Princeton University

COS 217: Introduction to Programming Systems

Fall 2013 Final Exam Preparation

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings.
This is a non-exhaustive list of topics that were covered. Topics that were covered after the midterm exam
are in boldface.

1. Number Systems

The binary, octal, and hexadecimal number systems
Finite representation of integers

Representation of negative integers

Binary arithmetic

Bitwise operators

2. C Programming

The program preparation process: preprocess, compile, assemble, link
Program structure: multi-file programs using header files

Process memory layout: text, stack, heap, rodata, data, bss sections

Data types

Variable declarations and definitions

Variable scope, linkage, and duration/extent

Constants: #define, constant variables, enumerations

Operators and statements

Function declarations and definitions

Pointers; call-by-reference

Arrays: arrays and pointers, arrays as parameters, strings

Command-line arguments

Input/output functions for standard streams and files, and for text and binary data
Structures

Dynamic memory mgmt.: malloc(), calloc(), realloc(), free()

Dynamic memory mgmt. errors: dangling pointer, memory leak, double free
Abstract data types; opaque pointers

Void pointers

Function pointers and function callbacks

Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large

Testing
* External testing taxonomy: boundary condition, statement, path, stress
* Internal testing techniques: testing invariants, verifying conservation properties,
checking function return values, changing code temporarily, leaving testing code intact
* General testing strategies: testing incrementally, comparing implementations,
automation, bug-driven testing, fault injection
Debugging heuristics
* Understand error messages, think before writing, look for familiar bugs, divide and
conquer, add more internal tests, display output, use a debugger, focus on recent changes

Page 1 of 4

* Heuristics for debugging dynamic memory management: look for familiar bugs, make the
seg fault happen in a debugger, manually inspect each call of malloc(), etc., temporarily
hard-code malloc(), etc. to request a large number of bytes, temporarily comment-out
each call of free(), use Meminfo

* Building

* Separate independent paths before link

* Automated builds, dependencies, partial builds
* Performance Improvement
* When to improve performance
* Techniques for improving execution (time) efficiency
* Techniques for improving memory (space) efficiency
* Program and programming style

* Top-down design
* Data structures and algorithms

* Linked lists, hash tables, memory ownership
* Module qualities

* Separates interface and implementation, encapsulates data, manages resources
consistently, is consistent, has a minimal interface, reports errors to clients, establishes
contracts, has strong cohesion, has weak coupling

* Generics
* Generic data structures via void pointers
* Generic algorithms via function pointers, wrappers
* Performance improvement revisited
* Optimize only when and where necessary
* Improve asymptotic behavior
* Use better data structures or algorithms
* Improve execution time/space constants
* Coax the compiler to perform optimizations
» Exploit capabilities of the hardware
* Capitalize on knowledge of program execution

4. Under the Hood: Language Levels Tour

* Computer architectures and the IA-32 computer architecture
* Computer organization
* RISCvs CISC
* Control unit vs. ALU vs. memory
e Little-endian vs. big-endian byte order
* Language levels: high-level vs. assembly vs. machine
* Assembly languages and the IA-32 assembly language
* Directives (.section, .asciz, .long, etc.)
* Mnemonics (movl, addl, call, etc.)
* Control transfer: condition codes and jump instructions
* Instruction operands: immediate, register, memory
* Memory operands: direct, indirect, base+displacement, indexed, scaled-indexed
* The stack and local variables
* The stack and function calls: the IA-32 function calling convention
* Machine language
* Opcodes
* The ModR/M byte
e The SIB byte
* Immediate, register, memory, displacement operands
* Assemblers

Page 2 of 4

* The forward reference problem
* Pass 1: Create symbol table
* Pass 2: Use symbol table to generate data section, rodata section, bss section, text
section, relocation records
* Linkers
* Resolution: Fetch library code
* Relocation: Use relocation records and symbol table to patch code

5. Under the Hood: Service Levels Tour

* Exceptions and Processes
* Exceptions: interrupts, traps, faults, and aborts
* Traps in Intel processors
* System-level functions (alias "system calls'")
* The process abstraction
* The illusion of private control flow
* Reality: context switches
e The illusion of private address space
* Reality: virtual memory
* Memory Management
* The memory hierarchy: registers vs. cache vs. memory vs. local secondary storage
vs. remote secondary storage
* Locality of reference and caching
* Virtual memory
* Implementation of virtual memory
* Page tables, page faults
* Dynamic memory management
* Memory allocation strategies
* Free block management
* Optimizing malloc() and free()
* I/O Management
* The stream abstraction
* Implementation of standard C I/O functions using Unix system-level functions
* The open(), creat(), close(), read(), and write() functions
* Process management
* Creating and destroying processes
e The getpid(), execvp(), fork(), and wait() functions
* The exit() and system() functions
* Redirection of stdin, stdout, and stderr
e The dup() and dup2() functions
* Signals and alarms
* Sending signals via keystrokes, the kill command, and the raise() and kill() functions
* Handling signals: the signal() function
* The SIG_IGN and SIG_DFL parameters to signal()
* Blocking signals: the sigprocmask() function
* Alarms: the alarm() function

6. Applications

* De-commenting

* Lexical analysis using finite state automata
e String manipulation

* Symbol tables, linked lists, hash tables

Page 3 of 4

* Dynamically expanding arrays
* High-precision addition

* Buffer overrun attacks

* Heap management

e Unix shells

7. Tools: The Unix/GNU programming environment

* Unix, Bash, Emacs, GCC, GDB, Make, Gprof, GDB for assembly language

Readings
As specified by the course "Schedule” web page...
Required

* C Programming (King): 1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22

* Computer Systems (Bryant & O'Hallaron): 1, 3 (OK to skip 3.13 and 3.14), 8.1-8.5, 9

* Communications of the ACM "Detection and Prevention of Stack Buffer Overflow Attacks"
e The C Programming Language (Kernighan & Ritchie) 8.7

Recommended

* Computer Systems (Bryant & O'Hallaron): 2,5, 7, 10

* The Practice of Programming (Kernighan & Pike): 1,2,4,5,6,7, 8
* Unix Tutorial for Beginners (website)

* GNU Emacs Tutorial (website)

* GNU GDB Tutorial (website)

* GNU Make Tutorial (website)

* GNU Gprof Tutorial (website)

Copyright © 2014 by Robert M. Dondero, Jr.

Page 4 of 4

	Princeton University
	COS 217: Introduction to Programming Systems
	Fall 2013 Final Exam Preparation
	Topics
	Readings

