Announcements

First programming assignment.

- Due Tomorrow at 11:00pm.
- Try electronic submission system today.
- "Check All Submitted Files." will perform checks on your code.
 - You may use this up to 10 times.
 - Can still submit after you use up your checks.
 - Should not be your primary testing technique!

Registration.

- Register for Piazza.
- Register for Coursera.
- Register for Poll Everywhere.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

 \checkmark

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

1.4 ANALYSIS OF ALGORITHMS

introduction

- empirical observations
- mathematical models
- order-of-growth classifications
- theory of algorithms

memory

1.4 ANALYSIS OF ALGORITHMS

• introduction

memor

empirical observations

mathematical models

theory of algorithms

order-of-growth classifications

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

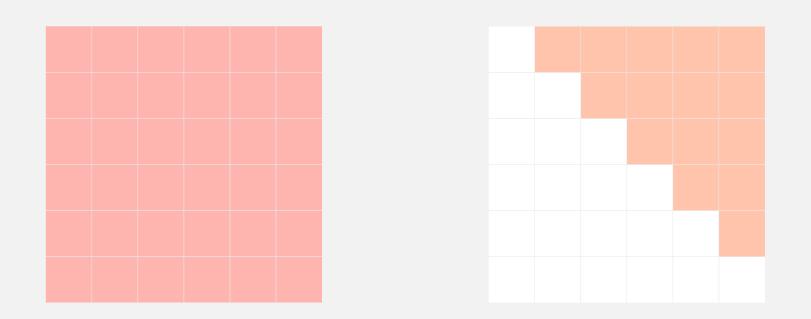
Efficiency

126 vs. 226

- 126: Techniques for solving problems.
- 226: Techniques for solving problems efficiently.

Simple Example: Checking symmetry of an NxN matrix

- Naive: Scan all elements.
- Better: Scan only elements above the diagonal (>2x speedup).



Efficiency (more insidious example)

<pre>public static String concatenateNoSpace(String s1, String s2) { for (int i = 0; i < s2.length(); i++)</pre>		
<pre>if (s2.charAt(i) != ' ') s1 = s1 + s2.charAt(i); return s1; } </pre> <pre> \$ java-226 concatenateNoSpace s2.length Time (s) 10000 0.14 20000 0.41 40000 1.62 80000 6.59 </pre>		

Common Problem.

- Novice programmer does not understand performance characteristics of data structure.
- Results in poor performance that gets WORSE with input size.

Today

- Precise definitions of program performance.
- Experimental and theoretical techniques for measuring performance.

Running time

"As soon as an Analytic Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will arise—By what course of calculation can these results be arrived at by the machine in the shortest time? " — Charles Babbage (1864)

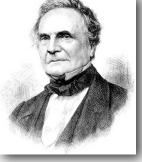


how many times do you have to turn the crank?

Analytic Engine

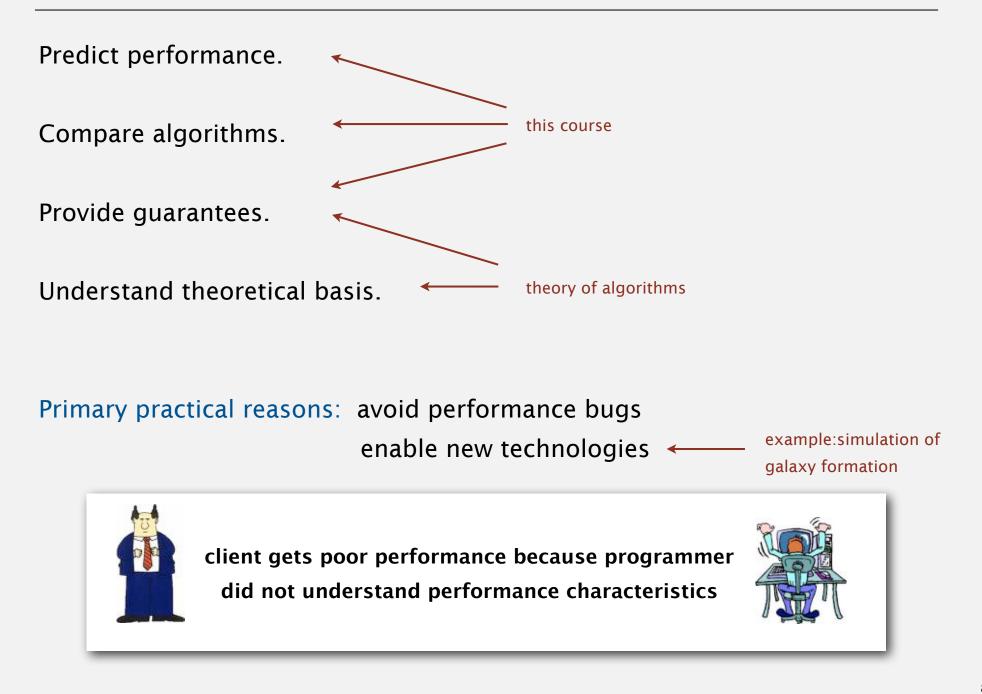
The Life of the Philosopher

"The iron folding-doors of the small-room or oven were opened. Captain Kater and myself entered, and they were closed upon us... The thermometer marked, if I recollect rightly, 265 degrees. The pulse was quickened, and I ought to have to have counted but did not count the number of inspirations per minute. Perspiration commenced immediately and was very copious. We remained, I believe, about five or six minutes without very great discomfort, and I experienced no subsequent inconvenience from the result of the experiment " — Charles Babbage, "From the Life of the Philosopher"

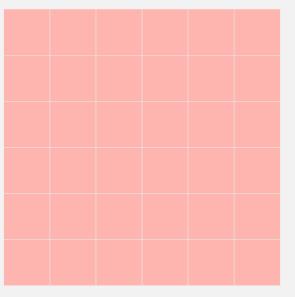


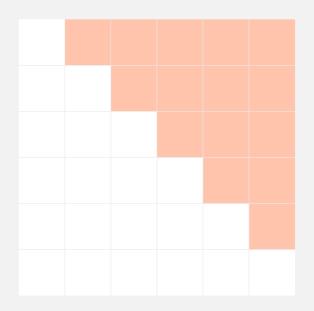
265 Fahrenheit / 130 Celsius

Reasons to analyze algorithms



Running time of programs





Programs

- Mathematical objects.
- Running on physical hardware.

Mathematical model

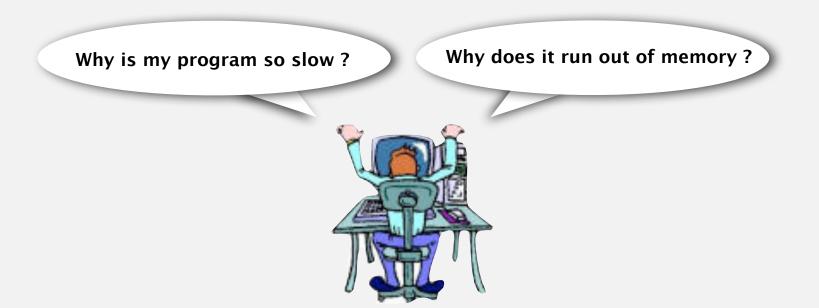
• Left program runtime: cN^2 Right program runtime: $c(N^2/2 - N/2)$

Empirical observations

• Runtime of a program varies even when run on the same input.

The challenge

Q. Will my program be able to solve a large practical input?



Insight. [Knuth 1970s] Use scientific method to understand performance.

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

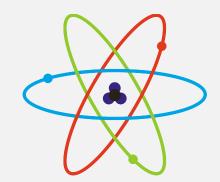
Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
- Predict events using the hypothesis.
- Verify the predictions by making further observations.
- Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.



1.4 ANALYSIS OF ALGORITHMS

empirical observations mathematical models

theory of algorithms

order-of-growth classifications

introduction

memor

Algorithms

Robert Sedgewick | Kevin Wayne

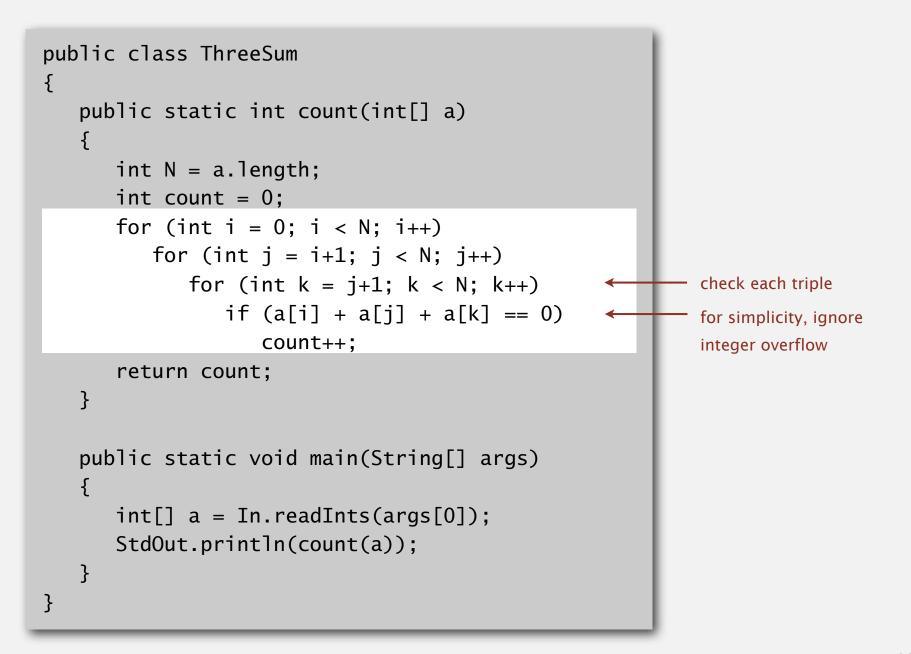
http://algs4.cs.princeton.edu

3-SUM. Given *N* distinct integers, how many triples sum to exactly zero?

_	8ints.txt
8 30 -40	-20 -10 40 0 10 5
% java 4	ThreeSum 8ints.txt

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		a[i]	a[j]	a[k]	sum
2 -40 40 0 0	1	30	-40	10	0
3	2	30	-20	-10	0
	3	-40	40	0	0
4		-10	0	10	0

Context. Deeply related to problems in computational geometry.



Measuring the running time

- Q. How to time a program?
- A. Manual.

% java ThreeSum 1Kints.txt tick tick tick 70 % java ThreeSum 2Kints.txt tick 528 % java ThreeSum 4Kints.txt tick *tick tick tick tick tick tick tick tick* tick tick

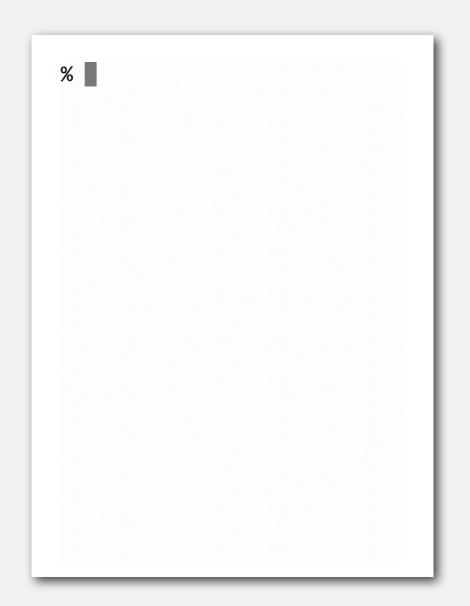
Measuring the running time

- Q. How to time a program?
- A. Automatic.

public class Stopwatch	(part of stdlib.jar)
Stopwatch()	create a new stopwatch
double elapsedTime	time since creation (in seconds)

```
public static void main(String[] args)
{
    int[] a = In.readInts(args[0]);
    Stopwatch stopwatch = new Stopwatch();
    StdOut.println(ThreeSum.count(a));
    double time = stopwatch.elapsedTime();
}
```

Run the program for various input sizes and measure running time.



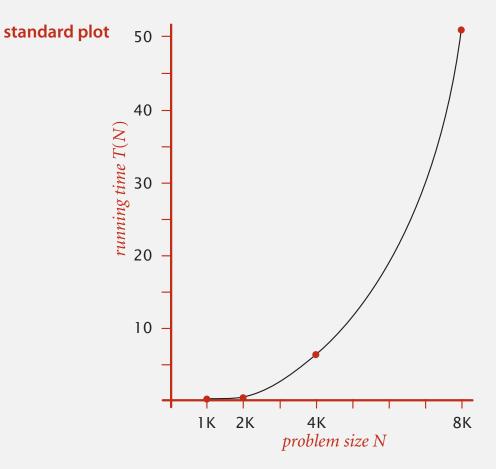
Run the program for various input sizes and measure running time.

Ν	time (seconds) †	
250	0.0	
500	0.0	
1,000	0.1	
2,000	0.8	
4,000	6.4	
8,000	51.1	
16,000	?	

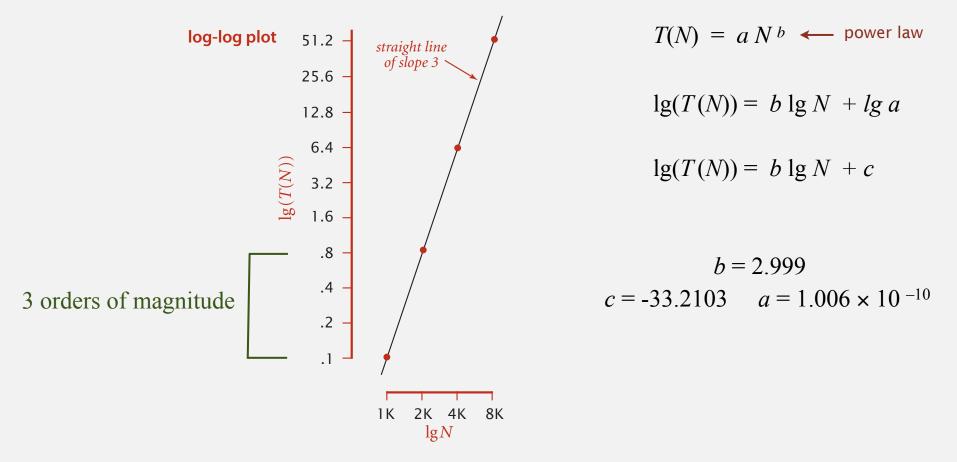
Data analysis

Standard plot. Plot running time T(N) vs. input size N.

• Hard to form a useful hypothesis.



Log-log plot. Plot running time T(N) vs. input size N using log-log scale.



Regression.Fit straight line through data points: lg(T(N)) = cb lg(N) + cInterpretation. $T(N) = a N^{b}$, where $a = 2^{c}$ Hypothesis.The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

"order of growth" of running time is about N^3 [stay tuned]

Predictions.

- 51.0 seconds for N = 8,000.
- 408.1 seconds for N = 16,000.

Observations.

Ν	time (seconds) †	
8,000	51.1	
8,000	51.0	
8,000	51.1	
16,000	410.8	

validates hypothesis!

Doubling hypothesis

Doubling hypothesis.

- Another way to build models of the form $T(N) = a N^{b}$
- Run program, doubling the size of the input.

1	lg ratio	ratio	time (seconds) †	N
	-		0.0	250
	2.3	4.8	0.0	500
	2.8	6.9	0.1	1,000
	2.9	7.7	0.8	2,000
	3.0	8.0	6.4	4,000
lg (51.1	3.0	8.0	51.1	8,000
	Î			

lg (51.122 / 6.401) = 3.0

seems to converge to a constant $b\approx 3$

Hypothesis. Running time is about $a N^{b}$ with b = Ig ratio.

Doubling hypothesis. Quick way to estimate *b* in a power-law relationship.

- **Q.** How to estimate *a* (assuming we know *b*)?
- A. Run the program (for a sufficient large value of *N*) and solve for *a*.

N	time (seconds) †	
8,000	51.1	
8,000	51.0	
8,000	51.1	

 $51.1 = a \times 8000^{3}$ $\Rightarrow a = 0.998 \times 10^{-10}$

Hypothesis. Running time is about $0.998 \times 10^{-10} \times N^3$ seconds.

almost identical hypothesis to one obtained via linear regression

Experimental algorithmics

System independent effects.

• Algorithm.

determines exponent b

• Input data.

in power law

System dependent effects.

- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

Caveat.

• In some cases, b can depend on system (e.g. virtualization)

Bad news. Difficult to get precise measurements. Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

determines constant a in power law

1.4 ANALYSIS OF ALGORITHMS

Algorithms

mathematical models

theory of algorithms

order-of-growth classifications

empirical observations

introduction

memor

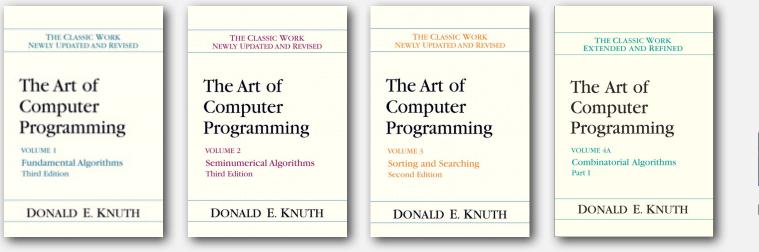
Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.



Donald Knuth 1974 Turing Award

In principle, accurate mathematical models are available.

Timing basic operations (a hopeless endeavor)

operation	example	nanoseconds †
integer add	a + b	2.1
integer multiply	a * b	2.4
integer divide	a / b	5.4
floating-point add	a + b	4.6
floating-point multiply	a * b	4.2
floating-point divide	a / b	13.5
sine	Math.sin(theta)	91.3
arctangent	Math.atan2(y, x)	129.0

+ Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Computer Architecture Caveats (see COS 475).

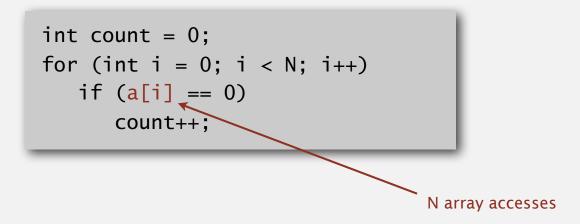
- Most computers are more like assembly lines than oracles (pipelining).
- Register vs. cache vs. RAM vs. hard disk (Java is a high level language)

operation	example	nanoseconds †
variable declaration	int a	C 1
assignment statement	a = b	C 2
integer compare	a < b	C 3
array element access	a[i]	C 4
array length	a.length	C 5
1D array allocation	new int[N]	c ₆ N
2D array allocation	new int[N][N]	C 7 N ²
string length	s.length()	C ₈
substring extraction	s.substring(N/2, N)	C 9
string concatenation	s + t	c ₁₀ N

Novice mistake. Abusive string concatenation.

Example: 1-SUM

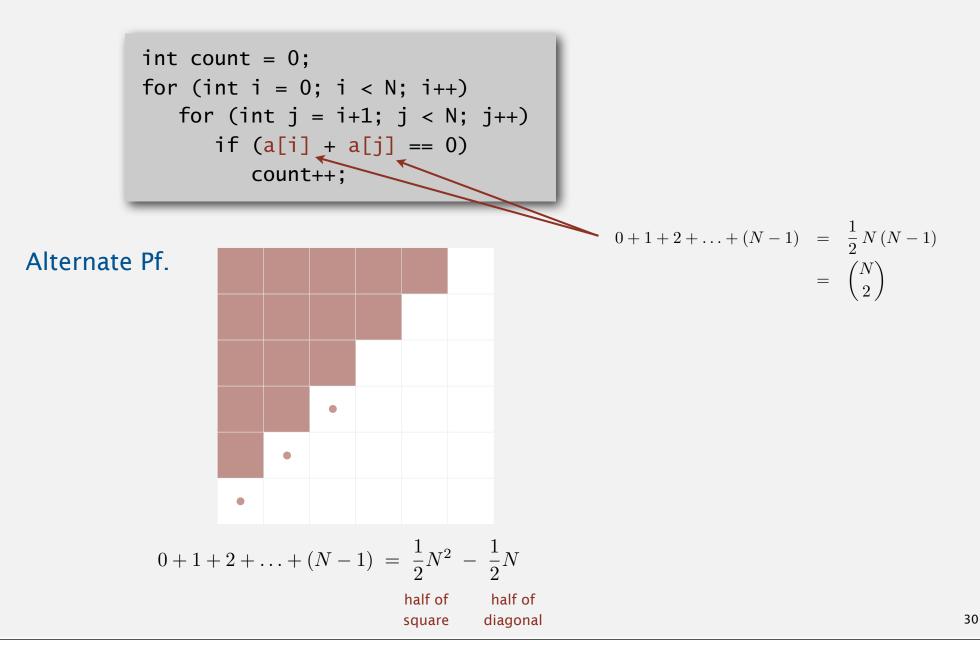
Q. How many instructions as a function of input size N?



operation	frequency	Frequency, N=10000
variable declaration	2	2
assignment statement	2	2
less than compare	N + 1	10001
equal to compare	Ν	10000
array access	Ν	10000
increment	N to 2 N	10000 to 20000

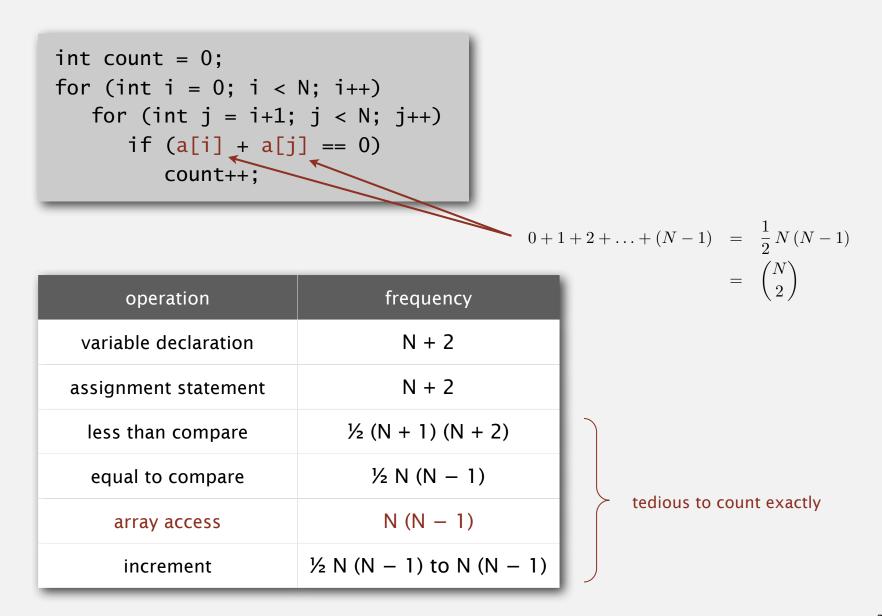
Example: 2-SUM

Q. How many instructions as a function of input size N?



Example: 2-SUM

Q. How many instructions as a function of input size N?



Simplifying the calculations

" It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings. " — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES

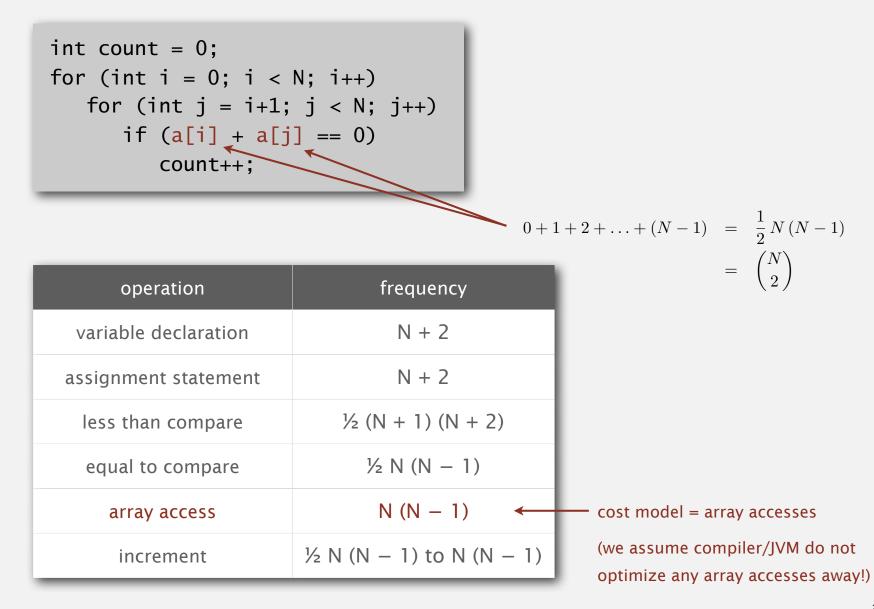
By A. M. TURING (National Physical Laboratory, Teddington, Middlesex) [Received 4 November 1947]

SUMMARY

A number of methods of solving sets of linear equations and inverting matrices are discussed. The theory of the rounding-off errors involved is investigated for some of the methods. In all cases examined, including the well-known 'Gauss elimination process', it is found that the errors are normally quite moderate: no exponential build-up need occur.

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.



Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when *N* is small, we don't care

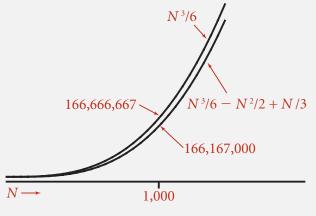
Ex 1.

$$\frac{1}{6}N^3 + 20N + 16$$
 ~ $\frac{1}{6}N^3$

 Ex 2.
 $\frac{1}{6}N^3 + 100N^{\frac{4}{3}} + 56$
 ~ $\frac{1}{6}N^3$

 Ex 3.
 $\frac{1}{2}N^3 - \frac{1}{2}N^2 + \frac{1}{3}N$
 ~ $\frac{1}{6}N^3$

discard lower-order terms (e.g., N = 1000: 166.67 million vs. 166.17 million)



Leading-term approximation

Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$

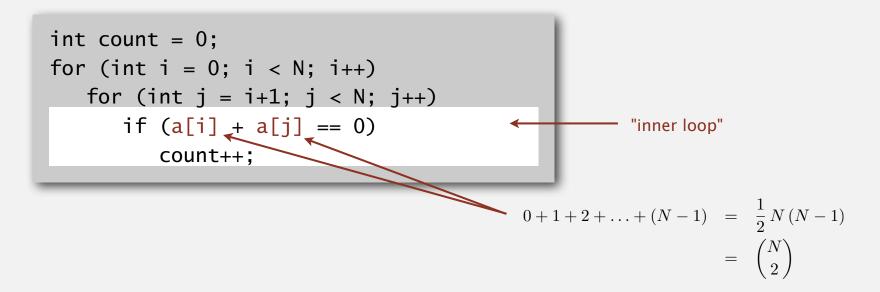
Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size *N*.
- Ignore lower order terms.
 - when *N* is large, terms are negligible
 - when N is small, we don't care

operation	frequency	tilde notation
variable declaration	N + 2	~ N
assignment statement	N + 2	~ N
less than compare	½ (N + 1) (N + 2)	~ ½ N ²
equal to compare	½ N (N − 1)	~ 1⁄2 N ²
array access	N (N – 1)	~ N ²
increment	½ N (N − 1) to N (N − 1)	~ $\frac{1}{2}$ N ² to ~ N ²

Example: 2-SUM

Q. Approximately how many array accesses as a function of input size *N*?



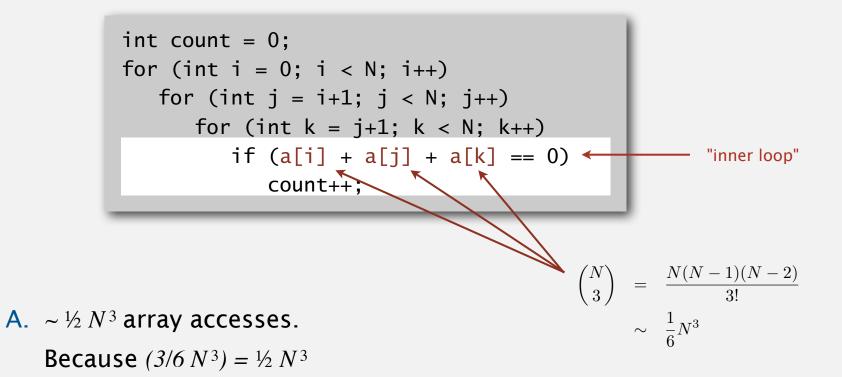
A. ~ N^2 array accesses.

Because $2(\frac{1}{2} N^2) = N^2$

Bottom line. Use cost model and tilde notation to simplify counts.

Example: 3-SUM

Q. Approximately how many array accesses as a function of input size *N*?



Bottom line. Use cost model and tilde notation to simplify counts.

Estimating a discrete sum

- Q. How to estimate a discrete sum?
- A1. Take discrete mathematics course.
- A2. Replace the sum with an integral, and use calculus!

Ex 1.
$$1+2+\ldots+N$$
.
Ex 2. $1^{k}+2^{k}+\ldots+N^{k}$.
Ex 3. $1+1/2+1/3+\ldots+1/N$.

$$\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^{2}$$

$$\sum_{i=1}^{N} i^{k} \sim \int_{x=1}^{N} x^{k} \, dx \sim \frac{1}{k+1} N^{k+1}$$

$$\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} \, dx = \ln N$$

Ex 4. 3-sum triple loop.

$$\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^{3}$$

Estimating a discrete sum

- Q. How to estimate a discrete sum?
- A1. Take discrete mathematics course.
- A2. Replace the sum with an integral, and use calculus!

Ex 4. 1 +
$$\frac{1}{2}$$
 + $\frac{1}{4}$ + $\frac{1}{8}$ + ...

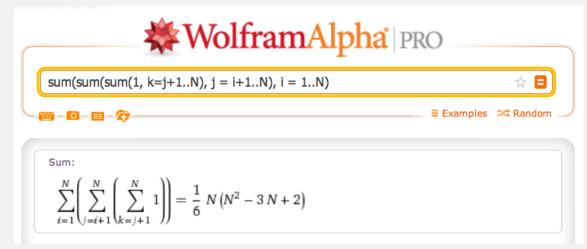
$$\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i = 2$$

$$\int_{x=0}^{\infty} \left(\frac{1}{2}\right)^x dx = \frac{1}{\ln 2} \approx 1.4427$$

Caveat. Integral trick doesn't always work!

Estimating a discrete sum

- Q. How to estimate a discrete sum?
- A3. Use Maple or Wolfram Alpha.



wolframalpha.com

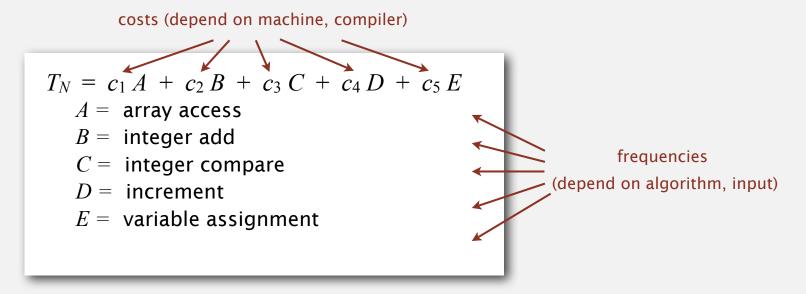
[wayne:nobel.princeton.edu] > maple15 |\^/| Maple 15 (X86 64 LINUX) ._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2011 \ MAPLE / All rights reserved. Maple is a trademark of <_____> Waterloo Maple Inc. | Type ? for help. > factor(sum(sum(1, k=j+1..N), j = i+1..N), i = 1..N)); N (N - 1) (N - 2) ------6

Mathematical models for running time

In principle, accurate mathematical models are available.

In practice,

- Formulas can be complicated.
- Realities of hardware impact accuracy of formulas.
- Advanced mathematics might be required.
- Exact models best left for experts.



Bottom line. We use approximate models in this course: $T(N) \sim c N^3$.

1.4 ANALYSIS OF ALGORITHMS

Algorithms

order-of-growth classifications

empirical observations

mathematical models

theory of algorithms

introduction

memoi

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

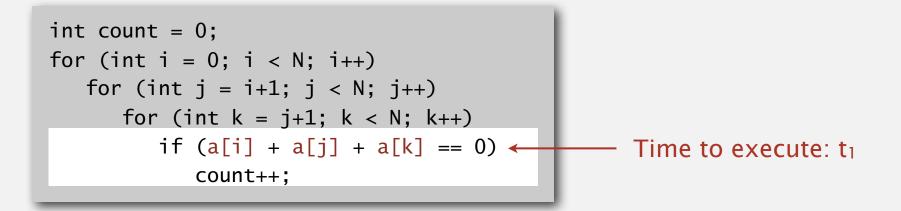
Order-of-growth

Definition.

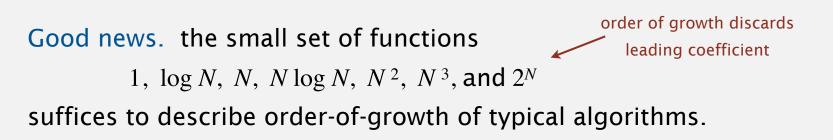
- If $f(N) \sim a g(N)$, then the order-of-growth of f(N) is just g(N)
- Example:
 - Runtime of *3SUM*: ~ $1/6 t_1 N^3$

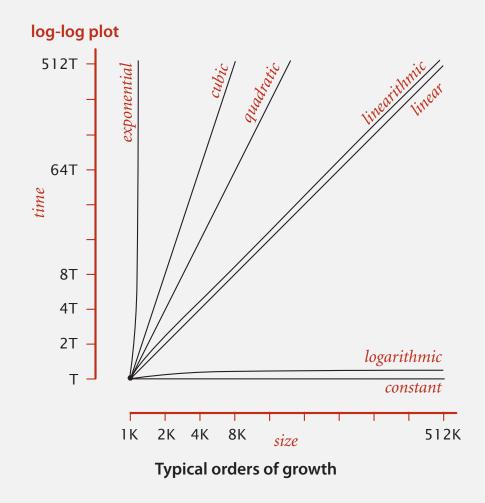
[see page 181]

- Order-of-growth of the runtime of 3SUM: N³
- We often say "order-of-growth of 3SUM" as shorthand for the runtime.



Common order-of-growth classifications





Common order-of-growth classifications

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b[0] + b[1];	statement	add two array elements	1
log N	logarithmic	<pre>while (N > 1) { N = N / 2; }</pre>	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Practical implications of order-of-growth

growth	problem size solvable in minutes				L
rate	1970s	1980s	1990s	2000s	
1	any	any	any	any	L
log N	any	any	any	any	L
Ν	millions	tens of millions	hundreds of millions	billions	
N log N	hundreds of thousands	millions	millions	hundreds of millions	*
N ²	hundreds	thousand	thousands	tens of thousands	
N ³	hundred	hundreds	thousand	thousands	
2 ^N	20	20s	20s	30	

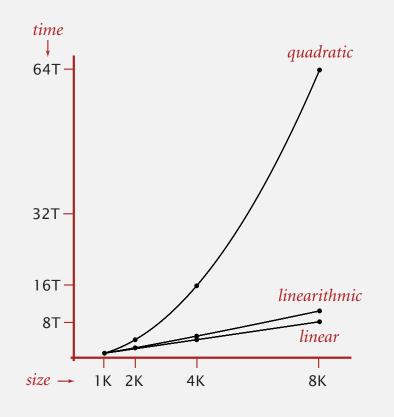
Bottom line. Need linear or linearithmic alg to keep pace with Moore's law.

Some algorithmic successes

N-body simulation.

- Simulate gravitational interactions among N bodies.
- Brute force: N^2 steps.
- Barnes-Hut algorithm: *N* log *N* steps, enables new research.

Andrew Appel PU '81



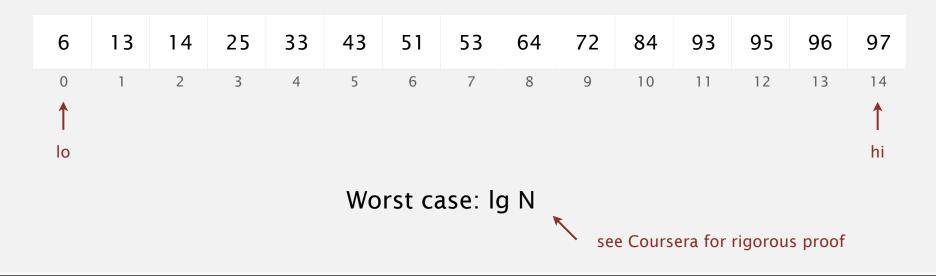
Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.

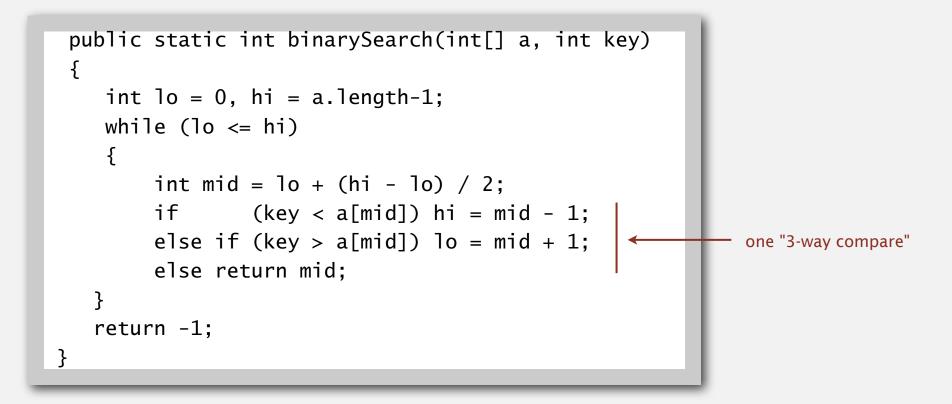
successful search for 33



Binary search: Java implementation

Trivial to implement?

- First binary search published in 1946; first bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.



Invariant. If key appears in the array a[], then $a[10] \le key \le a[hi]$.

An N² log N algorithm for 3-SUM

 Sorting-based algorithm. Step 1: Sort the N (distinct) numbers. Step 2: For each pair of numbers a[i] and a[j], binary search for -(a[i] + a[j]). 	input 30 -40 -20 -3 sort -40 -20 -10	10 0
 Analysis. Order of growth is N² log N. Step 1: N² with insertion sort. Step 2: N² log N with binary search. N² binary searches, each log N 	(-40, -10) (-40, 0) (-40, 5) (-40, 10) E	60 50 40 35 30 : :
Remark. Can achieve N^2 by modifying binary search step.	: (-10, 0) : (10, 30) - (10, 40) -	30 : 10 : 40 50 70

40 0 10 5 5 10 30 40 only count if a[i] < a[j] < a[k] to avoid double counting Hypothesis. The sorting-based $N^2 \log N$ algorithm for 3-SUM is significantly faster in practice than the brute-force N^3 algorithm.

Ν	time (seconds)	N	time (seconds)
1,000	0.1	1,000	0.14
2,000	0.8	2,000	0.18
4,000	6.4	4,000	0.34
8,000	51.1	8,000	0.96
ThreeSum.java		16,000	3.67
		32,000	14.88
		64,000	59.16

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth \Rightarrow faster in practice.

1.4 ANALYSIS OF ALGORITHMS

Algorithms

theory of algorithms

empirical observations

mathematical models

order-of-growth classifications

introduction

memoi

Robert Sedgewick \parallel Kevin Wayne

http://algs4.cs.princeton.edu

Types of analyses: Performance depends on input

Best case. Lower bound on cost.

- Determined by "easiest" input.
- Provides a goal for all inputs.

Worst case. Upper bound on cost.

- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.

Ex 1. Compares for binary search.	Ex 2. Array accesses for brute-force 3-SUM.		
Best: 1	Best: N^3		
Average: lg N	Average: N^3		
Worst: $\lg N$	Worst: N^3		

Types of analyses: Performance depends on input

Best case. Lower bound on cost.

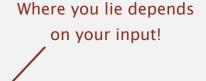
- Determined by "easiest" input.
- Provides a goal for all inputs.

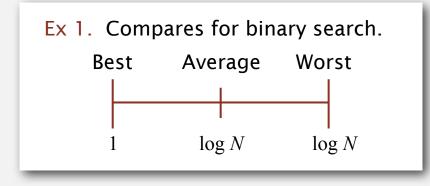
Worst case. Upper bound on cost.

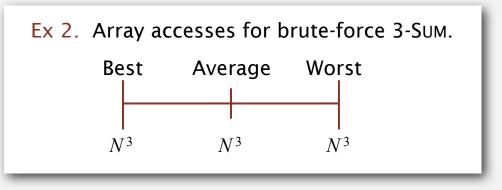
- Determined by "most difficult" input.
- Provides a guarantee for all inputs.

Average case. Expected cost for random input.

- Need a model for "random" input.
- Provides a way to predict performance.







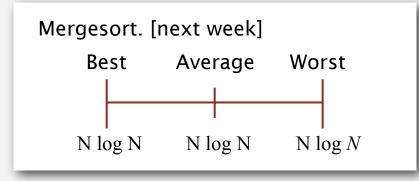
Types of analyses

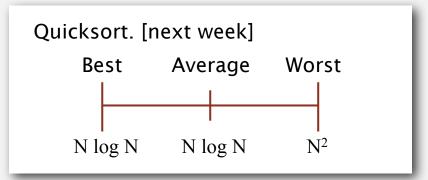
Best case. Lower bound on cost. Worst case. Upper bound on cost (guarantee). Average case. "Expected" cost.

Primary practical reason: avoid performance bugs.

Example: Algorithm selection

- Given arbitrary data, performance may be anywhere in our bounds.
- Approach 1: depend on worst case guarantee.
 - Example: Use Mergesort instead of Quicksort
- Approach 2: randomize, depend on probabilistic guarantee.
 - Example: Randomize input before giving to Quicksort





Theory of algorithms

Previous slides

• Best, average, and **worst** case for a specific algorithm.

New goals.

- Establish "difficulty" of a **problem**, e.g. how hard is 3SUM?
- Develop "optimal" algorithm.

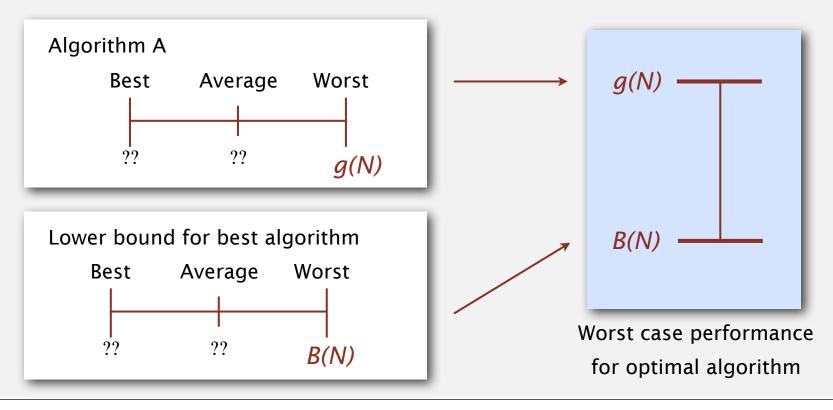
Approach: Use order-of-growth in **worst** case

- Use order-of-growth (just like we've been doing).
 - Analysis is asymptotic, i.e. for very large N.
 - Analysis is "to within a constant factor", using OaG instead of Tilde.
- Consider only worst case.
 - Analysis avoids messy input models.
 - Analysis focuses on guarantees.

Theory of algorithms

Testing optimality of algorithm A for problem P

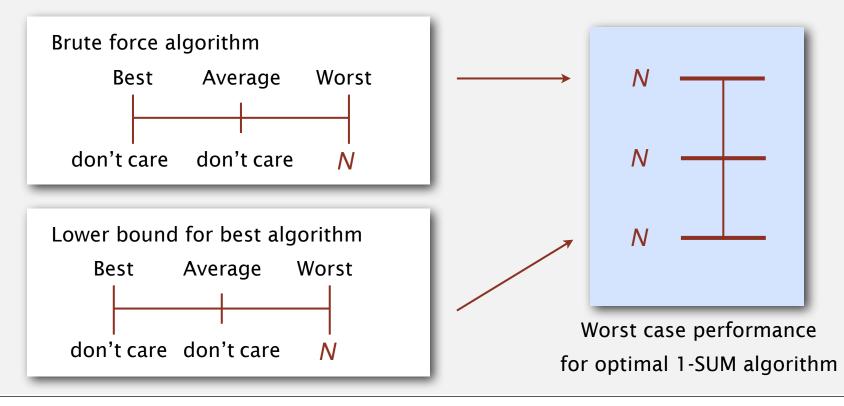
- Find worst case order of growth guarantee for specific algorithm A, g(N)
- Find lower bound on guarantee for any algorithm that solves P, B(N)
- If they match, i.e. g(N) = B(N), then:
 - Worst case performance of A is asymptotically optimal.
 - Optimal algorithm for P has order of growth g(N)
- If they don't, g(N) at least provides an upper bound.



Theory of algorithms

Example: The 1-SUM problem (how many 0s?)

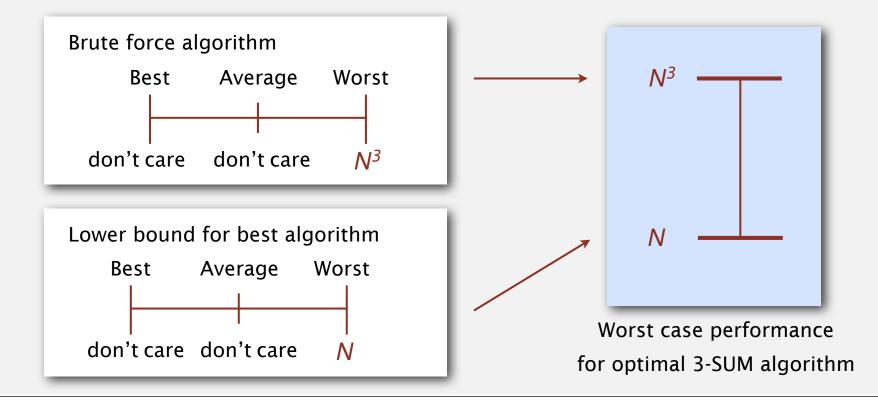
- Let A be the brute force algorithm where we simply look at each entry and count the zeros.
 - Worst case order of growth: g(N) = N
- Of any algorithm that solves 1-SUM, must at least examine every entry.
 - Lower bound on worst case order of growth: B(N) = N
- g(N) = B(N). A is optimal!



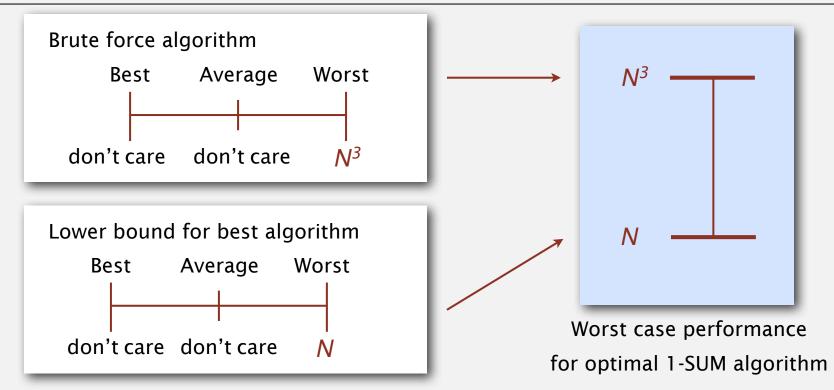
Theory of algorithms: example 2

Example: The 3-SUM problem (how many 0s?)

- Let A be the brute force algorithm where we look at each triple.
 - Worst case order of growth: $g(N) = N^3$
- Of any algorithm that solves 3-SUM, must at least examine every entry. Lower bound on worst case order of growth: B(N) = N
- $g(N) \neq B(N)$



Theory of algorithms: example 2



What this tells us

- It is possible to solve 3SUM in N³ time in the worst case.
- The optimal algorithm has worst case running time OaG between N and N^3 .

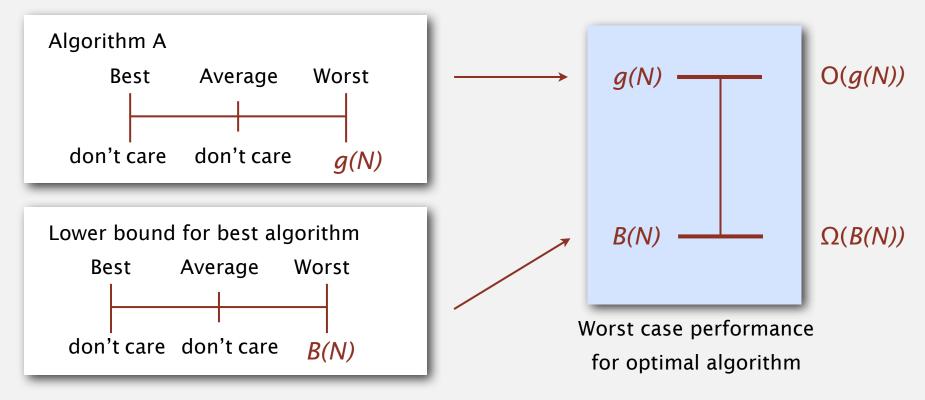
What this doesn't tell us

- Is there an algorithm with better running time than N³ in the worst case?
- Is there some clever way of finding a better lower bound than N?

Theory of algorithms terminology

Testing optimality of algorithm A for problem P

- Find worst case order of growth guarantee for specific algorithm A, g(N)
- Find lower bound on guarantee for any algorithm that solves P, B(N)



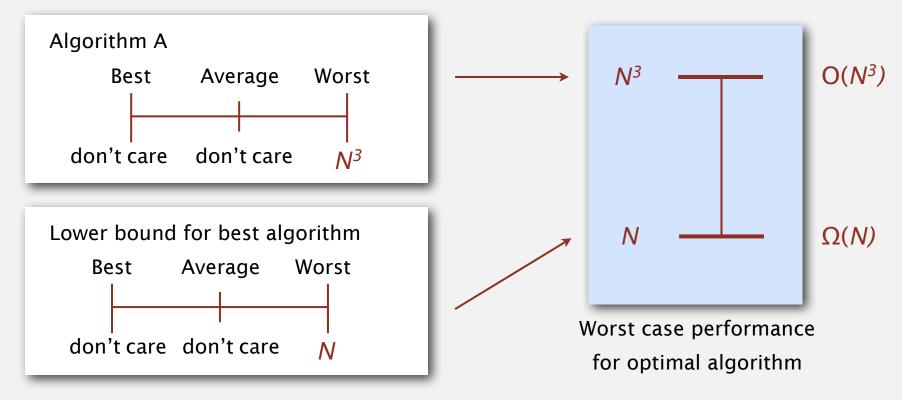
Standard terminology

- The running time of the optimal algorithm for problem P is O(g(N))
- The running time of the optimal algorithm for problem P is $\Omega(B(N))$

Theory of algorithms terminology

Testing optimality of brute force algorithm for 3-SUM

- Find worst case order of growth guarantee for brute force, N^3
- Find lower bound on guarantee for any algorithm that solves P, N



Standard terminology

- The running time of the optimal algorithm for problem P is $O(N^3)$
- The running time of the optimal algorithm for problem P is $\Omega(N)$

Commonly-used notations in the theory of algorithms

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	Θ(N ²)	½ N² 10 N² 5 N² + 22 N log N + 3N ⋮	classify algorithms
Big Oh	Θ(N ²) and smaller	O(N ²)	10 N ² 100 N 22 N log N + 3 N :	develop upper bounds
Big Omega	Θ(N ²) and larger	Ω(N²)	½ N² N⁵ N³ + 22 N log N + 3 N ⋮	develop lower bounds

Example: Optimal algorithm of 3-SUM is O(N³) based on brute force solution. (i.e. its order of growth is N³ or less)

Theory of algorithm: 3SUM

The run time of 3SUM's optimal solution...

- $=O(N^3)$ based on brute force solution.
- =O(N² log N) based on binary search based solution.
- $=O(N^2)$ based on solution developed in precept this week.
- = $\Omega(N)$ based on a simple argument about accessing all data.
- Grows at least as slow as N², and at least as fast as N.

Open questions

- What is the order of growth of the optimal solution for 3-SUM?
 - Equivalent question: If it is $\Theta(B(n))$ in the worst case, what is B(n)?
 - We know it is between N and N^2 .
- Does there exist an algorithm with worst case run time better than N²?
 - i.e. an algorithm that is better than $\Theta(N^2)$ in the worst case?
- Does there exist a way to provide a quadratic lower bound on 3SUM?
 - i.e. can we prove that the optimal algorithm for 3-SUM is $\Omega(N^2)$?

Algorithm design approach

Start.

- Develop an algorithm.
- Prove a lower bound.

Gap?

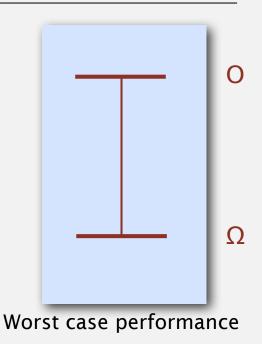
- Lower the upper bound (discover a new algorithm).
- Raise the lower bound (more difficult).

Golden Age of Algorithm Design (1970s-Present*).

- Steadily decreasing upper bounds for many important problems.
- Many known optimal algorithms.

Caveats.

- Overly pessimistic to focus on worst case?
- Can do better than "to within a constant factor" to predict performance.
- Asymptotic performance not always useful (e.g. matrix multiplication).



for optimal algorithm

To-within a constant factor

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	10 N ² 10 N ² + 22 N log N 10 N ² + 2 N + 37	provide approximate model
Big Theta	asymptotic growth rate	Θ(N ²)	½ N ² 10 N ² 5 N ² + 22 N log N + 3N	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	O (N ²)	10 N ² 100 N 22 N log N + 3 N	develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	Ω(N ²)	½ N ² N ⁵ N ³ + 22 N log N + 3 N	develop lower bounds

Common practice. Analysis to within a constant factor.

Easy to be more precise. Use Tilde-notation instead of Big Theta (or Big Oh).

Order of growth isn't everything - Matrix multiplication

year	algorithm	order of growth	
?	brute force	N ³	
1969	Strassen	N ^{2.808}	K
1978	Pan	N ^{2.796}	Only faster for huge matrices!
1979	Bini	N ^{2.780}	
1981	Schönhage	N ^{2.522}	
1982	Romani	N ^{2.517}	
1982	Coppersmith-Winograd	N ^{2.496}	
1986	Strassen	N ^{2.479}	
1989	Coppersmith-Winograd	N ^{2.376}	
2010	Strother	N ^{2.3737}	
2011	Williams	N ^{2.3727}	

number of floating-point operations to multiply two N-by-N matrices

• Asymptotic performance not always useful (e.g. matrix multiplication).

1.4 ANALYSIS OF ALGORITHMS

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

• memory

introduction

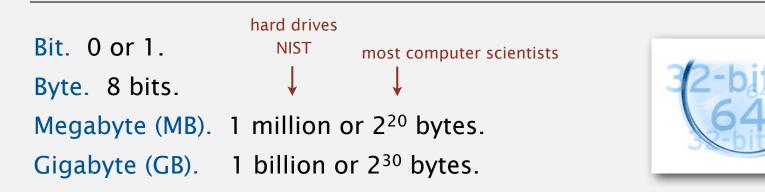
empirical observations

mathematical models

theory of algorithms

order-of-growth classifications

Basics



64-bit machine. We assume a 64-bit machine with 8 byte pointers.

- Can address more memory.
- Pointers use more space.

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost

Typical memory usage for primitive types and arrays

type	bytes
boolean	1
byte	1
char	2
int	4
float	4
long	8
double	8

for primitive types

type	bytes
char[]	2N + 24
int[]	4N + 24
double[]	8N + 24

for one-dimensional arrays

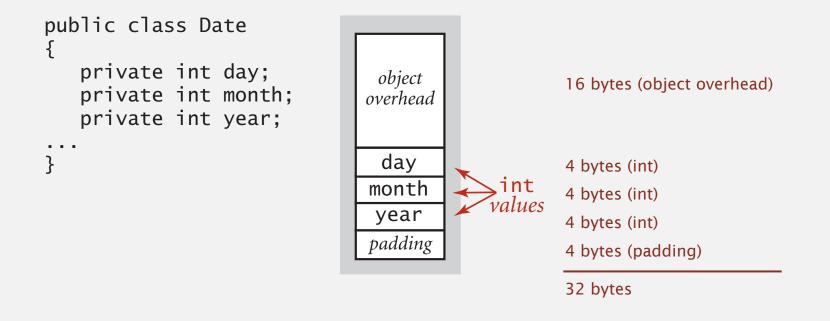
type	bytes
char[][]	~ 2 M N
int[][]	~ 4 M N
double[][]	~ 8 M N

for two-dimensional arrays

Typical memory usage for objects in Java

Object overhead. 16 bytes (+8 if inner class). Reference. 8 bytes. Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.



Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable
 + 8 bytes if inner class (for pointer to enclosing class).
- Padding: round up to multiple of 8 bytes.

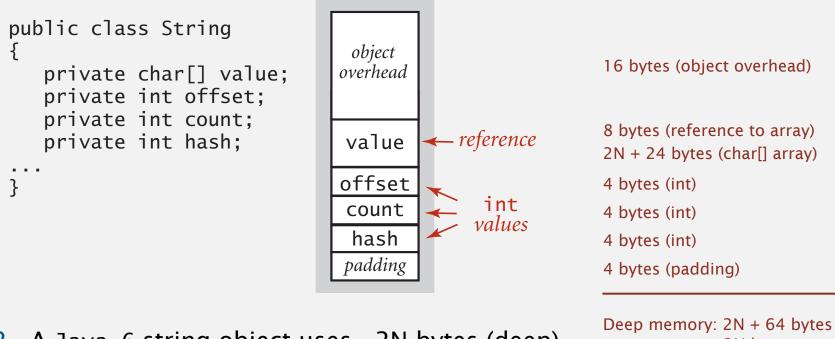
Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference, add memory (recursively) for referenced object.

Typical memory usage for objects in Java

Total memory usage for a data type value:

- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable
 - + 8 bytes if inner class (for pointer to enclosing class).
- Padding: round up to multiple of 8 bytes.



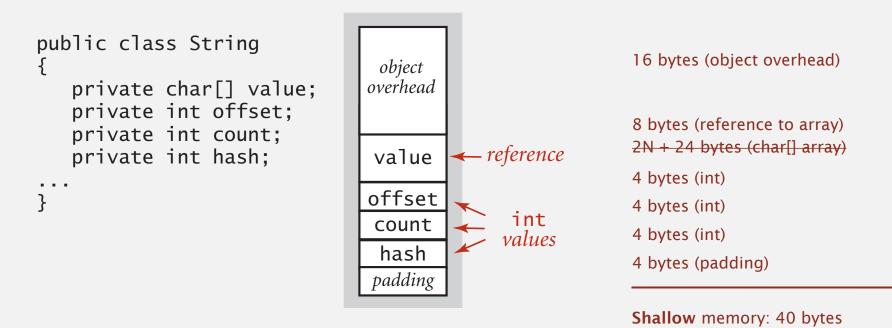
Ex 2. A Java 6 string object uses ~2N bytes (deep).

~2N bytes

Typical memory usage for objects in Java

Total memory usage for a data type value:

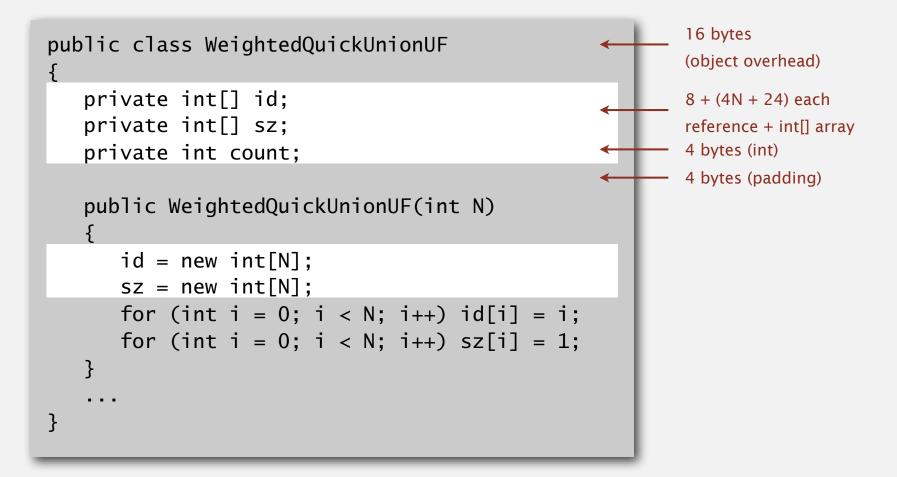
- Primitive type: 4 bytes for int, 8 bytes for double, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable
 - + 8 bytes if inner class (for pointer to enclosing class).
- Padding: round up to multiple of 8 bytes.



Ex 2. A Java 6 string object uses 40 bytes (shallow memory).

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N? Use tilde notation to simplify your answer.



A. $8 N + 88 \sim 8 N$ bytes.

Turning the crank: summary

Empirical analysis.

- Execute program to perform experiments.
- Assume power law and formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.

- Analyze algorithm to count frequency of operations.
- Use tilde notation or order of growth to simplify analysis.
- Model enables us to explain behavior.

Scientific method.

- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.

