5&(’-‘
ok

et orc

The Design of C:
A Rational Reconstruction

=
Goals of this Lecture

* Help you learn abou' -
» The decisions t
* The decisi

designers of C
rs of C

+ Why?
« Learr® “avides a richer
unde
- 4 ~ language itself
+ Apo ianguage and its
des’




Goals of C

5&"-’
o

Designers wanted C to support:
+ Systems programming
+ Development of Unix OS
+ Development of Unix programming tools

But also:
+ Applications programming
+ Development of financial, scientific, etc. applications

Systems programming was the primary intended use

5\1#

The Goals of C (cont.)

The designers of wanted C to be:
* Low-level
+ Close to assembly/machine language
+ Close to hardware

But also:
+ Portable
+ Yield systems software that is easy to port to differing hardware
+ E.g. Unix, written in C, much more portable than previous OSes

+ These goals are conflicting
+ So compromises needed to be made




The Goals of C (cont.)

Ty

B

s

9

o &F

The designers wanted C to be:
+ Easy for people to handle
+ Easy to understand
+ Expressive
+ High (functionality/sourceCodeSize) ratio

But also:
« Easy for computers to handle
+ Easy/fast to compile
+ Yield efficient machine language code

Commonality:
+ Small/simple

+ These sets of goals are also conflicting
+ Understandable and expressive
+ Understandable and easy to compile efficiently

gmﬂ

Design Decisions

In light of those goals...
+ What design decisions did the designers of C have?
+ What design decisions did they make?

Consider a few language features, from simple to complex...




5&"-’
o

Feature 1: Data Types

+ Remember:
+ Bits can be combined into bytes
+ Our interpretation of a collection of bytes gives it meaning
+ A signed integer, an unsigned integer, a RGB color, etc.

+ A data type is a well-defined interpretation of a set of bytes

* A high-level language should provide primitive data types
+ Facilitates abstraction
+ Facilitates manipulation via well-defined operators associated with
the data types
+ Enables compiler to check for mixing of types, inappropriate use of
types, etc.

gmﬂ

Primitive Data Types

* Issue: What primitive data types should C provide?

* Thought process

+ C should handle:
* Integers
+ Characters
+ Character strings
+ Logical (alias Boolean) data
* Floating-point numbers

+ C should be small/simple

+ Decisions
+ Provide integer, character, and floating-point data types
+ Do not provide a character string data type (More on that later)
+ Do not provide a logical data type (More on that later)




5&"-’
o

Integer Data Types

* Issue: What integer data types should C provide?

+ Thought process
+ For flexibility, should provide integer data types of various sizes
+ For portability at application level, should specify size of each data
type
+ For systems programming, should define integral data types in

5\1#

Integer Data Types (cont.)

* Decisions
« Provide three integer data types: short, int, and long
+ Do not specify sizes; instead:
 int is natural word size
* 2 <= Dbytes in short <= bytes in int <= bytes in long

* Incidentally, on nobel using gcc217
* Natural word size: 4 bytes
 short: 2 bytes
e int: 4 bytes
e long: 4 bytes




5&"-’
ok

Character Constants

* Issue: How should C represent character constants?

+ Thought process

+ Could represent character constants as int constants, with
truncation of high-order bytes

+ More readable to use single quote syntax ('a', 'b', etc.); but
then...

* Need special way to represent the single quote character

+ Need special ways to represent non-printable characters (e.g.
newline, tab, space, etc.)

* Decisions
* Provide single quote syntax
+ Use backslash to express special characters

5\“3

Character Constants (cont.)

+ Examples
e 'a' the a character
« (char) 97 the a character
* (char) 0141 the a character
* '\ol4l’ the a character, octal character form
* '\x61' the a character, hexadecimal character form
« '\O0' the null character
« "\a' bell
* '"\b’' backspace
o '"\f' formfeed
e '\n' newline
* '\r' carriage return
e "\t' horizontal tab
e "\v' vertical tab
< "\\! backslash

o« "\ single quote 18




5&"-’
ok

Strings

* Issue: How should C represent strings?

+ Thought process
+ String can be represented as a sequence of chars
+ How to know where char sequence ends?
+ Store length before char sequence?
- Store special “sentinel” char after chaxsequence?
+ Strings are common in systems programmi
+ C should be small/simple

Advantages/disadvantages?

5\“3

|

Strings (cont.)

* Decisions

« Adopt a convention

« String consists of a sequence of chars terminated with the null
(*\0"') character
+ Use double-quote syntax (e.g. "abe", "hello") to represent a
string constant

+ Provide no other language features for handling strings

+ Delegate string handling to standard library functions

« Examples
« "abc" is a string constant
« 'a' is a char constant
« "a" is a string constant

How many
bytes?

20




Feature 2: Operators

* A high-level programming language should have operators

* Operators combine with constants and variables to form
expressions
* Eg.x+5

* C provides a number of arithmetic, logical, relational,
bitwise and type-casting operators

27

5\“3

|

Assignment

* Issue: What about assignment?

* Thought process
+ Must have a way to assign a value to a variable
« Many high-level languages provide an assignment statement
+ Would be more expressive to define an assignment operator
+ Performs assignment, and then evaluates to the assigned value

+ Allows expressions that involve assignment to appear within
larger expressions

* Decisions
+ Provide assignment operator: =

+ Define assignment operator so it changes the value of a variable,
and also evaluates to that value

29




Assignment Operator (cont.)

5&"-’
o

« Examples

i=20;
/* Assign 0 to i. Evaluate to 0.
Discard the 0. */

Does the
expressiveness
affect clarity?
i = J = 0;

/* Assign 0 to j. Evaluate to O.

Assign 0 to i. Evaluate to 0.
Discard the 0. */

while ((i = getchar()) != EOF) ..
/* Read a character. Assign it to i.
Evaluate to that character.
Compare that character to EOF.
Evaluate to 0 (FALSE) or 1 (TRUE). */

30

Sizeof Operator

B
* Issue: How can programmers determine the sizes of data?

+ Thought process
+ The sizes of most primitive types are unspecified

« C must provide a way to determine the size of a given data type
programmatically

* Decisions
* Provide a sizeof operator
+ Applied at compile-time
» Operand can be a data type

+ Operand can be an expression, from which the compiler infers a
data type

+ Examples, on nobel using gcc217
- sizeof (int) evaluates to 4
- sizeof (i) evaluates to 4 (where i is a variable of type int)
- sizeof (i+1) evaluates to 4 (where i is a variable of type int)




Other Operators

* Issue: What other operators should C have?

* Decisions
+ Function call operator
+ Should mimic the familiar mathematical notation
* function (paraml, param2, ..)
+ Conditional operator: ?:
« The only ternary operator
+ See King book
+ Sequence operator:
+ See King book
+ Pointer-related operators: & *
+ Described later in the course
« Structure-related operators (. ->)
» Described later in the course

5&"-’
o

34

Feature 3: Control Statements

* A programming language must provide statements

* Some statements must affect flow of control

5\1#

35

10



Control Statements

* Issue: What control statements should C provide?

* Thought process

* Boehm and Jacopini proved that any algorithm can be
expressed as the nesting of only 3 control structures:

B

s

36

Control Statements (cont.)

(1) Sequence

statement1

}

statement2

gmﬂ

37

11



Control Statements (cont.)

(2) Selection

TRUE ALSE

statement1

statement2

l

|

5&"-’
o

38

Control Statements (cont.)

(3) Repetition

TRUE

FALSE
condition

statement

I

gmﬂ

39

12



Control Statements (cont.)

* Thought Process (cont.)

* Dijkstra argued that any algorithm should be
expressed using only those three control
structures (GOTO Statement Considered
Harmful paper)

* The ALGOL programming language
implemented control statements accordingly

Edsgér Dijkstra

¢ Decisions

* Provide statements to implement those 3
control structures

* For convenience, provide a few extras

40

g )
o

Sequence Statement

* Issue: How should C implement sequence?

* Decision
* Compound statement, alias block

statementl;
statement2;

41

13



* Decisions (cont.)

Selection Statements
* Issue: How should C implement selection?

¢ Decisions

« if statement, for one-path or two-path decisions

if (integerExpr) if (integerExpr)
statementl; statementl;
else
statement2;

%

5\"-’
A ':2 %

42

Selection Statements (cont.)

%

gmﬂ
ok

£

* switch and break statements, for multi-path decisions

switch (integerExpr)

{

case integerConstantl:

What if these
break

statements are
omitted?

break;

case integerConsta
break;

default:

Was that use of
break a good

design decision?

43

14



5&"-’
ok

Repetition Statements

* Issue: How should C implement repetition?

* Decisions
* while statement, for general repetition

while (integerExpr)
statement;

« for statement, for counting loops

for (initialExpr; integerExpr; incrementExpr)
statement;

* do...while statement, for loops with test at trailing edge

do
statement;
while (integerExpr) ;

44

g&ﬂ

|

Other Control Statements

* Issue: What other control statements should C provide?

* Decisions
* break statement (revisited)
* Breaks out of closest enclosing switch or repetition statement
e continue statement
* Skips remainder of current loop iteration
* Continues with next loop iteration
* Can be difficult to understand; generally should avoid
* goto statement and labels
* Avoid (as per Dijkstra)

45

15



Feature 4: Input/Output

+ A programming language must provide facilities for reading
and writing data

+ Alternative: A programming environment must provide
such facilities

46

5\1#

Input/Output Facilities

« Issue: Should C provide I/O facilities?

+ Thought process
+ Unix provides the stream abstraction
+ A stream is a sequence of characters
+ Unix provides 3 standard streams
« Standard input, standard output, standard error
+ C should be able to use those streams, and others
« 1/O facilities are complex
+ C should be small/simple

+ Decisions
« Do not provide 1/O facilities in C
+ Instead provide a standard library containing 1/O facilities
+ Constants: EOF
+ Data types: FILE (described later in course)
* Variables: stdin, stdout, and stderr
* Functions: ... 47

16



Reading types beyond characters

* Issue: What functions should C provide for reading data of
other primitive types?

Thought process
+ Must convert external form (sequence of character codes) to internal
form
+ Could provide getshort (), getint (), getfloat (), etc.
+ Could provide one parameterized function to read any primitive type
of data

+ Decisions
* Provide scanf () function
« Can read any primitive type of data
+ First parameter is a format string containing conversion
specifications

+ See King book for details 50

Writing Other Data Types

« Issue: What functions should C provide for writing data of
other primitive types?

Thought process
« Must convert internal form to external form (sequence of character
codes)
+ Could provide putshort (), putint (), putfloat(), etc.
+ Could provide one parameterized function to write any primitive type
of data

* Decisions
* Provide printf () function
+ Can write any primitive type of data
+ First parameter is a format string containing conversion
specifications

+ See King book for details 51




Other I/0 Facilities

* Issue: What other I/O functions should C provide?

5&"-’
o

* Decisions
« fopen () : Open a stream
« fclose(): Close a stream
- fgetc () : Read a character from specified stream
- fputc () : Write a character to specified stream
- £fgets () : Read a line/string from specified stream
 fputs () : Write a line/string to specified stream
- £scanf () : Read data from specified stream
- fprintf () : Write data to specified stream

+ Described in King book, and later in the course after
covering files, arrays, and strings

52

Summary

- C’ s design goals affected decisions concerning language
features:
+ Data types
+ Operators
+ Control statements
« 1/O facilities

+ Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C

53

18



-

You’re getting there ...

*

19



