
COS 226, FALL 2013

ALGORITHMS
AND

DATA STRUCTURES

http://www.princeton.edu/~cos226

2

What is COS 226?

・Intermediate-level survey course.

・Programming and problem solving, with applications.

・Algorithm: method for solving a problem.

・Data structure: method to store information.

topic data structures and algorithms

data types stack, queue, bag, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching BST, red-black BST, hash table

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, regular expressions, tries, data compression

advanced B-tree, suffix array, maxflow, simplex

COS 226 course overview

3

Their impact is broad and far-reaching.

Why study algorithms?

4

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...

Biology. Human genome project, protein folding, …

Computers. Circuit layout, file system, compilers, …

Computer graphics. Movies, video games, virtual reality, …

Security. Cell phones, e-commerce, voting machines, …

Multimedia. MP3, JPG, HDTV, song recognition, face recognition, …

Social networks. Recommendations, dating, advertisements, …

Physics. N-body simulation, particle collision simulation, …

 ⋮

Why study algorithms?

5

To become a proficient programmer.

Why study algorithms?

“The difference between a bad programmer and a good one is whether

[the programmer] considers code or data structures more important. Bad

programmers worry about the code. Good programmers worry about

data structures and their relationships.”

 — Linus Torvalds (creator of Linux)

“ Algorithms + Data Structures = Programs. ” — Niklaus Wirth

XXVII

6

For intellectual stimulation.

Why study algorithms?

 Frank Nelson Cole

“On the Factorization of Large Numbers”

 American Mathematical Society, 1903

 267-1 = 193,707,721 × 761,838,257,287

They may unlock the secrets of life and of the universe.

Scientists are replacing mathematical models with computational models.

7

Why study algorithms?

“ Algorithms: a common language for nature, human, and computer. ” — Avi Wigderson

For fun and profit.

8

Why study algorithms?

Why study algorithms?

9

Everyone else is doing it, so why shouldn’t we?

Who are you guys?

10

Who are we guys?

11

Josh Hug
Ananda Gunawardena

Ruth Dannenfelser Tengyu Ma

Bob Tarjan

Deborah Varnell Katie Edwards

12

Lectures. Introduce new material.

Precepts. Discussion, problem-solving, background for assignments.

The usual suspects

What When Where Who Office Hours

L01 TTh 11–12:20 Friend 101 Josh Hug see web

P01 F 9-9:50 Friend 108 Guna † see web

P02 F 10–10:50 Friend 108 Guna † see web

P02A F 10–10:50 Friend 109 Tengyu Ma see web

P03 F 11–11:50 Friend 108 Bob Tarjan see web

P03A F 11–11:50 Friend 109 Deborah Varnell see web

P04 F 12:30–1:20 Friend 108 Deborah Varnell see web

P04A F 12:30–1:20 Friend 109 Ruth Dannenfelser see web

† lead preceptor

Piazza. Online discussion forum.

・Low latency, low bandwidth.

・Mark solution-revealing questions

as private.

・Course announcements.

Office hours.

・High bandwidth, high latency.

・See web for schedule.

Computing laboratory.

・Undergrad lab TAs in Friend 017.

・For help with debugging.

・See web for schedule.

13

Where to get help?

http://www.piazza.com/class#fall2013/cos226

http://www.princeton.edu/~cos226

http://www.princeton.edu/~cos226

14

Programming assignments. 45%

・Due on Wednesdays at 11:00 pm via electronic submission.

・4 free late days. Lose 10% for each late day thereafter.

・See web for full collaboration and lateness policy.

Exercises. 10%

・Due on Sundays at 11pm in Blackboard.

Exams. 15% + 30%

・Midterm (in class on Tuesday, October 22).

・Final (to be scheduled by Registrar).

Staff discretion. To adjust borderline cases.

・Report errata.

・Contribute to Piazza discussions.

・Attend and participate in precept/lecture.

・Answering in lecture-questions using a device.

Coursework and grading

Final

Exercises

Programs

Midterm

Required reading. Algorithms 4th edition by R. Sedgewick and K. Wayne,

Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

Available in hardcover and Kindle.

・Online: Amazon ($60 to buy), Chegg ($40 to rent), ...

・Brick-and-mortar: Labyrinth Books (122 Nassau St).

・On reserve: Engineering library.

15

Resources (textbook)

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

30% discount with

PU student ID

1st edition (1982) 3rd edition (1997)2nd edition (1988)

Course content.

・Course info.

・Programming assignments.

・Exercises.

・Lecture slides.

・Exam archive.

・Submit assignments.

Booksites.

・Brief summary of content.

・Download code from book.

16

Resources (web)

http://www.princeton.edu/~cos226

http://www.algs4.princeton.edu

Coursera Course

・Videos by Bob Sedgewick.

– Nearly same content as ours.

・Don’t submit assignments!

– Violates course policy.

Flipped Lectures

・Special large-room format office hours (time to be scheduled)

– Me / Guna solving hard problems

– Old exam problems

– Open Q&A

・Alternative or supplement to in-class lectures.

・Not required. Attendance not tracked.

17

Resources (Coursera) and Flipped Lectures

https://class.coursera.org/algs4partI-003/class

18

Resources (web)

http://www.princeton.edu/~cos226

19

Resources (web)

http://www.princeton.edu/~cos226

20

Resources (web)

http://www.princeton.edu/~cos226

Resources (web)

21

A note on cheating

22

Cheating

・Don’t.

・More than two dozen cases last semester in lower division CS courses.

・We possess and utilize highly advanced tools to detect plagiarism.

・Most likely penalty is a one year-suspension.

– Copying code.

– Looking at other student’s (past or present) code.

– Giving your code to someone else (present or future).

– Submitting to the Coursera autograder.

– COS226 staff have no discretion!

23

Lecture 1. [today] Union find.

Lecture 2. [Next Tuesday] Analysis of algorithms.

Precept 1. [Friday] Meets this week.

Exercise 1. Due via Bb submission at 11pm on Sunday, September 15th.

Assignment 1. Due via electronic submission at 11:59pm on Wednesday,

September 18th. Pro tip: Start early (after precept tomorrow).

Right course? See me.

Placed out of COS 126? Review Sections 1.1–1.2 of Algorithms, 4th edition

(includes command-line interface and our I/O libraries).

Not registered? Go to any precept this week [only if not registered!].

Change precept? Use SCORE.

What's ahead?

Will set up system to swap next week

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

‣ dynamic connectivity

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION-FIND

Steps to developing a usable algorithm.

・Model the problem.

・Find an algorithm to solve it.

・Fast enough? Fits in memory?

・If not, figure out why.

・Find a way to address the problem.

・Iterate until satisfied.

The scientific method.

Mathematical analysis.

25

Subtext of today’s lecture (and this course)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic connectivity

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION-FIND

Given a set of N objects.

・Union command: connect two objects.

・Find/connected query: is there a path connecting the two objects?

27

Dynamic connectivity

union(4, 3)

union(3, 8)

union(6, 5)

union(9, 4)

union(2, 1)

connected(0, 7)

connected(8, 9)

union(5, 0)

union(7, 2)

connected(0, 7)

union(1, 0)

union(6, 1)

0 1 2 3 4

5 6 7 8 9𐄂
✔

✔

Q. Is there a path connecting p and q ?

A. Yes.

28

Connectivity example

p

q

Applications involve manipulating objects of all types.

・Pixels in a digital photo.

・Computers in a network.

・Friends in a social network.

・Transistors in a computer chip.

・Elements in a mathematical set.

・Variable names in Fortran program.

・Metallic sites in a composite system.

When programming, convenient to name objects 0 to N –1.

・Use integers as array index.

・Suppress details not relevant to union-find.

29

Modeling the objects

can use symbol table to translate from site

names to integers: stay tuned (Chapter 3)

We assume "is connected to" is an equivalence relation:

・Reflexive: p is connected to p.

・Symmetric: if p is connected to q, then q is connected to p.

・Transitive: if p is connected to q and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually

connected.

30

Modeling the connections

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects

with their union.

31

Implementing the operations

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

union(2, 5)

{ 0 } { 1 2 3 4 5 6 7 }

2 connected components

0 1 2 3

4 5 6 7

32

Goal. Design efficient data structure for union-find.

・Number of objects N can be huge.

・Number of operations M can be huge.

・Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UF public class UF public class UF

UF(int N)
initialize union-find data structure with

N objects (0 to N – 1)

void union(int p, int q) add connection between p and q

boolean connected(int p, int q) are p and q in the same component?

int find(int p) component identifier for p (0 to N – 1)

int count() number of components

33

・Read in number of objects N from standard input.

・Repeat:

– read in pair of integers from standard input

– if they are not yet connected, connect them and print out pair

Dynamic-connectivity client

public static void main(String[] args)
{
 int N = StdIn.readInt();
 UF uf = new UF(N);
 while (!StdIn.isEmpty())
 {
 int p = StdIn.readInt();
 int q = StdIn.readInt();
 if (!uf.connected(p, q))
 {
 uf.union(p, q);
 StdOut.println(p + " " + q);
 }
 }
}

% more tinyUF.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic connectivity

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION-FIND

35

Data structure.

・Integer array id[] of size N.

・Interpretation: p and q are connected iff they have the same id

0, 5 and 6 are connected

1, 2, and 7 are connected

3, 4, 8, and 9 are connected

Quick-find [eager approach]

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

if and only if

36

Data structure.

・Integer array id[] of size N.

・Interpretation: p and q are connected iff they have the same id.

Find. id of p gives its component.

If p and q have the same id, they are connected.

Union. To merge components containing p and q, change all entries

whose id equals id[p] to id[q].
after union of 6 and 1

problem: many values can change

Quick-find [eager approach]

id[6] = 0; id[1] = 1

6 and 1 are not connected

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

id[]

37

Quick-find demo

0 1 2 3 4

5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

id[]

Quick-find demo

0 1 2 3 4

5 6 7 8 9

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {

 }

 public boolean connected(int p, int q)
 { }

 public void union(int p, int q)
 {
 }
}

39

Quick-find: Java implementation

public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean connected(int p, int q)
 { return id[p] == id[q]; }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}

40

Quick-find: Java implementation

set id of each object to itself

(N array accesses)

change all entries with id[p] to id[q]

(at most 2N + 2 array accesses)

check whether p and q

are in the same component

(2 array accesses)

Cost model. Number of array accesses (for read or write).

Union is too expensive. It takes N 2 array accesses to process a sequence of

N union commands on N objects.

41

Quick-find is too slow

algorithm initialize union find

quick-find N N 1

order of growth of number of array accesses

quadratic

Rough standard (for now).

・109 operations per second.

・109 words of main memory.

・Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

・109 union commands on 109 objects.

・Quick-find takes more than 1018 operations.

・30+ years of computer time!

Quadratic algorithms don't scale with technology.

・New computer may be 10x as fast.

・But, has 10x as much memory ⇒

want to solve a problem that is 10x as big.

・With quadratic algorithm, takes 10x as long!

42

a truism (roughly)

since 1950!

Quadratic algorithms do not scale

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic connectivity

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION-FIND

Data structure.

・Integer array id[] of size N.

・Interpretation: id[i] is parent of i.

・Root of i is id[id[id[...id[i]...]]].

44

root of 3 is 9

Quick-union [lazy approach]

keep going until it doesn’t change

(algorithm ensures no cycles)

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

id[]

3

54

70 1 9 6 8

2

Data structure.

・Integer array id[] of size N.

・Interpretation: id[i] is parent of i.

・Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge components containing p and q,

set the id of p's root to the id of q's root.

45

Quick-union [lazy approach]

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

id[]

3

4

70 1

9

6 8

2

only one value changes p

q
0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

id[]
5

3

54

70 1 9 6 8

2

p

q

root of 3 is 9

root of 5 is 6

3 and 5 are not connected

46

Quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

id[]

Quick-union demo

0

1

2

5

6

7

3

4

8

9

1 8

0 1

1 8

2 3

3 0

4 5

5 1

6 7

8 8

8 9

id[]

Question: Worst case tree depth? Best Case?

Quick-union: Java implementation

public class QuickUnionUF
{
 private int[] id;

 public QuickUnionUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean connected(int p, int q)
 {
 return root(p) == root(q);
 }

 public void union(int p, int q)
 {
 int i = root(p);
 int j = root(q);
 id[i] = j;
 }
}

set id of each object to itself

(N array accesses)

chase parent pointers until reach root

(depth of i array accesses)

check if p and q have same root

(depth of p and q array accesses)

change root of p to point to root of q

(depth of p and q array accesses)

48

49

Cost model. Number of array accesses (for read or write).

Quick-find defect.

・Union too expensive (N array accesses).

・Trees are flat, but too expensive to keep them flat.

Quick-union defect.

・Trees can get tall.

・Find too expensive (could be N array accesses).

worst case

† includes cost of finding roots

Quick-union is also too slow

algorithm initialize union find

quick-find N N 1

quick-union N N † N

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic connectivity

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION-FIND

Weighted quick-union.

・Modify quick-union to avoid tall trees.

・Keep track of size of each tree (number of objects).

・Balance by linking root of smaller tree to root of larger tree.

51

Improvement 1: weighting

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

reasonable alternatives:

union by height or "rank"

In short: Keep union from unnecessarily lengthening the tree.

52

Weighted quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

id[]

Weighted quick-union demo

98

4

3 71

2 50

6

6 2

0 1

6 4

2 3

6 6

4 5

6 2

6 7

4 4

8 9

id[]

54

Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

55

Data structure. Same as quick-union, but maintain extra array sz[i]

to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to:

・Link root of smaller tree to root of larger tree.

・Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }

Weighted quick-union: Java implementation

return root(p) == root(q);

Running time.

・Find: takes time proportional to depth of p and q.

・Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

56

Weighted quick-union analysis

x

N = 10

depth(x) = 3 ≤ lg N

lg = base-2 logarithm

57

Running time.

・Find: takes time proportional to depth of p and q.

・Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Pf. When does depth of x increase?

Increases by 1 when tree T1 containing x is merged into another tree T2.

・The size of the tree containing x at least doubles since | T 2 | ≥ | T 1 |.

・Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

 T2

T1

x

lg = base-2 logarithm

Size of tree containing x = 2*2*2*... = N

lg N

58

Running time.

・Find: takes time proportional to depth of p and q.

・Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Q. Stop at guaranteed acceptable performance?

A. No, easy to improve further.

† includes cost of finding roots

Weighted quick-union analysis

algorithm initialize union connected

quick-find N N 1

quick-union N N † N

weighted QU N lg N † lg N

Quick union with path compression. Just after computing the root of p,

set the id of each examined node to point to that root.

59

Improvement 2: path compression

1211

9

10

8

6 7

3

x

2

54

0

1

root

p

In short: Give find a side job compressing the tree.

Quick union with path compression. Just after computing the root of p,

set the id of each examined node to point to that root.

60

Improvement 2: path compression

10

8

6 7

31211

9 2

54

0

1

root

x

p

Quick union with path compression. Just after computing the root of p,

set the id of each examined node to point to that root.

61

Improvement 2: path compression

7

3

10

8

6

1211

9 2

54

0

1

root

x

p

Quick union with path compression. Just after computing the root of p,

set the id of each examined node to point to that root.

62

Improvement 2: path compression

10

8

6 2

54

0

1

7

3

root

x

p

1211

9

Quick union with path compression. Just after computing the root of p,

set the id[] of each examined node to point to that root.

63

Improvement 2: path compression

10

8

6

7

3

x

root

2

54

0

1

p

1211

9

Two-pass implementation: add second loop to root() to set the id[]

of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its

grandparent (thereby halving path length).

In practice. No reason not to! Keeps tree almost completely flat.

64

Path compression: Java implementation

only one extra line of code !

private int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

65

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an

empty data structure, any sequence of M union-find ops

on N objects makes ≤ c (N + M lg* N) array accesses.

・Analysis can be improved to N + M α(M, N).

・Simple algorithm with fascinating mathematics.

Linear-time algorithm for M union-find ops on N objects?

・Cost within constant factor of reading in the data.

・In theory, WQUPC is not quite linear.

・In practice, WQUPC is linear.

Amazing fact. [Fredman-Saks] No linear-time algorithm exists.

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

Weighted quick-union with path compression: amortized analysis

iterate log function

in "cell-probe" model of computation

Key point. Weighted quick union (with path compression) makes it possible

to solve problems that could not otherwise be addressed.

Ex. [109 unions and finds with 109 objects]

・WQUPC reduces time from 30 years to 6 seconds.

・Supercomputer won't help much; good algorithm enables solution.

66

order of growth for M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ dynamic connectivity

‣ quick find

‣ quick union

‣ improvements

‣ applications

1.5 UNION-FIND

68

・Percolation.

・Games (Go, Hex).

✓ Dynamic connectivity.

・Least common ancestor.

・Equivalence of finite state automata.

・Hoshen-Kopelman algorithm in physics.

・Hinley-Milner polymorphic type inference.

・Kruskal's minimum spanning tree algorithm.

・Compiling equivalence statements in Fortran.

・Morphological attribute openings and closings.

・Matlab's bwlabel() function in image processing.

Union-find applications

An abstract model for many physical systems:

・N-by-N grid of sites.

・Each site is open with probability p (or blocked with probability 1 – p).

・System percolates iff top and bottom are connected by open sites.

69

Percolation

N = 8

does not percolatepercolates

open site connected to top

blocked
site

open
site

no open site connected to top

An abstract model for many physical systems:

・N-by-N grid of sites.

・Each site is open with probability p (or blocked with probability 1 – p).

・System percolates iff top and bottom are connected by open sites.

70

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on site vacancy probability p.

71

Likelihood of percolation

p low (0.4)

does not percolate

p medium (0.6)

percolates?

p high (0.8)

percolates

When N is large, theory guarantees a sharp threshold p*.

・p > p*: almost certainly percolates.

・p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

72

Percolation phase transition

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

・Initialize N-by-N whole grid to be blocked.

・Declare random sites open until top connected to bottom.

・Vacancy percentage estimates p*.

73

Monte Carlo simulation

N = 20

empty open site

(not connected to top)

full open site

(connected to top)

blocked site

74

Q. How to check whether an N-by-N system percolates?

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

Q. How to check whether an N-by-N system percolates?

・Create an object for each site and name them 0 to N 2 – 1.

75

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5 0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

76

Q. How to check whether an N-by-N system percolates?

・Create an object for each site and name them 0 to N 2 – 1.

・Sites are in same component if connected by open sites.

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

77

Q. How to check whether an N-by-N system percolates?

・Create an object for each site and name them 0 to N 2 – 1.

・Sites are in same component if connected by open sites.

・Percolates iff any site on bottom row is connected to site on top row.

Dynamic connectivity solution to estimate percolation threshold

brute-force algorithm: N 2 calls to connected()

open site

blocked site

N = 5 top row

bottom row

Clever trick. Introduce 2 virtual sites (and connections to top and bottom).

・Percolates iff virtual top site is connected to virtual bottom site.

78

Dynamic connectivity solution to estimate percolation threshold

virtual top site

virtual bottom site

efficient algorithm: only 1 call to connected()

open site

blocked site

N = 5 top row

bottom row

Q. How to model opening a new site?

79

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

open this site

Q. How to model opening a new site?

A. Mark new site as open; connect it to all of its adjacent open sites.

80

Dynamic connectivity solution to estimate percolation threshold

open this site

open site

blocked site

N = 5

up to 4 calls to union()

81

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

constant known only via simulation

Percolation threshold

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

Steps to developing a usable algorithm.

・Model the problem.

・Find an algorithm to solve it.

・Fast enough? Fits in memory?

・If not, figure out why.

・Find a way to address the problem.

・Iterate until satisfied.

The scientific method.

Mathematical analysis.

82

Subtext of today’s lecture (and this course)

