
1

1

The Design of C: 
A Rational Reconstruction"

2

Goals of this Lecture""
•  Help you learn about:"

•  The decisions that were available to the designers of C"
•  The decisions that were made by the designers of C"

•  Why?"
•  Learning the design rationale of the C language provides a richer

understanding of C itself"
•  might be more interesting than simply learning the language itself"

•  A power programmer knows both the programming language and its
design rationale"

2

3

Goals of C ""
"
Designers wanted C to support:"

•  Systems programming"
•  Development of Unix OS"
•  Development of Unix programming tools"

"

But also:"
•  Applications programming"

•  Development of financial, scientific, etc. applications"

Systems programming was the primary intended use"

4

The Goals of C (cont.) ""
"
The designers of wanted C to be:"

•  Low-level"
•  Close to assembly/machine language"
•  Close to hardware"

But also:"
•  Portable"

•  Yield systems software that is easy to port to differing hardware"
•  E.g. Unix, written in C, much more portable than previous OSes"

•  These goals are conflicting"
•  So compromises needed to be made"
"

3

5

The Goals of C (cont.)"
The designers wanted C to be:"

•  Easy for people to handle"
•  Easy to understand"
•  Expressive"

•  High (functionality/sourceCodeSize) ratio"

But also:"
•  Easy for computers to handle"

•  Easy/fast to compile"
•  Yield efficient machine language code"

Commonality:"
•  Small/simple"

•  These sets of goals are also conflicting"
•  Understandable and expressive"
•  Understandable and easy to compile efficiently"

6

Design Decisions"
"
In light of those goals…"

•  What design decisions did the designers of C have?"
•  What design decisions did they make?"

"

Consider a few language features, from simple to complex…"

4

7

Feature 1: Data Types"
•  Remember:"

•  Bits can be combined into bytes"
•  Our interpretation of a collection of bytes gives it meaning"

•  A signed integer, an unsigned integer, a RGB color, etc."

•  A data type is a well-defined interpretation of a set of bytes"

•  A high-level language should provide primitive data types"
•  Facilitates abstraction"
•  Facilitates manipulation via well-defined operators associated with

the data types"
•  Enables compiler to check for mixing of types, inappropriate use of

types, etc."

"

8

Primitive Data Types"
•  Issue: What primitive data types should C provide?"
•  Thought process"

•  C should handle:"
•  Integers"
•  Characters"
•  Character strings"
•  Logical (alias Boolean) data"
•  Floating-point numbers"

•  C should be small/simple"

•  Decisions"
•  Provide integer, character, and floating-point data types"
•  Do not provide a character string data type (More on that later)"
•  Do not provide a logical data type (More on that later)"

5

9

•  Issue: What integer data types should C provide?"
•  Thought process"

•  For flexibility, should provide integer data types of various sizes"
•  For portability at application level, should specify size of each data

type"
•  For systems programming, should define integral data types in

terms of natural word size of computer"
•  Primary use will be systems programming"

Integer Data Types"

Why?" Why?"

10

Integer Data Types (cont.)"
•  Decisions"

•  Provide three integer data types: short, int, and long
•  Do not specify sizes; instead:"

• int is natural word size"
•  2 <= bytes in short <= bytes in int <= bytes in long

•  Incidentally, on nobel using gcc217"
•  Natural word size: "4 bytes"
• short: 2 bytes"
• int: 4 bytes"
• long: 4 bytes"

6

17

Character Constants"
•  Issue: How should C represent character constants?"
•  Thought process"

•  Could represent character constants as int constants, with
truncation of high-order bytes"

•  More readable to use single quote syntax ('a', 'b', etc.); but
then…"

•  Need special way to represent the single quote character"
•  Need special ways to represent non-printable characters (e.g.

newline, tab, space, etc.)"

•  Decisions"
•  Provide single quote syntax"
•  Use backslash to express special characters"

18

Character Constants (cont.)"
•  Examples"

• 'a' "the a character"
• (char)97" "the a character"
• (char)0141 the a character"
• '\o141' " "the a character, octal character form"
• '\x61' " "the a character, hexadecimal character form"
• '\0' " "the null character"
• '\a' "bell"
• '\b' "backspace"
• '\f' " "formfeed"
• '\n' "newline"
• '\r' "carriage return"
• '\t' "horizontal tab"
• '\v' " "vertical tab"
• '\\' " "backslash"
• '\'' "single quote"

7

19

Strings"
•  Issue: How should C represent strings?"
•  Thought process"

•  String can be represented as a sequence of chars"
•  How to know where char sequence ends?"

•  Store length before char sequence?"
•  Store special “sentinel” char after char sequence?"

•  Strings are common in systems programming"
•  C should be small/simple"

Advantages/disadvantages?"

20

Strings (cont.)"
•  Decisions"

•  Adopt a convention"
•  String consists of a sequence of chars terminated with the null

('\0') character"
•  Use double-quote syntax (e.g. "abc", "hello") to represent a

string constant"
•  Provide no other language features for handling strings"

•  Delegate string handling to standard library functions"

•  Examples"
• "abc" is a string constant"
• 'a' is a char constant"
• "a" is a string constant"

How many"
bytes?"

8

27

Feature 2: Operators"

• A high-level programming language should have operators"
• Operators combine with constants and variables to form

expressions"
•  E.g. x + 5"

• C provides a number of arithmetic, logical, relational,
bitwise and type-casting operators"

29

Assignment"
•  Issue: What about assignment?"
•  Thought process"

•  Must have a way to assign a value to a variable"
•  Many high-level languages provide an assignment statement"
•  Would be more expressive to define an assignment operator"

•  Performs assignment, and then evaluates to the assigned value"
•  Allows expressions that involve assignment to appear within

larger expressions"

•  Decisions"
•  Provide assignment operator: =
•  Define assignment operator so it changes the value of a variable,

and also evaluates to that value"

9

30

Assignment Operator (cont.)"
•  Examples"

i = 0;
 /* Assign 0 to i. Evaluate to 0.
 Discard the 0. */

i = j = 0;
 /* Assign 0 to j. Evaluate to 0.
 Assign 0 to i. Evaluate to 0.
 Discard the 0. */

while ((i = getchar()) != EOF) …
 /* Read a character. Assign it to i.
 Evaluate to that character.
 Compare that character to EOF.
 Evaluate to 0 (FALSE) or 1 (TRUE). */

Does the
expressiveness
affect clarity?"

33

Sizeof Operator"
•  Issue: How can programmers determine the sizes of data?"
•  Thought process"

•  The sizes of most primitive types are unspecified"
•  C must provide a way to determine the size of a given data type

programmatically"

•  Decisions"
•  Provide a sizeof operator"

•  Applied at compile-time"
•  Operand can be a data type"
•  Operand can be an expression, from which the compiler infers a

data type"

•  Examples, on nobel using gcc217"
• sizeof(int) evaluates to 4"
• sizeof(i) evaluates to 4 (where i is a variable of type int)"
• sizeof(i+1) evaluates to 4 (where i is a variable of type int)"

10

34

Other Operators"
•  Issue: What other operators should C have?"
•  Decisions"

•  Function call operator"
•  Should mimic the familiar mathematical notation"
• function(param1, param2, …)

•  Conditional operator: ?:
•  The only ternary operator"
•  See King book"

•  Sequence operator: ,
•  See King book"

•  Pointer-related operators: & *
•  Described later in the course"

•  Structure-related operators (. ->)"
•  Described later in the course"

35

Feature 3: Control Statements"

• A programming language must provide statements"

• Some statements must affect flow of control"

11

36

Control Statements"
•  Issue: What control statements should C provide?"
"

•  Thought process"
•  Boehm and Jacopini proved that any algorithm can be

expressed as the nesting of only 3 control structures:"

37

Control Statements (cont.)"
(1)  Sequence"

statement1"

statement2"

12

38

Control Statements (cont.)"
(2) Selection"

statement1"

condition"

statement2"

TRUE" FALSE"

39

Control Statements (cont.)"
(3) Repetition"

statement"

condition"
TRUE" FALSE"

13

40

Control Statements (cont.)"
"
• Thought Process (cont.)"

•  Dijkstra argued that any algorithm should be
expressed using only those three control
structures (GOTO Statement Considered
Harmful paper)"

•  The ALGOL programming language
implemented control statements accordingly"

• Decisions"
•  Provide statements to implement those 3

control structures"
•  For convenience, provide a few extras"

Edsgar Dijkstra"

41

Sequence Statement"
•  Issue: How should C implement sequence?"

• Decision"
•  Compound statement, alias block"

{
 statement1;
 statement2;
 …
}

14

42

Selection Statements"
•  Issue: How should C implement selection?"

• Decisions"
•  if statement, for one-path or two-path decisions"

if (integerExpr)
 statement1;

if (integerExpr)
 statement1;
else
 statement2;

43

Selection Statements (cont.)"
• Decisions (cont.)"

•  switch and break statements, for multi-path decisions"

switch (integerExpr) {
 case integerConstant1:
 …
 break;
 case integerConstant2:
 …
 break;
 …
 default:
 …
}

What if these
break
statements are
omitted?"

Was that use of
break a good
design decision?"

15

44

Repetition Statements"
•  Issue: How should C implement repetition?"
• Decisions"

•  while statement, for general repetition"

•  for statement, for counting loops"

•  do…while statement, for loops with test at trailing edge"

while (integerExpr)
 statement;

for (initialExpr; integerExpr; incrementExpr)
 statement;

do
 statement;
while (integerExpr);

45

Other Control Statements"
•  Issue: What other control statements should C provide?"
• Decisions"

•  break statement (revisited)"
•  Breaks out of closest enclosing switch or repetition statement"

•  continue statement"
•  Skips remainder of current loop iteration"
•  Continues with next loop iteration"
•  Can be difficult to understand; generally should avoid"

•  goto statement and labels"
•  Avoid (as per Dijkstra)"

16

46

Feature 4: Input/Output"

•  A programming language must provide facilities for reading
and writing data"

•  Alternative: A programming environment must provide
such facilities"

47

Input/Output Facilities"
•  Issue: Should C provide I/O facilities?"
•  Thought process"

•  Unix provides the stream abstraction"
•  A stream is a sequence of characters"

•  Unix provides 3 standard streams"
•  Standard input, standard output, standard error"

•  C should be able to use those streams, and others"
•  I/O facilities are complex"
•  C should be small/simple"

•  Decisions"
•  Do not provide I/O facilities in C"
•  Instead provide a standard library containing I/O facilities"

•  Constants: EOF
•  Data types: FILE (described later in course)"
•  Variables: stdin, stdout, and stderr
•  Functions: …"

17

50

Reading types beyond characters"
•  Issue: What functions should C provide for reading data of

other primitive types?"

•  Thought process"
•  Must convert external form (sequence of character codes) to internal

form"
•  Could provide getshort(), getint(), getfloat(), etc."
•  Could provide one parameterized function to read any primitive type

of data"

•  Decisions"
•  Provide scanf() function"
•  Can read any primitive type of data"
•  First parameter is a format string containing conversion

specifications"

•  See King book for details"

51

Writing Other Data Types"
•  Issue: What functions should C provide for writing data of

other primitive types?"

•  Thought process"
•  Must convert internal form to external form (sequence of character

codes)"
•  Could provide putshort(), putint(), putfloat(), etc."
•  Could provide one parameterized function to write any primitive type

of data"

•  Decisions"
•  Provide printf() function"
•  Can write any primitive type of data"
•  First parameter is a format string containing conversion

specifications"

•  See King book for details"

18

52

Other I/O Facilities"
•  Issue: What other I/O functions should C provide?"
•  Decisions"

• fopen(): Open a stream"
• fclose(): Close a stream"
• fgetc(): Read a character from specified stream"
• fputc(): Write a character to specified stream"
• fgets(): Read a line/string from specified stream"
• fputs(): Write a line/string to specified stream"
• fscanf(): Read data from specified stream"
• fprintf(): Write data to specified stream"

•  Described in King book, and later in the course after
covering files, arrays, and strings"

53

Summary"
•  C’s design goals affected decisions concerning language

features:"
•  Data types"
•  Operators"
•  Control statements"
•  I/O facilities"

•  Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C"

19

54

You’re getting there …"

