
1

Announcements

First programming assignment.

・Due Tomorrow at 11:00pm.

・Try electronic submission system today.

・"Check All Submitted Files.” will perform checks on your code.

– You may use this up to 10 times.

– Can still submit after you use up your checks.

– Should not be your primary testing technique!

Registration.

・Register for Piazza.

・Register for Coursera.

・Register for Poll Everywhere.

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

‣ introduction

‣ empirical observations

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

1.4 ANALYSIS OF ALGORITHMS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ empirical observations

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

1.4 ANALYSIS OF ALGORITHMS

Efficiency

126 vs. 226

・126: Techniques for solving problems.

・226: Techniques for solving problems efficiently.

Simple Example: Checking symmetry of an NxN matrix

・Naive: Scan all elements.

・Better: Scan only elements above the diagonal (>2x speedup).

4

Efficiency (more insidious example)

Common Problem.

・Novice programmer does not understand performance characteristics

of data structure.

・Results in poor performance that gets WORSE with input size.

5

public static String concatenateNoSpace(String s1, String s2) {
 for (int i = 0; i < s2.length(); i++)
 if (s2.charAt(i) != ‘ ‘)
 s1 = s1 + s2.charAt(i);
 return s1;
}

Today

・Precise definitions of program performance.

・Experimental and theoretical techniques for measuring performance.

6

Running time

Analytic Engine

“ As soon as an Analytic Engine exists, it will necessarily guide the future
 course of the science. Whenever any result is sought by its aid, the question
 will arise—By what course of calculation can these results be arrived at by
 the machine in the shortest time? ” — Charles Babbage (1864)

how many times do you

have to turn the crank?

The Life of the Philosopher

7

“ The iron folding-doors of the small-room or oven were opened. Captain Kater and
myself entered, and they were closed upon us... The thermometer marked, if I recollect
rightly, 265 degrees. The pulse was quickened, and I ought to have to have counted but
did not count the number of inspirations per minute. Perspiration commenced
immediately and was very copious. We remained, I believe, about five or six minutes
without very great discomfort, and I experienced no subsequent inconvenience from the
result of the experiment ” — Charles Babbage, “From the Life of the Philosopher”

265 Fahrenheit / 130 Celsius

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reasons: avoid performance bugs

 enable new technologies

Reasons to analyze algorithms

8

this course

theory of algorithms

client gets poor performance because programmer
did not understand performance characteristics

example:simulation of

galaxy formation

Running time of programs

Programs

・Mathematical objects.

・Running on physical hardware.

Mathematical model

・Left program runtime: cN2 Right program runtime: c(N2/2 - N/2)

Empirical observations

・Runtime of a program varies even when run on the same input.

9

Q. Will my program be able to solve a large practical input?

Insight. [Knuth 1970s] Use scientific method to understand performance.

The challenge

10

Why is my program so slow ? Why does it run out of memory ?

11

Scientific method applied to analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.

・Observe some feature of the natural world.

・Hypothesize a model that is consistent with the observations.

・Predict events using the hypothesis.

・Verify the predictions by making further observations.

・Validate by repeating until the hypothesis and observations agree.

Principles.

・Experiments must be reproducible.

・Hypotheses must be falsifiable.

Feature of the natural world. Computer itself.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ empirical observations

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

1.4 ANALYSIS OF ALGORITHMS

13

Example: 3-SUM

3-SUM. Given N distinct integers, how many triples sum to exactly zero?

Context. Deeply related to problems in computational geometry.

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

% java ThreeSum 8ints.txt
4

a[i] a[j] a[k] sum

30 -40 10 0

30 -20 -10 0

-40 40 0 0

-10 0 10 0

1

2

3

4

public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int count = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

 public static void main(String[] args)
 {
 int[] a = In.readInts(args[0]);
 StdOut.println(count(a));
 }
}

14

3-SUM: brute-force algorithm

check each triple

for simplicity, ignore

integer overflow

Q. How to time a program?

A. Manual.

15

Measuring the running time

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

Q. How to time a program?

A. Automatic.

16

Measuring the running time

client code

public static void main(String[] args)
{
 int[] a = In.readInts(args[0]);
 Stopwatch stopwatch = new Stopwatch();
 StdOut.println(ThreeSum.count(a));
 double time = stopwatch.elapsedTime();
}

 public class Stopwatch public class Stopwatch

Stopwatch()Stopwatch() create a new stopwatch

double elapsedTime()elapsedTime() time since creation (in seconds)

(part of stdlib.jar)

Run the program for various input sizes and measure running time.

17

Empirical analysis

Run the program for various input sizes and measure running time.

18

Empirical analysis

N time (seconds) †

250 0.0

500 0.0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

Standard plot. Plot running time T (N) vs. input size N.

・Hard to form a useful hypothesis.

19

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

Log-log plot. Plot running time T (N) vs. input size N using log-log scale.

20

Data analysis

power law

slope

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum)

log-log plotstandard plot

lgNproblem size N
2K 4K 8K

lg
(T

(N
))

ru
nn

in
g

ti
m

e
T

(N
)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

T(N) = a N b

lg(T (N)) = b lg N + lg a

lg(T (N)) = b lg N + c

3 orders of magnitude
 b = 2.999
c = -33.2103 a = 1.006 × 10 –10

y = b x + clg(T(N)) = b lg(N) + cRegression. Fit straight line through data points:

Interpretation. T(N) = a N b, where a = 2 c

Hypothesis. The running time is about 1.006 × 10 –10 × N 2.999 seconds.

21

Prediction and validation

Hypothesis. The running time is about 1.006 × 10 –10 × N 2.999 seconds.

Predictions.

・51.0 seconds for N = 8,000.

・408.1 seconds for N = 16,000.

Observations.

validates hypothesis!

N time (seconds) †

8,000 51.1

8,000 51.0

8,000 51.1

16,000 410.8

"order of growth" of running

time is about N3 [stay tuned]

Doubling hypothesis.

・Another way to build models of the form T(N) = a N b

・Run program, doubling the size of the input.

Hypothesis. Running time is about a N b with b = lg ratio.
22

Doubling hypothesis

N time (seconds) † ratio lg ratio

250 0.0 –

500 0.0 4.8 2.3

1,000 0.1 6.9 2.8

2,000 0.8 7.7 2.9

4,000 6.4 8.0 3.0

8,000 51.1 8.0 3.0

seems to converge to a constant b ≈ 3

lg (51.122 / 6.401) = 3.0

23

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of N) and solve for a.

Hypothesis. Running time is about 0.998 × 10 –10 × N 3 seconds.

N time (seconds) †

8,000 51.1

8,000 51.0

8,000 51.1

51.1 = a × 80003

⇒ a = 0.998 × 10 –10

almost identical hypothesis

to one obtained via linear regression

24

Experimental algorithmics

System independent effects.

・Algorithm.

・Input data.

System dependent effects.

・Hardware: CPU, memory, cache, …

・Software: compiler, interpreter, garbage collector, …

・System: operating system, network, other apps, …

Caveat.

・In some cases, b can depend on system (e.g. virtualization)

Bad news. Difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

e.g., can run huge number of experiments

determines constant a

in power law

determines exponent b

in power law

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ empirical observations

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

1.4 ANALYSIS OF ALGORITHMS

26

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

・Need to analyze program to determine set of operations.

・Cost depends on machine, compiler.

・Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.

Donald Knuth
1974 Turing Award

Timing basic operations (a hopeless endeavor)

operation example nanoseconds †

integer add a + b 2.1

integer multiply a * b 2.4

integer divide a / b 5.4

floating-point add a + b 4.6

floating-point multiply a * b 4.2

floating-point divide a / b 13.5

sine Math.sin(theta) 91.3

arctangent Math.atan2(y, x) 129.0

...

27

† Running OS X on Macbook Pro 2.2GHz with 2GB RAM

Computer Architecture Caveats (see COS 475).

・Most computers are more like assembly lines than oracles (pipelining).

・Register vs. cache vs. RAM vs. hard disk (Java is a high level language)

Novice mistake. Abusive string concatenation.

Cost of basic operations

28

operation example nanoseconds †

variable declaration int a c1

assignment statement a = b c2

integer compare a < b c3

array element access a[i] c4

array length a.length c5

1D array allocation new int[N] c6 N

2D array allocation new int[N][N] c7 N 2

string length s.length() c8

substring extraction s.substring(N/2, N) c9

string concatenation s + t c10 N

Q. How many instructions as a function of input size N ?

29

Example: 1-SUM

int count = 0;
for (int i = 0; i < N; i++)
 if (a[i] == 0)
 count++;

operation frequency Frequency, N=10000

variable declaration 2 2

assignment statement 2 2

less than compare N + 1 10001

equal to compare N 10000

array access N 10000

increment N to 2 N 10000 to 20000

N array accesses

30

Example: 2-SUM

Q. How many instructions as a function of input size N ?

Alternate Pf.

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥

0 + 1 + 2 + . . . + (N � 1) =
1

2
N2 � 1

2
N

half of

square

half of

diagonal

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1)

tedious to count exactly

31

Example: 2-SUM

Q. How many instructions as a function of input size N ?

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥

32

Simplifying the calculations

“ It is convenient to have a measure of the amount of work involved
 in a computing process, even though it be a very crude one. We may
 count up the number of times that various elementary operations are
 applied in the whole process and then given them various weights.
 We might, for instance, count the number of additions, subtractions,
 multiplications, divisions, recording of numbers, and extractions
 of figures from tables. In the case of computing with matrices most
 of the work consists of multiplications and writing down numbers,
 and we shall therefore only attempt to count the number of
 multiplications and recordings. ” — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING

{National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1947]

SUMMARY
A number of methods of solving sets of linear equations and inverting matrices

are discussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the well-known 'Gauss
elimination process', it is found that the errors are normally quite moderate: no
exponential build-up need occur.

Included amongst the methods considered is a generalization of Choleski's method
which appears to have advantages over other known methods both as regards
accuracy and convenience. This method may also be regarded as a rearrangement
of the elimination process.
THIS paper contains descriptions of a number of methods for solving sets
of linear simultaneous equations and for inverting matrices, but its main
concern is with the theoretical limits of accuracy that may be obtained in
the application of these methods, due to rounding-off errors.

The best known method for the solution of linear equations is Gauss's
elimination method. This is the method almost universally taught in
schools. It has, unfortunately, recently come into disrepute on the ground
that rounding off will give rise to very large errors. It has, for instance,
been argued by HoteUing (ref. 5) that in solving a set of n equations we
should keep nlog104 extra or 'guarding' figures. Actually, although
examples can be constructed where as many as «log102 extra figures
would be required, these are exceptional. In the present paper the
magnitude of the error is described in terms of quantities not considered
in HoteUing's analysis; from the inequalities proved here it can imme-
diately be seen that in all normal cases the Hotelling estimate is far too
pessimistic.

The belief that the elimination method and other 'direct' methods of
solution lead to large errors has been responsible for a recent search for
other methods which would be free from this weakness. These were
mainly methods of successive approximation and considerably more
laborious than the direct ones. There now appears to be no real advantage
in the indirect methods, except in connexion with matrices having special
properties, for example, where the vast majority of the coefficients are
very small, but there is at least one large one in each row.

The writer was prompted to cany out this research largely by the
practical work of L. Fox in applying the elimination method (ref. 2). Fox

 at Princeton U
niversity Library on Septem

ber 20, 2011
qjm

am
.oxfordjournals.org

D
ow

nloaded from

operation frequency

variable declaration N + 2

assignment statement N + 2

less than compare ½ (N + 1) (N + 2)

equal to compare ½ N (N − 1)

array access N (N − 1)

increment ½ N (N − 1) to N (N − 1)

33

Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

cost model = array accesses

(we assume compiler/JVM do not

optimize any array accesses away!)

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥

・Estimate running time (or memory) as a function of input size N.

・Ignore lower order terms.

– when N is large, terms are negligible

– when N is small, we don't care

Ex 1. ⅙ N 3 + 20 N + 16	
	
 ~ ⅙ N 3

Ex 2. ⅙ N 3 + 100 N 4/3 + 56	
 ~ ⅙ N 3

Ex 3. ⅙ N 3 - ½ N 2 + ⅓ N	
 ~ ⅙ N 3

Technical definition. f(N) ~ g(N) means

34

Simplification 2: tilde notation

discard lower-order terms

(e.g., N = 1000: 166.67 million vs. 166.17 million)

€

lim
N→ ∞

 f (N)
g(N)

 = 1

Leading-term approximation

N 3/6

N 3/6 ! N 2/2 + N /3

166,167,000

1,000

166,666,667

N

・Estimate running time (or memory) as a function of input size N.

・Ignore lower order terms.

– when N is large, terms are negligible

– when N is small, we don't care

35

Simplification 2: tilde notation

operation frequency tilde notation

variable declaration N + 2 ~ N

assignment statement N + 2 ~ N

less than compare ½ (N + 1) (N + 2) ~ ½ N2

equal to compare ½ N (N − 1) ~ ½ N2

array access N (N − 1) ~ N2

increment ½ N (N − 1) to N (N − 1) ~ ½ N2 to ~ N2

Q. Approximately how many array accesses as a function of input size N ?

A. ~ N 2 array accesses.

 Because 2(½ N 2) = N 2

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 if (a[i] + a[j] == 0)
 count++;

36

Example: 2-SUM

"inner loop"

0 + 1 + 2 + . . . + (N � 1) =
1
2

N (N � 1)

=
�

N

2

⇥

Q. Approximately how many array accesses as a function of input size N ?

A. ~ ½ N 3 array accesses.

 Because (3/6 N 3) = ½ N 3

Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

37

Example: 3-SUM

�
N

3

⇥
=

N(N � 1)(N � 2)
3!

⇥ 1
6
N3

"inner loop"

38

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take discrete mathematics course.

A2. Replace the sum with an integral, and use calculus!

Ex 1. 1 + 2 + … + N.

Ex 2. 1k + 2k + … + N k.

Ex 3. 1 + 1/2 + 1/3 + … + 1/N.

Ex 4. 3-sum triple loop.

N�

i=1

1
i
�

⇥ N

x=1

1
x

dx = lnN

N�

i=1

i �
⇥ N

x=1
x dx � 1

2
N2

N�

i=1

N�

j=i

N�

k=j

1 �
⇥ N

x=1

⇥ N

y=x

⇥ N

z=y
dz dy dx � 1

6
N3

N�

i=1

ik �
� N

x=1
xkdx � 1

k + 1
Nk+1

39

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take discrete mathematics course.

A2. Replace the sum with an integral, and use calculus!

Ex 4. 1 + ½ + ¼ + ⅛ + …

Caveat. Integral trick doesn't always work!

��

i=0

�
1

2

�i

= 2

� �

x=0

�
1

2

�x

dx =
1

ln 2
� 1.4427

40

Estimating a discrete sum

Q. How to estimate a discrete sum?

A3. Use Maple or Wolfram Alpha.

[wayne:nobel.princeton.edu] > maple15
 |\^/| Maple 15 (X86 64 LINUX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2011
 \ MAPLE / All rights reserved. Maple is a trademark of
 <____ ____> Waterloo Maple Inc.
 | Type ? for help.
> factor(sum(sum(sum(1, k=j+1..N), j = i+1..N), i = 1..N));

 N (N - 1) (N - 2)

 6

wolframalpha.com

In principle, accurate mathematical models are available.

In practice,

・Formulas can be complicated.

・Realities of hardware impact accuracy of formulas.

・Advanced mathematics might be required.

・Exact models best left for experts.

Bottom line. We use approximate models in this course: T(N) ~ c N 3.

TN = c1 A + c2 B + c3 C + c4 D + c5 E
A = array access
B = integer add
C = integer compare
D = increment
E = variable assignment

Mathematical models for running time

41

frequencies

 (depend on algorithm, input)

costs (depend on machine, compiler)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ empirical observations

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

1.4 ANALYSIS OF ALGORITHMS

Order-of-growth

Definition.

・If f(N) ~ a g(N), then the order-of-growth of f(N) is just g(N)

・Example:
– Runtime of 3SUM: ~ 1/6 t1 N 3 [see page 181]

– Order-of-growth of the runtime of 3SUM: N 3

・We often say “order-of-growth of 3SUM” as shorthand for the runtime.

43

int count = 0;
for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

Time to execute: t1

Good news. the small set of functions

 1, log N, N, N log N, N 2, N 3, and 2N

suffices to describe order-of-growth of typical algorithms.

Common order-of-growth classifications

44

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K

ti
m

e
ti

m
e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

order of growth discards

leading coefficient

Common order-of-growth classifications

45

order of

growth
name typical code framework description example T(2N) / T(N)

1 constant a = b[0] + b[1]; statement
add two array

elements
1

log N logarithmic
while (N > 1)

{ N = N / 2; ... } divide in half binary search ~ 1

N linear
for (int i = 0; i < N; i++)

{ ... } loop
find the

maximum
2

N log N linearithmic [see mergesort lecture]
divide

and conquer
mergesort ~ 2

N2 quadratic
for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)
 { ... }

double loop
check all

pairs
4

N3 cubic

for (int i = 0; i < N; i++)
 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)
 { ... }

triple loop
check all

triples
8

2N exponential [see combinatorial search lecture]
exhaustive

search

check all

subsets
T(N)

Bottom line. Need linear or linearithmic alg to keep pace with Moore's law.

Practical implications of order-of-growth

46

growth
problem size solvable in minutesproblem size solvable in minutes

rate
1970s 1980s 1990s 2000s

1 any any any any

log N any any any any

N millions
tens of

millions

hundreds of

millions
billions

N log N
hundreds of

thousands
millions millions

hundreds of

millions

N2 hundreds thousand thousands
tens of

thousands

N3 hundred hundreds thousand thousands

2N 20 20s 20s 30

game

changer

47

Some algorithmic successes

N-body simulation.

・Simulate gravitational interactions among N bodies.

・Brute force: N 2 steps.

・Barnes-Hut algorithm: N log N steps, enables new research. Andrew Appel

PU '81

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

c

48

Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

・Too small, go left.

・Too big, go right.

・Equal, found.

lo

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

hi

successful search for 33

Worst case: lg N

see Coursera for rigorous proof

49

Binary search: Java implementation

Trivial to implement?

・First binary search published in 1946; first bug-free one in 1962.

・Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant. If key appears in the array a[], then a[lo] ≤ key ≤ a[hi].

 public static int binarySearch(int[] a, int key)
 {
 int lo = 0, hi = a.length-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

one "3-way compare"

Sorting-based algorithm.

・Step 1: Sort the N (distinct) numbers.

・Step 2: For each pair of numbers a[i]

and a[j], binary search for -(a[i] + a[j]).

Analysis. Order of growth is N 2 log N.

・Step 1: N 2 with insertion sort.

・Step 2: N 2 log N with binary search.

– N 2 binary searches, each log N

Remark. Can achieve N 2 by modifying

binary search step.

An N2 log N algorithm for 3-SUM

50

binary search

(-40, -20) 60
(-40, -10) 50
(-40, 0) 40
(-40, 5) 35
(-40, 10) 30
 ⋮ ⋮

(-40, 40) 0
 ⋮ ⋮

(-20, -10) 30
 ⋮ ⋮

(-10, 0) 10
 ⋮ ⋮

(10, 30) -40
(10, 40) -50
(30, 40) -70

only count if

a[i] < a[j] < a[k]

to avoid

double counting

input

 30 -40 -20 -10 40 0 10 5

sort

 -40 -20 -10 0 5 10 30 40

Comparing programs

Hypothesis. The sorting-based N 2 log N algorithm for 3-SUM is significantly

faster in practice than the brute-force N 3 algorithm.

Guiding principle. Typically, better order of growth ⇒ faster in practice.

51

N time (seconds)

1,000 0.14

2,000 0.18

4,000 0.34

8,000 0.96

16,000 3.67

32,000 14.88

64,000 59.16

N time (seconds)

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

ThreeSum.java

ThreeSumDeluxe.java

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ empirical observations

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

1.4 ANALYSIS OF ALGORITHMS

Best case. Lower bound on cost.

・Determined by “easiest” input.

・Provides a goal for all inputs.

Worst case. Upper bound on cost.

・Determined by “most difficult” input.

・Provides a guarantee for all inputs.

Average case. Expected cost for random input.

・Need a model for “random” input.

・Provides a way to predict performance.

Types of analyses: Performance depends on input

53

Ex 2. Array accesses for brute-force 3-SUM.

Best: N 3

Average: N 3

Worst: N 3

Ex 1. Compares for binary search.

Best: 1

Average: lg N

Worst: lg N

Best case. Lower bound on cost.

・Determined by “easiest” input.

・Provides a goal for all inputs.

Worst case. Upper bound on cost.

・Determined by “most difficult” input.

・Provides a guarantee for all inputs.

Average case. Expected cost for random input.

・Need a model for “random” input.

・Provides a way to predict performance.

Types of analyses: Performance depends on input

54

Ex 2. Array accesses for brute-force 3-SUM. Ex 1. Compares for binary search.

 1 log N log N

Best Average Worst

 N 3 N 3 N 3

Best Average Worst

Where you lie depends

on your input!

Best case. Lower bound on cost.

Worst case. Upper bound on cost (guarantee).

Average case. “Expected” cost.

Primary practical reason: avoid performance bugs.

Example: Algorithm selection

・Given arbitrary data, performance may be anywhere in our bounds.

・Approach 1: depend on worst case guarantee.

– Example: Use Mergesort instead of Quicksort

・Approach 2: randomize, depend on probabilistic guarantee.

– Example: Randomize input before giving to Quicksort

Types of analyses

55

Mergesort. [next week]

 N log N N log N N log N

Best Average Worst

Quicksort. [next week]

 N log N N log N N2

Best Average Worst

Previous slides

・Best, average, and worst case for a specific algorithm.

New goals.

・Establish “difficulty” of a problem, e.g. how hard is 3SUM?

・Develop “optimal” algorithm.

Approach: Use order-of-growth in worst case

・Use order-of-growth (just like we’ve been doing).

– Analysis is asymptotic, i.e. for very large N.

– Analysis is “to within a constant factor”, using OaG instead of Tilde.

・Consider only worst case.

– Analysis avoids messy input models.

– Analysis focuses on guarantees.

Theory of algorithms

56

Theory of algorithms

Testing optimality of algorithm A for problem P

・Find worst case order of growth guarantee for specific algorithm A, g(N)

・Find lower bound on guarantee for any algorithm that solves P, B(N)

・If they match, i.e. g(N) = B(N), then:

– Worst case performance of A is asymptotically optimal.

– Optimal algorithm for P has order of growth g(N)

・If they don’t, g(N) at least provides an upper bound.

57

Algorithm A

 ?? ?? g(N)

Best Average Worst

Lower bound for best algorithm

 ?? ?? B(N)

Best Average Worst

 B(N)

 g(N)

Worst case performance

for optimal algorithm

Theory of algorithms

Example: The 1-SUM problem (how many 0s?)

・Let A be the brute force algorithm where we simply look at each entry and

count the zeros.

– Worst case order of growth: g(N) = N

・Of any algorithm that solves 1-SUM, must at least examine every entry.

– Lower bound on worst case order of growth: B(N) = N

・g(N) = B(N). A is optimal!

58

Brute force algorithm

don’t care don’t care N

Best Average Worst

Lower bound for best algorithm

don’t care don’t care N

Best Average Worst

Worst case performance

for optimal 1-SUM algorithm

 N

 N

 N

Theory of algorithms: example 2

Example: The 3-SUM problem (how many 0s?)

・Let A be the brute force algorithm where we look at each triple.

– Worst case order of growth: g(N) = N3

・Of any algorithm that solves 3-SUM, must at least examine every entry.

Lower bound on worst case order of growth: B(N) = N

・g(N) ≠ B(N)

59

Lower bound for best algorithm

don’t care don’t care N

Best Average Worst

 N

 N3

Worst case performance

for optimal 3-SUM algorithm

Brute force algorithm

 N3

Best Average Worst

 don’t caredon’t care

Theory of algorithms: example 2

60

What this tells us

・It is possible to solve 3SUM in N3 time in the worst case.

・The optimal algorithm has worst case running time OaG between N and N3.

What this doesn’t tell us

・Is there an algorithm with better running time than N3 in the worst case?

・Is there some clever way of finding a better lower bound than N?

 N

 N3

Worst case performance

for optimal 1-SUM algorithm

Lower bound for best algorithm

don’t care don’t care N

Best Average Worst

Brute force algorithm

 N3

Best Average Worst

 don’t caredon’t care

Theory of algorithms terminology

Testing optimality of algorithm A for problem P

・Find worst case order of growth guarantee for specific algorithm A, g(N)

・Find lower bound on guarantee for any algorithm that solves P, B(N)

Standard terminology

・The running time of the optimal algorithm for problem P is O(g(N))

・The running time of the optimal algorithm for problem P is Ω(B(N))

61

Algorithm A

 g(N)

Best Average Worst

Lower bound for best algorithm

 B(N)

Best Average Worst

 B(N)

 g(N)

Worst case performance

for optimal algorithm

Ω(B(N))

O(g(N))

don’t care

don’t care don’t care

don’t care

Theory of algorithms terminology

Testing optimality of brute force algorithm for 3-SUM

・Find worst case order of growth guarantee for brute force, N3

・Find lower bound on guarantee for any algorithm that solves P, N

Standard terminology

・The running time of the optimal algorithm for problem P is O(N3)

・The running time of the optimal algorithm for problem P is Ω(N)

62

Algorithm A

 N3

Best Average Worst

Lower bound for best algorithm

 N

Best Average Worst

 N

 N3

Worst case performance

for optimal algorithm

Ω(N)

O(N3)

don’t care

don’t care don’t care

don’t care

63

Commonly-used notations in the theory of algorithms

notation provides example shorthand for used to

Big Theta
asymptotic

order of growth
Θ(N2)

½ N2

10 N2

 5 N2 + 22 N log N + 3N

⋮

classify

algorithms

Big Oh Θ(N2) and smaller O(N2)

10 N2

100 N

 22 N log N + 3 N

⋮

develop

upper bounds

Big Omega Θ(N2) and larger Ω(N2)

½ N2

N5

 N3 + 22 N log N + 3 N

⋮

develop

lower bounds

Example: Optimal algorithm of 3-SUM is O(N3) based on brute force solution.

 (i.e. its order of growth is N3 or less)

Theory of algorithm: 3SUM

The run time of 3SUM’s optimal solution...

・=O(N3) based on brute force solution.

・=O(N2 log N) based on binary search based solution.

・=O(N2) based on solution developed in precept this week.

・=Ω(N) based on a simple argument about accessing all data.

・Grows at least as slow as N2, and at least as fast as N.

Open questions

・What is the order of growth of the optimal solution for 3-SUM?

– Equivalent question: If it is Θ(B(n)) in the worst case, what is B(n)?

– We know it is between N and N2.

・Does there exist an algorithm with worst case run time better than N2?

– i.e. an algorithm that is better than Θ(N2) in the worst case?

・Does there exist a way to provide a quadratic lower bound on 3SUM?

– i.e. can we prove that the optimal algorithm for 3-SUM is Ω(N2)?

64

Start.

・Develop an algorithm.

・Prove a lower bound.

Gap?

・Lower the upper bound (discover a new algorithm).

・Raise the lower bound (more difficult).

Golden Age of Algorithm Design (1970s-Present*).

・Steadily decreasing upper bounds for many important problems.

・Many known optimal algorithms.

Caveats.

・Overly pessimistic to focus on worst case?

・Can do better than “to within a constant factor” to predict performance.

・Asymptotic performance not always useful (e.g. matrix multiplication).

Algorithm design approach

65

Worst case performance

for optimal algorithm

Ω

O

Common practice. Analysis to within a constant factor.

Easy to be more precise. Use Tilde-notation instead of Big Theta (or Big Oh).

To-within a constant factor

66

notation provides example shorthand for used to

Tilde leading term ~ 10 N2

10 N2

10 N2 + 22 N log N

10 N2 + 2 N + 37

provide

approximate

model

Big Theta
asymptotic

growth rate
Θ(N2)

½ N2

10 N2

 5 N2 + 22 N log N + 3N

classify

algorithms

Big Oh Θ(N2) and smaller O(N2)

10 N2

100 N

 22 N log N + 3 N

develop

upper bounds

Big Omega Θ(N2) and larger Ω(N2)

½ N2

N5

 N3 + 22 N log N + 3 N

develop

lower bounds

Order of growth isn’t everything - Matrix multiplication

67

year algorithm order of growth

? brute force N 3

1969 Strassen N 2.808

1978 Pan N 2.796

1979 Bini N 2.780

1981 Schönhage N 2.522

1982 Romani N 2.517

1982 Coppersmith-Winograd N 2.496

1986 Strassen N 2.479

1989 Coppersmith-Winograd N 2.376

2010 Strother N 2.3737

2011 Williams N 2.3727

number of floating-point operations to multiply two N-by-N matrices

・Asymptotic performance not always useful (e.g. matrix multiplication).

Only faster for

huge matrices!

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ empirical observations

‣ mathematical models

‣ order-of-growth classifications

‣ theory of algorithms

‣ memory

1.4 ANALYSIS OF ALGORITHMS

69

Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 220 bytes.

Gigabyte (GB). 1 billion or 230 bytes.

64-bit machine. We assume a 64-bit machine with 8 byte pointers.

・Can address more memory.

・Pointers use more space.

some JVMs "compress" ordinary object

pointers to 4 bytes to avoid this cost

NIST most computer scientists

hard drives

70

Typical memory usage for primitive types and arrays

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

for primitive types

type bytes

char[] 2N + 24

int[] 4N + 24

double[] 8N + 24

for one-dimensional arrays

type bytes

char[][] ~ 2 M N

int[][] ~ 4 M N

double[][] ~ 8 M N

for two-dimensional arrays

Object overhead. 16 bytes (+8 if inner class).

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

71

Typical memory usage for objects in Java

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

4 bytes (int)

4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

Total memory usage for a data type value:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable

+ 8 bytes if inner class (for pointer to enclosing class).

・Padding: round up to multiple of 8 bytes.

Shallow memory usage: Don't count referenced objects.

Deep memory usage: If array entry or instance variable is a reference,

add memory (recursively) for referenced object.

72

Typical memory usage summary

Total memory usage for a data type value:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable

+ 8 bytes if inner class (for pointer to enclosing class).

・Padding: round up to multiple of 8 bytes.

A String and a substring

String genome = "CGCCTGGCGTCTGTAC";
String codon = genome.substring(6, 3);

 16

object
overhead

char
values

C G
C C
T G
G C
G T
C T
G T
A C

 0
16

object
overhead

genome

 6
3

object
overhead

 codon

hash

hash

...

 value

public class String
{
 private char[] value;
 private int offset;
 private int count;
 private int hash;
...
} offset

 count
 hash

object
overhead

40 bytes

40 bytes

40 bytes

36 bytes

String object (Java library)

substring example

reference

int
values

padding

padding

padding

padding

 value

 value

73

Typical memory usage for objects in Java

8 bytes (reference to array)

4 bytes (int)

4 bytes (int)

2N + 24 bytes (char[] array)

16 bytes (object overhead)

Deep memory: 2N + 64 bytes

4 bytes (int)

4 bytes (padding)

~2N bytesEx 2. A Java 6 string object uses ~2N bytes (deep).

Total memory usage for a data type value:

・Primitive type: 4 bytes for int, 8 bytes for double, …

・Object reference: 8 bytes.

・Array: 24 bytes + memory for each array entry.

・Object: 16 bytes + memory for each instance variable

+ 8 bytes if inner class (for pointer to enclosing class).

・Padding: round up to multiple of 8 bytes.

A String and a substring

String genome = "CGCCTGGCGTCTGTAC";
String codon = genome.substring(6, 3);

 16

object
overhead

char
values

C G
C C
T G
G C
G T
C T
G T
A C

 0
16

object
overhead

genome

 6
3

object
overhead

 codon

hash

hash

...

 value

public class String
{
 private char[] value;
 private int offset;
 private int count;
 private int hash;
...
} offset

 count
 hash

object
overhead

40 bytes

40 bytes

40 bytes

36 bytes

String object (Java library)

substring example

reference

int
values

padding

padding

padding

padding

 value

 value

74

Typical memory usage for objects in Java

Ex 2. A Java 6 string object uses 40 bytes (shallow memory).

8 bytes (reference to array)

4 bytes (int)

4 bytes (int)

2N + 24 bytes (char[] array)

16 bytes (object overhead)

Shallow memory: 40 bytes

4 bytes (int)

4 bytes (padding)

75

Example

Q. How much memory does WeightedQuickUnionUF use as a function of N ?
 Use tilde notation to simplify your answer.

A. 8 N + 88 ~ 8 N bytes.

public class WeightedQuickUnionUF
{
 private int[] id;
 private int[] sz;
 private int count;

 public WeightedQuickUnionUF(int N)
 {
 id = new int[N];
 sz = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 for (int i = 0; i < N; i++) sz[i] = 1;
 }
 ...
}

16 bytes

(object overhead)

8 + (4N + 24) each

reference + int[] array

4 bytes (int)

4 bytes (padding)

Turning the crank: summary

Empirical analysis.

・Execute program to perform experiments.

・Assume power law and formulate a hypothesis for running time.

・Model enables us to make predictions.

Mathematical analysis.

・Analyze algorithm to count frequency of operations.

・Use tilde notation or order of growth to simplify analysis.

・Model enables us to explain behavior.

Scientific method.

・Mathematical model is independent of a particular system;

applies to machines not yet built.

・Empirical analysis is necessary to validate mathematical models

and to make predictions.

76

