2.3 Quicksort Demos

- Sedgewick 2-way partitioning
- Diikstra 3-way partitioning

Algorithms

- Bentley-Mctlroy 3-way partitioning
- Dual-pivoł partitioning

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 1t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

P	A	B	X	W	P	P	V	P	D	P	C	Y	Z

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

A	B	P	X	w	P	P	v	P	D	P	C	Y	Z

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

Dijkstra 3-way partitioning demo

- Let v be partitioning item a[1o].
- Scan i from left to right.
- (a[i] < v): exchange a[1t] with a[i]; increment both 7t and i
- (a[i] > v): exchange a[gt] with a[i]; decrement gt
- (a[i] == v): increment i

invariant

