
1

1

Process Management!

2

Goals of this Lecture!
• Help you learn about:"

•  Creating new processes"
•  Programmatically redirecting stdin, stdout, and stderr"
•  Unix system-level functions for I/O"
•  The Unix stream concept"
•  Standard C I/O functions and their use of Unix functions"
•  (Appendix) communication between processes via pipes"

• Why?"
•  Creating new processes and programmatic redirection

are fundamental tasks of a Unix shell (Assignment 7)"
•  A power programmer knows about Unix shells, creating

new processes and programmatic redirection"
•  Streams are a beautiful Unix abstraction"

2

Basic Process Management!
•  Create a new process"
•  Have it run a new program"

•  Wait for it (and other created processes?) to finish"

3

4

Why a Process Creates a New One!
• Run a new program"

•  E.g., shell executing a program entered at command line"
•  Or, even running an entire pipeline of commands"
•  Such as “wc –l * | sort | uniq -c | sort –nr”"

• Run a new thread of control for the same program"
•  E.g., a Web server handling a new Web request"
•  While continuing to allow more requests to arrive"

• Underlying mechanism"
•  A process executes fork() to create a child process"
•  (Optionally) child process does exec() of new program"

3

5

Creating a New Process!
•  Cloning an existing process"

•  Parent process creates a new child process"
•  The two processes then run concurrently "

•  Child process inherits state from parent "
•  Identical (but separate) copy of virtual

address space"
•  Copy of the parent’s open file descriptors"
•  Parent and child share access to open files"

•  Child then runs independently"
•  Including perhaps invoking a new program"
•  Reading and writing its own address space"

parent

child

6

Fork System-Level Function!
• fork() is called once"

•  But returns control twice, once in (“to”) each process"
•  Returns different values to the two processes"

• How to tell which process is which? "
•  Parent: fork() returns the child’s process ID"
•  Child: fork() returns 0" pid = fork();

if (pid != 0) {
 /* in parent */
 …
} else {
 /* in child */
 …
}

4

7

Fork and Process State!
•  Inherited"

•  User and group IDs"
•  Signal handling settings"
•  Stdio"
•  File pointers"
•  Root directory"
•  File mode creation mask"
•  Resource limits"
•  Controlling terminal"
•  All machine register

states"
•  Control register(s)"
•  …"

• Separate in child"
•  Process ID"
•  Address space (memory)"
•  File descriptors"
•  Parent process ID"
•  Pending signals"
•  Time signal reset times"
•  …"

8

Example: What’s the Output?!
int main(void)
{
 pid_t pid;
 int x = 1;

 pid = fork();
 if (pid != 0) {
 printf("parent: x = %d\n", --x);
 exit(0);
 } else {
 printf("child: x = %d\n", ++x);
 exit(0);
 }
}

5

9

Executing a New Program!
• fork() copies the state of the parent process"

•  Child continues running the parent program"
•  … with a copy of the process memory and registers"

• What if child process wants to run a new program"
•  Solution: child does exec()"
•  Note: exec() does not return. If it does, it failed."

• Example"

execvp("ls", argv);
fprintf(stderr, "exec failed\n");
exit(EXIT_FAILURE);

Program"
to run"

NULL-terminated array"
Contains command-line arguments 

(to become “argv[]” of ls)"

10

Waiting for the Child to Finish!
• Parent should wait for children to finish"

•  Example: a shell waiting for operations to complete"

• Waiting for a child to terminate: wait()
•  Blocks until some (any) child of this process terminates"
•  Returns the process ID of that child process"
•  Or returns -1 if no children exist (i.e., already exited)"

• Waiting for specific child to terminate: waitpid()
•  Blocks till a child with particular process ID terminates"

#include <sys/types.h>
#include <sys/wait.h>
pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

6

11

Example: A Simple Shell!
• Shell is the parent process"

•  E.g., bash"

• Parses command line"
•  E.g., “ls –l”"

•  Invokes child process"
• fork()

• Chile runs “ls” program"
• execvp()

• Parent waits for child"
• wait()

fork"

 ls"

wait"execvp"

bash"

child" parent"

12

Simple Shell Code!
Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the above

7

13

Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the above

Simple Shell Trace (1)!
Parent Process"

Parent reads and parses command line"
Parent assigns values to somepgm and someargv

14

Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

Simple Shell Trace (2)!

Parse command line

Assign values to somefile, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

Parent Process" Child Process"

ex
ec

ut
in

g"
co

nc
ur

re
nt

ly
"

fork() creates child process"
Which process gets the CPU first? Let’s assume the parent…"

8

15

Simple Shell Trace (3)!

In parent, pid != 0; parent waits; OS gives CPU to child"

Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

Parse command line

Assign values to somefile, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

Parent Process" Child Process"child’s pid"

ex
ec

ut
in

g"
co

nc
ur

re
nt

ly
"

16

Simple Shell Trace (4)!

In child, pid == 0; child calls execvp()

Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

Parse command line

Assign values to somefile, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

Parent Process" Child Process"0"

ex
ec

ut
in

g"
co

nc
ur

re
nt

ly
"

9

17

Simple Shell Trace (5)!

In child, somepgm overwrites shell program;"
main() is called with someargv as argv parameter"

Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

somepgm

Parent Process" Child Process"

ex
ec

ut
in

g"
co

nc
ur

re
nt

ly
"

18

Simple Shell Trace (6)!

Somepgm executes in child, and eventually exits"

Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

somepgm

Parent Process" Child Process"

ex
ec

ut
in

g"
co

nc
ur

re
nt

ly
"

10

19

Simple Shell Trace (7)!

Parent returns from wait() and proceeds"

Parse command line

Assign values to somepgm, someargv

pid = fork();

if (pid == 0) {

 /* in child */

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Repeat the previous

Parent Process"

20

Combined Fork/Exec/Wait!
• Common combination of operations"
• fork() to create a new child process"
• exec() to invoke new program in child process"
• wait() in the parent process for the child to complete"

• Single call that combines all three"
• int system(const char *cmd);

• Example"

int main(void) {
 system("echo Hello world");
 return 0;
}

11

21

Fork and Virtual Memory!
• Question:"
• fork() duplicates an entire process (text, bss, data,

rodata, stack, heap sections)"
•  Isn’t that very inefficient?"

• Answer:"
•  Using virtual memory, not really"
•  Upon fork(), OS creates virtual pages for child

process"
•  Each child virtual page points to real page (in memory or

on disk) of parent"
•  OS duplicates real pages incrementally, and only if/when
“write” occurs"

Fork and I/O!
•  Child process gets a copy of parent’s file descriptors"
•  File descriptor: integer that uniquely represents an open file"

•  Passed to and returned by system-level I/O functions"

•  A file is a stream"
•  An ordered sequence of characters"
•  Can read or write a stream; can read while someone is writing, …"
•  A beautiful abstraction for I/O"

•  Can create, open, close, read, write or seek into a file"
•  Using file descriptor"

22

12

23

System-Level Functions for I/O!
int creat(char *pathname, mode_t mode);

•  Create a new file named pathname, and return a file descriptor"
int open(char *pathname, int flags, mode_t mode);

•  Open the file pathname and return a file descriptor"
int close(int fd);

•  Close fd

int read(int fd, void *buf, int count);
•  Read up to count bytes from fd into the buffer at buf ""

int write(int fd, void *buf, int count);
•  Writes up to count bytes into fd from the buffer at buf

int lseek(int fd, int offset, int whence);
•  Assigns the file pointer of fd to a new value by applying an offset"

24

Example: open()
• Converts a path name into a file descriptor"
• int open(const char *pathname, int flags,
mode_t mode);

• Arguments"
•  Pathname: name of the file"
•  Flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
•  Mode: permissions to set if file must be created"

• Returns"
•  File descriptor (or a -1 if an error)"

• Performs a variety of checks"
•  E.g., whether the process is entitled to access the file"

• Underlies fopen() call in C stdio library"

13

25

Example: read()
•  Reads bytes from a file descriptor"

• int read(int fd, void *buf, int count);

•  Arguments"
•  File descriptor: integer descriptor returned by open()
•  Buffer: pointer to memory to store the bytes it reads"
•  Count: maximum number of bytes to read

•  Returns"
•  Number of bytes read"

•  Value of 0 if nothing more to read"
•  Value of -1 if an error"

•  Performs a variety of checks"
•  Whether file has been opened, whether reading is okay"

•  Underlies getchar() , fgets(), scanf() , etc."

26

Redirection!
•  Unix allows programmatic redirection of stdin, stdout, stderr"
•  How?"

•  Use open(), creat(), and close() system calls"
•  Use dup() system call…"

 int dup(int oldfd);
•  Create a copy of the file descriptor oldfd. After a successful

return from dup() or dup2(), the old and new file descriptors may
be used interchangeably. They refer to the same open file
description and thus share file offset and file status flags. Uses
the lowest-numbered unused descriptor for the new descriptor.
Return the new descriptor, or -1 if an error occurred."

14

27

Redirection Example!

"
pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

How does shell implement “somepgm > somefile”?"

28

Redirection Example Trace (1)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process"

…

File"
descriptor"
table"

/dev/tty"

Parent has file descriptor table; first three point to “terminal”"

0"
1"
2"
3"

15

29

Redirection Example Trace (2)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Parent forks child; child has identical file descriptor table"

0"
1"
2"
3"

0"
1"
2"
3"

30

Redirection Example Trace (3)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Let’s say parent gets CPU first; parent waits"

0"
1"
2"
3"

0"
1"
2"
3"

16

31

Redirection Example Trace (4)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Child gets CPU; child creates somefile"

somefile"

3"

0"
1"
2"
3"

0"
1"
2"
3"

32

Redirection Example Trace (5)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Child closes file descriptor 1 (stdout)"

somefile"

3"

0"
1"
2"
3"

0"
1"
2"
3"

17

33

Redirection Example Trace (6)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Child duplicates file descriptor 3 into first unused spot"

somefile"

3"

0"
1"
2"
3"

0"
1"
2"
3"

34

Redirection Example Trace (7)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Child closes file descriptor 3"

somefile"

3"

0"
1"
2"
3"

0"
1"
2"
3"

18

35

Redirection Example Trace (8)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepgm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Child calls execvp()"

somefile"

3"

0"
1"
2"
3"

0"
1"
2"
3"

36

Redirection Example Trace (9)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somepfm, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process" Child Process"

somepgm

…

File"
descriptor"
table"

…

File"
descriptor"
table"

/dev/tty"

Somepgm executes with stdout redirected to somefile"

somefile"

0"
1"
2"
3"

0"
1"
2"
3"

19

37

Redirection Example Trace (10)!

pid = fork();

if (pid == 0) {

 /* in child */

 fd = creat("somefile", 0640);

 close(1);

 dup(fd);

 close(fd);

 execvp(somefile, someargv);

 fprintf(stderr, "exec failed\n");

 exit(EXIT_FAILURE);

}

/* in parent */

pid = wait(&status);

Parent Process"

…

File"
descriptor"
table"

/dev/tty"

Somepgm exits; parent returns from wait() and proceeds"

0"
1"
2"
3"

38

The Beginnings of a Unix Shell!

•  A shell is mostly a big loop"
•  Parse command line from stdin"
•  Expand wildcards (‘*’)"
•  Interpret redirections (‘<‘, and ‘>’)"
• fork(), dup(), exec(), and wait(), as necessary"

•  Start from the code in earlier slides"
•  And edit till it becomes a Unix shell"
•  This is the heart of the last programming assignment"

20

39

Summary!
• System-level functions for creating processes"
• fork(): process creates a new child process"
• wait(): parent waits for child process to complete"
• exec(): child starts running a new program"
• system(): combines fork, wait, and exec all in one"

• System-level functions for redirection"
• open() / creat(): to open a file descriptor"
• close(): to close a file descriptor"
• dup(): to duplicate a file descriptor"

40

Stream Abstraction and C stdio!
• Any source of input or destination for output"

•  E.g., keyboard as input, and screen as output"
•  E.g., files on disk or CD, network ports, printer port, …"

• Accessed in C programs through file pointers"
•  E.g., FILE *fp1, *fp2;
•  E.g., fp1 = fopen("myfile.txt", "r");

• Three streams provided by stdio.h"
•  Streams stdin, stdout, and stderr!

•  Typically map to keyboard, screen, and screen"
•  Can redirect to correspond to other streams"

•  E.g., stdin can be named file or output of another pgm"
•  E.g., stdout can be named file or input to another pgm"

21

41

Sequential Access to a Stream!
• Each stream has an associated file position"

•  Starts at beginning of file, if file opened to read or write"
•  Or, starts at end of file, if file opened to append"

"

• Read/write operations advance the file position"
•  Allows sequencing through the file in sequential manner"

• Support for random access to the stream"
•  Functions to learn current position and seek to new one"

file file

42

Standard I/O Functions!
• Portability"

•  Generic I/O support for C programs"
•  Specific implementations for various host OSes"
•  Invokes the OS-specific system calls for I/O"

• Abstractions for C programs"
•  Streams"
•  Line-by-line input"
•  Formatted output "

• Additional optimizations"
•  Buffered I/O"
•  Safe writing"

File System

Stdio Library

Appl Prog

user
OS

22

43

Example: Opening a File !
• FILE *fopen("myfile.txt", "r")

•  Open the named file and return a stream"
•  Includes a mode, such as “r” for read or “w” for write"

• Creates a FILE data structure for the file"
•  Mode, status, buffer, …"
•  Assigns fields and returns a pointer"

• Opens or creates the file, based on the mode"
•  Write (‘w’): create file with default permissions"
•  Read (‘r’): open the file as read-only"
•  Append (‘a’): open or create file, and seek to the end"

• Uses underlying system calls supported by OS"

44

Example: Formatted I/O!
• int fprintf(fp1, "Number: %d\n", i)"

•  Convert and write output to stream in specified format"

• int fscanf(fp1, "FooBar: %d", &i)
•  Read from stream in format and assign converted values"

• Specialized versions"
• printf(…) is just fprintf(stdout, …)
• scanf(…) is just fscanf(stdin, …)

• Use underlying syscalls: read, write"

23

45

Abstraction: stdio built on syscalls!

Disk!

Driver!

Storage!

File System!

disk blocks"

variable-length segments"

hierarchical file system"

Operating"
System"

Stdio Library! FILE * stream"

Appl Pgm!User"
process"

int fd!

File descriptor:"
An integer that"
uniquely identifies"
an open file"

•  stdio functions use create, open, close, read, write system calls

46

Example: A Simple getchar()
 int getchar(void) {
 char c;
 if (read(0, &c, 1) == 1)
 return c;
 else return EOF;
}

• Read one character from stdin
•  File descriptor 0 is stdin
• &c points to the buffer to read into"
• 1 is the number of bytes to read"

• Read returns the number of bytes read "
•  In this case, 1 byte means success"

24

47

Making getchar() More Efficient!
• Poor performance reading one byte at a time"

•  Read system call is accessing the device (e.g., a disk)"
•  Reading one byte from disk is very time consuming"
•  Better to read and write in larger chunks!

• Buffered I/O"
•  Library reads large chunk from disk into a memory buffer"

•  Doles out bytes to the user process as requested"
•  Discard buffer contents when the stream is closed"

•  Similarly, write individual bytes to a buffer in memory"
•  And write to disk when full, or when stream is closed"

•  Known as “flushing” the buffer"

48

Better getchar() with Buffered I/O!
"

int getchar(void) {
 static char base[1024];
 static char *ptr;
 static int cnt = 0;

 if (cnt--) return *ptr++;

 cnt = read(0, base, sizeof(base));
 if (cnt <= 0) return EOF;
 ptr = base;
 return getchar();
}

persistent variables
for the buffer

base

ptr

But, many functions may read (or write) the stream…

25

49

Details of FILE in stdio.h (K&R 8.5)!
#define OPEN_MAX 20 /* max files open at once */

typedef struct _iobuf {
 int cnt; /* num chars left in buffer */
 char *ptr; /* ptr to next char in buffer */
 char *base; /* beginning of buffer */
 int flag; /* open mode flags, etc. */
 char fd; /* file descriptor */
} FILE;
extern FILE _iob[OPEN_MAX];

#define stdin (&_iob[0])
#define stdout (&_iob[1])
#define stderr (&_iob[2])

50

Buffered Output!

int main(void) {
 printf("Step 1\n");
 sleep(10);
 printf("Step 2\n");
 return 0;
}

•  Run “a.out > out.txt &” and then “tail -f out.txt”"
•  To run a.out in the background, outputting to out.txt
•  And then to see the contents on out.txt

•  Neither line appears till ten seconds have elapsed"
•  Because the output is being buffered"
•  Add fflush(stdout) to flush the output buffer (often after printf)"
• fclose() also flushes the buffer before closing"

• When does it actually show up on I/O device?:"

26

51

Summary!

•  System I/O functions provide simple abstractions"
•  Stream as a source or destination of data"
•  Functions for manipulating streams"

•  stdio library builds on system-level functions"
•  Calls system-level functions for low-level I/O "
•  Adds buffering"

•  Powerful examples of abstraction"
•  Application programs interact with streams at high level"
•  Standard I/O library interacts with streams at lower level"
•  Only the OS deals with the device-specific details"

52

Appendix!
"
"

Inter-Process Communication (IPC)"

27

53

IPC!

different machines

same machine

54

IPC Mechanisms!
• Pipes"

•  Processes on the same machine"
•  Allows parent process to communicate with child process"
•  Allows two “sibling” processes to communicate"
•  Used mostly for a pipeline of filters"

• Sockets"
•  Processes on any machines"
•  Processes created independently"
•  Used for client/server communication (e.g., Web)"

Both provide abstraction of an “ordered stream of bytes”

28

55

Pipes!

56

Example Use of Pipes!
• Compute a histogram of content types in my e-mail"

•  Many e-mail messages, consisting of many lines"
•  Lines like “Content-Type: image/jpeg” indicate the type"

• Pipeline of Unix commands"
•  Identifying content type: grep -i Content-Type * "
•  Extracting just the type: cut -d" " -f2
•  Sorting the list of types: sort
•  Counting the unique types: uniq -c "
•  Sorting the counts: sort –nr

• Simply running this at the shell prompt:"
• grep -i Content-Type * | cut -d" " -f2 | sort |
uniq -c | sort –nr"

29

57

Creating a Pipe!

58

Pipe Example!

child

parent

30

59

Pipes and Stdio!

child makes stdin (0)
the read side of the pipe

parent makes stdout (1)
the write side of the pipe

60

Pipes and Exec!

child process

invokes a new program

