
1

1

I/O Management!

2

Goals of this Lecture!
• Help you to learn about:"

•  The Unix stream concept"
•  Standard C I/O functions"
•  Unix system-level functions for I/O"
•  How the standard C I/O functions use the Unix system-

level functions"
•  Additional abstractions provided by the standard C I/O

functions"
"

Streams are a beautiful Unix abstraction"

2

3

Stream Abstraction!
• Any source of input or destination for output"

•  E.g., keyboard as input, and screen as output"
•  E.g., files on disk or CD, network ports, printer port, …"

4

Sequential Access to a Stream!
• Each stream has an associated file position"

•  Starting at beginning of file (if opened to read or write)"
•  Or, starting at end of file (if opened to append)"

"

• Read/write operations advance the file position"
•  Allows sequencing through the file in sequential manner"

• Support for random access to the stream"
•  Functions to learn current position and seek to new one"

file file

3

Using Streams in C!
• Accessed in C programs through file pointers"

•  E.g., FILE *fp1, *fp2;
•  E.g., fp1 = fopen("myfile.txt", "r");

• Supported by Standard I/O Library (stdio)"

• Three streams provided by stdio.h"
•  Streams stdin, stdout, and stderr!

•  Typically map to keyboard, screen, and screen"
•  Can redirect to correspond to other streams"

•  E.g., stdin can be the output of another program"
•  E.g., stdout can be the input to another program"

5

6

Standard I/O (stdio) Functions!
• Portability"

•  Generic I/O support for C programs"
•  Invokes the OS-specific system calls for I/O"

•  Specific implementations for various host Oses"

• Abstractions for C programs"
•  Streams"
•  Line-by-line input"
•  Formatted output "

• Additional optimizations"
•  Buffered I/O"
•  Safe writing"

File System

Stdio Library

Appl Prog

user
OS

4

7

Example: Opening a File !
• FILE *fopen("myfile.txt", "r")

•  Open the named file and return a stream"
•  Includes a mode, such as “r” for read or “w” for write"

• Creates a FILE data structure for the file"
•  Mode, status, buffer, …"
•  Assigns fields and returns a pointer"

• Opens or creates the file, based on the mode"
•  Write (‘w’): create file with default permissions"
•  Read (‘r’): open the file as read-only"
•  Append (‘a’): open or create file, and seek to the end"

8

Example: Formatted I/O!
• int fprintf(fp1, "Number: %d\n", i)"

•  Convert and write output to stream in specified format"

• int fscanf(fp1, "FooBar: %d", &i)
•  Read from stream in format and assign converted values"

• Specialized versions"
• printf(…) is just fprintf(stdout, …)
• scanf(…) is just fscanf(stdin, …)

5

9

Streams in the Operating System!

Disk!

Driver!

Storage!

File System!

disk blocks"

variable-length segments"

hierarchical file system"

Operating"
System"

Stdio Library! FILE * stream"

Appl Pgm!User"
process"

int fd!

File descriptor:"
An integer that"
uniquely identifies"
an open file"

10

System-Level (OS) Functions for I/O!
int creat(char *pathname, mode_t mode);

•  Create a new file named pathname, and return a file descriptor"
int open(char *pathname, int flags, mode_t mode);

•  Open the file pathname and return a file descriptor"
int close(int fd);

•  Close fd

int read(int fd, void *buf, int count);
•  Read up to count bytes from fd into the buffer at buf ""

int write(int fd, void *buf, int count);
•  Writes up to count bytes into fd from the buffer at buf

int lseek(int fd, int offset, int whence);
•  Assigns the file pointer of fd to a new value by applying an offset"

6

11

Example: open()
• Converts a path name into a file descriptor"
• int open(const char *pathname, int flags,
mode_t mode);

• Arguments"
•  Pathname: name of the file"
•  Flags: bit flags for O_RDONLY, O_WRONLY, O_RDWR
•  Mode: permissions to set if file must be created"

• Returns"
•  File descriptor (or a -1 if an error)"

• Performs a variety of checks"
•  E.g., whether the process is entitled to access the file"

• Underlies fopen()

12

Example: read()
•  Reads bytes from a file descriptor"

• int read(int fd, void *buf, int count);

•  Arguments"
•  File descriptor: integer descriptor returned by open()
•  Buffer: pointer to memory to store the bytes it reads"
•  Count: maximum number of bytes to read

•  Returns"
•  Number of bytes read"

•  Value of 0 if nothing more to read"
•  Value of -1 if an error"

•  Performs a variety of checks"
•  Whether file has been opened, whether reading is okay"

•  Underlies getchar() , fgets(), scanf() , etc."

7

13

How C Uses OS Functions (e.g.)
 int getchar(void) {
 char c;
 if (read(0, &c, 1) == 1)
 return c;
 else return EOF;
}

• Read one character from stdin
•  File descriptor 0 is stdin
• &c points to the buffer"
• 1 is the number of bytes to read"

• Read returns the number of bytes read "
•  In this case, 1 byte means success"

14

Making getchar() More Efficient!
• Poor performance reading one byte at a time"

•  Read system call is accessing the device (e.g., a disk)"
•  Reading one byte from disk is very time consuming"
•  Better to read and write in larger chunks!

• Buffered I/O"
•  Read a large chunk from disk into a buffer"

•  Dole out bytes to the user process as needed"
•  Discard buffer contents when the stream is closed"

•  Similarly, for writing, write individual bytes to a buffer"
•  And write to disk when full, or when stream is closed"
•  Known as “flushing” the buffer"

8

15

Better getchar() with Buffered I/O!
"

int getchar(void) {
 static char base[1024];
 static char *ptr;
 static int cnt = 0;

 if (cnt--) return *ptr++;

 cnt = read(0, base, sizeof(base));
 if (cnt <= 0) return EOF;
 ptr = base;
 return getchar();
}

persistent variables

base

ptr

But, many functions may read (or write) the stream…

16

Details of FILE in stdio.h (K&R 8.5)!
#define OPEN_MAX 20 /* max files open at once */

typedef struct _iobuf {
 int cnt; /* num chars left in buffer */
 char *ptr; /* ptr to next char in buffer */
 char *base; /* beginning of buffer */
 int flag; /* open mode flags, etc. */
 char fd; /* file descriptor */
} FILE;
extern FILE _iob[OPEN_MAX];

#define stdin (&_iob[0])
#define stdout (&_iob[1])
#define stderr (&_iob[2])

9

17

A Funny Thing About Buffered I/O!

int main(void) {
 printf("Step 1\n");
 sleep(10);
 printf("Step 2\n");
 return 0;
}

•  Run “a.out > out.txt &” and then “tail -f out.txt”"
•  To run a.out in the background, outputting to out.txt
•  And then to see the contents on out.txt

•  Neither line appears till ten seconds have elapsed"
•  Because the output is being buffered"
•  Add fflush(stdout) to flush the output buffer"
• fclose() also flushes the buffer before closing"

• The standard library also buffers output; example:"

18

Summary!

•  System-level I/O functions provide simple
abstractions"
•  Stream as a source or destination of data"
•  Functions for manipulating streams"

•  Standard I/O library builds on system-level
functions"
•  Calls system-level functions for low-level I/O "
•  Adds buffering"

•  Powerful examples of abstraction"
•  Application pgms interact with streams at a high level"
•  Standard I/O library interact with streams at lower level"
•  Only the OS deals with the device-specific details"

