (       is not less than 24)

T 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0

C 24 23

Quicksorting Evil Integers

71

L G



Using median of 3 as pivot.

・L will immediately stop (       is not less than 24)

・G will immediately stop (23 is not greater than 24)

T 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0

C 24 23

Quicksorting Evil Integers

72

L G



Using median of 3 as pivot.

・L will immediately stop (       is not less than 24)

・G will immediately stop (23 is not greater than 24)

・Swap       and 23

T 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0

C 24 23

Quicksorting Evil Integers

73

L G



Using median of 3 as pivot.

・L will immediately stop (       is not less than 24)

T 18 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

C 24 23

Quicksorting Evil Integers

74

L G



Using median of 3 as pivot.

・L will immediately stop (       is not less than 24)

・G will go all the way to the beginning (      are all bigger than 24)

T 18 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

C 24 23

Quicksorting Evil Integers

75

L G



Using median of 3 as pivot.

・L and G have both stopped.

・L > G.

– So don’t swap A[L] and A[G].

T 18 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

C 24 23

Quicksorting Evil Integers

76

LG



Using median of 3 as pivot.

・L and G have both stopped.

・L > G.

– So don’t swap A[L] and A[G].

・Swap pivot (24) and A[G].

T 18 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

C 24 23

Quicksorting Evil Integers

77

LG



Using median of 3 as pivot.

・L and G have both stopped.

・L > G.

– So don’t swap A[L] and A[G].

・Swap pivot (24) and A[G].

T 18 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

C 23 24

Quicksorting Evil Integers

78

Subproblem of size N-2



What’s going on here?

・Pivot is reused by quicksort during every compare.

– Pivot solidifies earlier than almost all other elements.

・Let k be number of items used to decide pivot.

– Evil Integer pivot is always within first k positions.

T 18 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1

C 23 24

Quicksorting Evil Integers

79

Subproblem of size N-2



Observations

・Evil Integers cause Quicksort to go quadratic.

Reminder

・Goal: Find a sequence of integers that causes Quicksort to go 

quadratic.

Upon completion

Comparing Evil Integers

80

T 9 0 2 10 4 11 6 12 8 13 3 14 7 15 5 16 1 17 18

C 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40



Starting Evil Integer array

After Quicksorting

Just put them back where they started

・Sort Evil Integers by their true value

Extracting information from Evil Integers

81

T 9 0 2 10 4 11 6 12 8 13 3 14 7 15 5 16 1 17 18

C 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 39 25 33 27 37 29 35 31 23 26 28 30 32 34 36 38 40

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C



Starting Evil Integer array

Upon completion

Sneaky trick

・Sort EvilIntegers by true value:

Comparing Evil Integers

82

T 9 0 2 10 4 11 6 12 8 13 3 14 7 15 5 16 1 17 18

C 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C 24 39 25 33 27 37 29 35 31 23 26 28 30 32 34 36 38 40

T 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C

This sequence of non-evil integers causes median-of-3 Quicksort to go quadratic!



Non-deterministic Quicksort

Every non-deterministic Quicksort is vulnerable

・Pivot is reused early and often by all algorithms one might call 

‘Quicksort’.

– Pivot is guaranteed to be within k positions of the front.

– Arithmetic decrease in problem size means Θ(N2) performance.

83



Neat fact

Each deterministic Quicksort has its own Achilles shape

・Median-of-3s with 2-way partitioning:

84

[9800, 9850, 9200, 9801, 9851, 9201...]



Neat fact

Each deterministic Quicksort has its own Achilles shape

・Median-of-3s with 3-way partitioning:

85



Neat fact

Each deterministic Quicksort has its own Achilles shape

・Arrays.sort() in Java

86



Arrays.sort

87

0
87499
67183
11
66672
75394
33339
90626
67185
17
91800
62508
75002
71877
34380
22 ...

troublesomeIntegers.txt


