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The Design of C: 
A Rational Reconstruction"
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Goals of this Lecture""
•  Help you learn about:"

•  The decisions that were available to the designers of C"
•  The decisions that were made by the designers of C"

•  Why?"
•  Learning the design rationale of the C language provides a richer 

understanding of C itself"
•  might be more interesting than simply learning the language itself"

•  A power programmer knows both the programming language and its 
design rationale"
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Goals of C ""
"
Designers wanted C to support:"

•  Systems programming"
•  Development of Unix OS"
•  Development of Unix programming tools"

"

But also:"
•  Applications programming"

•  Development of financial, scientific, etc. applications"

Systems programming was the primary intended use"
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The Goals of C (cont.) ""
"
The designers of wanted C to be:"

•  Low-level"
•  Close to assembly/machine language"
•  Close to hardware"

But also:"
•  Portable"

•  Yield systems software that is easy to port to differing hardware"
•  E.g. Unix, written in C, much more portable than previous OSes"

•  These goals are conflicting"
•  So compromises needed to be made"
"
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The Goals of C (cont.)"
The designers wanted C to be:"

•  Easy for people to handle"
•  Easy to understand"
•  Expressive"

•  High (functionality/sourceCodeSize) ratio"

But also:"
•  Easy for computers to handle"

•  Easy/fast to compile"
•  Yield efficient machine language code"

Commonality:"
•  Small/simple"

•  These sets of goals are also conflicting"
•  Understandable and expressive"
•  Understandable and easy to compile efficiently"
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Design Decisions"
"
In light of those goals…"

•  What design decisions did the designers of C have?"
•  What design decisions did they make?"

"

Consider a few language features, from simple to complex…"
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Feature 1:  Data Types"
•  Remember:"

•  Bits can be combined into bytes"
•  Our interpretation of a collection of bytes gives it meaning"

•  A signed integer, an unsigned integer, a RGB color, etc."

•  A data type is a well-defined interpretation of a set of bytes"

•  A high-level language should provide primitive data types"
•  Facilitates abstraction"
•  Facilitates manipulation via well-defined operators associated with 

the data types"
•  Enables compiler to check for mixing of types, inappropriate use of 

types, etc."

"
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Primitive Data Types"
•  Issue:  What primitive data types should C provide?"
•  Thought process"

•  C should handle:"
•  Integers"
•  Characters"
•  Character strings"
•  Logical (alias Boolean) data"
•  Floating-point numbers"

•  C should be small/simple"

•  Decisions"
•  Provide integer, character, and floating-point data types"
•  Do not provide a character string data type  (More on that later)"
•  Do not provide a logical data type  (More on that later)"
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•  Issue:  What integer data types should C provide?"
•  Thought process"

•  For flexibility, should provide integer data types of various sizes"
•  For portability at application level, should specify size of each data 

type"
•  For systems programming, should define integral data types in 

terms of natural word size of computer"
•  Primary use will be systems programming"

Integer Data Types"

Why?" Why?"
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Integer Data Types (cont.)"
•  Decisions"

•  Provide three integer data types:  short, int, and long 
•  Do not specify sizes; instead:"

• int is natural word size"
•  2 <= bytes in short <= bytes in int <= bytes in long 

•  Incidentally, on nobel using gcc217"
•  Natural word size: "4 bytes"
• short:   2 bytes"
• int:   4 bytes"
• long:   4 bytes"
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Character Constants"
•  Issue:  How should C represent character constants?"
•  Thought process"

•  Could represent character constants as int constants, with 
truncation of high-order bytes"

•  More readable to use single quote syntax ('a', 'b', etc.); but 
then…"

•  Need special way to represent the single quote character"
•  Need special ways to represent non-printable characters (e.g. 

newline, tab, space, etc.)"

•  Decisions"
•  Provide single quote syntax"
•  Use backslash to express special characters"
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Character Constants (cont.)"
•  Examples"

• 'a'  "the a character"
• (char)97" "the a character"
• (char)0141  the a character"
• '\o141' " "the a character, octal character form"
• '\x61' " "the a character, hexadecimal character form"
• '\0' " "the null character"
• '\a'  "bell"
• '\b'  "backspace"
• '\f' " "formfeed"
• '\n'  "newline"
• '\r'  "carriage return"
• '\t'  "horizontal tab"
• '\v' " "vertical tab"
• '\\' " "backslash"
• '\''  "single quote"
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Strings"
•  Issue:  How should C represent strings?"
•  Thought process"

•  String can be represented as a sequence of chars"
•  How to know where char sequence ends?"

•  Store length before char sequence?"
•  Store special “sentinel” char after char sequence?"

•  Strings are common in systems programming"
•  C should be small/simple"

Advantages/disadvantages?"
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Strings (cont.)"
•  Decisions"

•  Adopt a convention"
•  String consists of a sequence of chars terminated with the null 

('\0') character"
•  Use double-quote syntax (e.g. "abc", "hello") to represent a 

string constant"
•  Provide no other language features for handling strings"

•  Delegate string handling to standard library functions"

•  Examples"
• "abc" is a string constant"
• 'a' is a char constant"
• "a" is a string constant"

How many"
bytes?"
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Feature 2:  Operators"

• A high-level programming language should have operators"
• Operators combine with constants and variables to form 

expressions"
•  E.g. x + 5"

• C provides a number of arithmetic, logical, relational, 
bitwise and type-casting operators"
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Assignment"
•  Issue:  What about assignment?"
•  Thought process"

•  Must have a way to assign a value to a variable"
•  Many high-level languages provide an assignment statement"
•  Would be more expressive to define an assignment operator"

•  Performs assignment, and then evaluates to the assigned value"
•  Allows expressions that involve assignment to appear within 

larger expressions"

•  Decisions"
•  Provide assignment operator:  = 
•  Define assignment operator so it changes the value of a variable, 

and also evaluates to that value"
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Assignment Operator (cont.)"
•  Examples"

i = 0; 
  /* Assign 0 to i. Evaluate to 0. 
     Discard the 0. */ 
 
i = j = 0; 
  /* Assign 0 to j. Evaluate to 0. 
     Assign 0 to i. Evaluate to 0. 
     Discard the 0. */ 
 
while ((i = getchar()) != EOF) … 
   /* Read a character.  Assign it to i. 
      Evaluate to that character. 
      Compare that character to EOF.  
      Evaluate to 0 (FALSE) or 1 (TRUE). */ 

Does the 
expressiveness 
affect clarity?"
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Sizeof Operator"
•  Issue:  How can programmers determine the sizes of data?"
•  Thought process"

•  The sizes of most primitive types are unspecified"
•  C must provide a way to determine the size of a given data type 

programmatically"

•  Decisions"
•  Provide a sizeof operator"

•  Applied at compile-time"
•  Operand can be a data type"
•  Operand can be an expression, from which the compiler infers a 

data type"

•  Examples, on nobel using gcc217"
• sizeof(int) evaluates to 4"
• sizeof(i) evaluates to 4 (where i is a variable of type int)"
• sizeof(i+1) evaluates to 4 (where i is a variable of type int)"
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Other Operators"
•  Issue:  What other operators should C have?"
•  Decisions"

•  Function call operator"
•  Should mimic the familiar mathematical notation"
• function(param1, param2, …) 

•  Conditional operator:  ?: 
•  The only ternary operator"
•  See King book"

•  Sequence operator:  , 
•  See King book"

•  Pointer-related operators:  & * 
•  Described later in the course"

•  Structure-related operators (.  ->)"
•  Described later in the course"
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Feature 3:  Control Statements"

• A programming language must provide statements"

• Some statements must affect flow of control"
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Control Statements"
•  Issue:  What control statements should C provide?"
"

•  Thought process"
•  Boehm and Jacopini proved that any algorithm can be 

expressed as the nesting of only 3 control structures:"

37 

Control Statements (cont.)"
(1)  Sequence"

statement1"

statement2"
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Control Statements (cont.)"
(2) Selection"

statement1"

condition"

statement2"

TRUE" FALSE"

39 

Control Statements (cont.)"
(3) Repetition"

statement"

condition"
TRUE" FALSE"
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Control Statements (cont.)"
"
• Thought Process (cont.)"

•  Dijkstra argued that any algorithm should be 
expressed using only those three control 
structures (GOTO Statement Considered 
Harmful paper)"

•  The ALGOL programming language 
implemented control statements accordingly"

• Decisions"
•  Provide statements to implement those 3 

control structures"
•  For convenience, provide a few extras"

Edsgar Dijkstra"
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Sequence Statement"
•  Issue:  How should C implement sequence?"

• Decision"
•  Compound statement, alias block"

{ 
   statement1; 
   statement2; 
    … 
} 
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Selection Statements"
•  Issue:  How should C implement selection?"

• Decisions"
•  if statement, for one-path or two-path decisions"

if (integerExpr) 
   statement1; 

if (integerExpr) 
   statement1; 
else 
   statement2; 
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Selection Statements (cont.)"
• Decisions (cont.)"

•  switch and break statements, for multi-path decisions"

switch (integerExpr) { 
   case integerConstant1: 
      … 
      break; 
   case integerConstant2: 
      … 
      break; 
   … 
   default: 
      … 
} 

What if these 
break 
statements are 
omitted?"

Was that use of 
break a good 
design decision?"
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Repetition Statements"
•  Issue:  How should C implement repetition?"
• Decisions"

•  while statement, for general repetition"

•  for statement, for counting loops"

•  do…while statement, for loops with test at trailing edge"

while (integerExpr) 
   statement; 

for (initialExpr; integerExpr; incrementExpr) 
   statement; 

do 
   statement; 
while (integerExpr); 
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Other Control Statements"
•  Issue:  What other control statements should C provide?"
• Decisions"

•  break statement (revisited)"
•  Breaks out of closest enclosing switch or repetition statement"

•  continue statement"
•  Skips remainder of current loop iteration"
•  Continues with next loop iteration"
•  Can be difficult to understand; generally should avoid"

•  goto statement and labels"
•  Avoid (as per Dijkstra)"
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Feature 4:  Input/Output"

•  A programming language must provide facilities for reading 
and writing data"

•  Alternative:  A programming environment must provide 
such facilities"
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Input/Output Facilities"
•  Issue:  Should C provide I/O facilities?"
•  Thought process"

•  Unix provides the stream abstraction"
•  A stream is a sequence of characters"

•  Unix provides 3 standard streams"
•  Standard input, standard output, standard error"

•  C should be able to use those streams, and others"
•  I/O facilities are complex"
•  C should be small/simple"

•  Decisions"
•  Do not provide I/O facilities in C"
•  Instead provide a standard library containing I/O facilities"

•  Constants:   EOF 
•  Data types:  FILE (described later in course)"
•  Variables:  stdin, stdout, and stderr 
•  Functions: …"
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Reading types beyond characters"
•  Issue:  What functions should C provide for reading data of 

other primitive types?"

•  Thought process"
•  Must convert external form (sequence of character codes) to internal 

form"
•  Could provide getshort(), getint(), getfloat(), etc."
•  Could provide one parameterized function to read any primitive type 

of data"

•  Decisions"
•  Provide scanf() function"
•  Can read any primitive type of data"
•  First parameter is a format string containing conversion 

specifications"

•  See King book for details"
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Writing Other Data Types"
•  Issue:  What functions should C provide for writing data of 

other primitive types?"

•  Thought process"
•  Must convert internal form to external form (sequence of character 

codes)"
•  Could provide putshort(), putint(), putfloat(), etc."
•  Could provide one parameterized function to write any primitive type 

of data"

•  Decisions"
•  Provide printf() function"
•  Can write any primitive type of data"
•  First parameter is a format string containing conversion 

specifications"

•  See King book for details"
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Other I/O Facilities"
•  Issue:  What other I/O functions should C provide?"
•  Decisions"

• fopen(): Open a stream"
• fclose(): Close a stream"
• fgetc(): Read a character from specified stream"
• fputc(): Write a character to specified stream"
• fgets(): Read a line/string from specified stream"
• fputs(): Write a line/string to specified stream"
• fscanf(): Read data from specified stream"
• fprintf(): Write data to specified stream"

•  Described in King book, and later in the course after 
covering files, arrays, and strings"
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Summary"
•  C’s design goals affected decisions concerning language 

features:"
•  Data types"
•  Operators"
•  Control statements"
•  I/O facilities"

•  Knowing the design goals and how they affected the design 
decisions can yield a rich understanding of C"
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You’re getting there …"


