2.3 QUICKSORT DEMOS

Sedgewick-2-way partitioning

Bentley-Mcllroy 3-way partitioning

Dijkstra 3-way partitioning

Dual-pivot partitioning

Algorithms

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i</pre>
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

invariant

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

- Let v be partitioning item a[1o].
- Scan i from left to right.
 - (a[i] < v): exchange a[lt] with a[i]; increment both lt and i
 - (a[i] > v): exchange a[gt] with a[i]; decrement gt
 - (a[i] == v): increment i

