

Number Systems

1 /

Why Bits (Binary Digits)?

- · Computers are built using digital circuits
- · Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, ...)
 - Characters ('a', 'z', ...)
 - · Pixels, sounds
 - · Internet addresses
- Can manipulate in many ways
 - · Read and write
 - · Logical operations
 - Arithmetic

Base 10 and Base 2

- Decimal (base 10)
 - Each digit represents a power of 10
 - 4173 = $4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0$
- Binary (base 2)
 - Each bit represents a power of 2
 - 10110 = 1 x 2^4 + 0 x 2^3 + 1 x 2^2 + 1 x 2^1 + 0 x 2^0 = 22

Decimal to binary conversion:

Divide repeatedly by 2 and keep remainders

```
12/2 = 6   R = 0

6/2 = 3   R = 0

3/2 = 1   R = 1

1/2 = 0   R = 1

Result = 1100
```

3

Writing Bits is Tedious for People

- Octal (base 8)
 - Digits 0, 1, ..., 7
- Hexadecimal (base 16)
 - Digits 0, 1, ..., 9, A, B, C, D, E, F

```
0000 = 0
             1000 = 8
                              Thus the 16-bit binary number
0001 = 1
             1001 = 9
0010 = 2
             1010 = A
                                  1011 0010 1010 1001
0011 = 3
             1011 = B
0100 = 4
            1100 = C
                                   converted to hex is
0101 = 5
             1101 = D
0110 = 6
           1110 = E
                                          B2A9
0111 = 7
             1111 = F
```

Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue
- Strength
 - 8-bit number for each color (e.g., two hex digits)
 - · So, 24 bits to specify a color
- In HTML, e.g. course "Schedule" Web page
 - Red: De-Comment Assignment Due
 - Blue: Reading Period
- Same thing in digital cameras
 - · Each pixel is a mixture of red, green, and blue

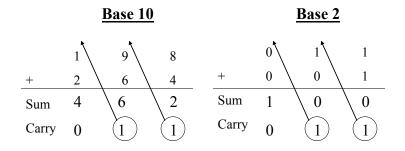
5

Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)
- Unsigned integer
 - · No sign bit
 - · Always 0 or a positive number
 - · All arithmetic is modulo 2ⁿ
- Examples of unsigned integers
 - · 00000001 → 1
 - · 00001111 → 15
 - · 00010000 → 16
 - · 00100001 → 33
 - · 111111111 → 255

Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column



Binary Sums and Carries

		ı				ı
a	b	Sum		a	b	Carry
0	0	0	•	0	0	0
0	1	1		0	1	0
1	0	1		1	0	0
1	1	0		1	1	1
	XC ("exclusi		AND			

Modulo Arithmetic

- · Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, ..., 99999
 - E.g., eight-bit numbers 0, 1, ..., 255
- · Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, ...
 - E.g., eight-bit number goes from 255 to 0, 1, ...
- Adding 2ⁿ doesn't change the answer
 - For eight-bit number, n=8 and 2n=256
 - E.g., (37 + 256) mod 256 is simply 37
- This can help us do subtraction by changing it to addition...
 - Suppose you want to compute a b
 - Note that this equals a b + 256 = a + (256 b)
 - How to compute 256 b?

9

One's and Two's Complement

- What's easy is computing 255 b (in 8 bits)
- Because it's 11111111 b, so just flip every bit of b
 - E.g., if b is 01000101 (i.e., 69 in decimal)
 - 255 b

- This is the one's complement of b; 2ⁿ -1 b; just flip all the bits of b
- But I want 2n b
- Two's complement
 - Add 1 to the one's complement
 - E.g., $256 69 = (255 69) + 1 \rightarrow 1011 1011$

Putting it All Together

- Computing "a b"
 - Same as "a + 256 b" (in 8-bit representation)
 - Same as "a + (255 b) + 1"
 - Same as "a + onesComplement(b) + 1"
 - Same as "a + twosComplement(b)"
- Example: 172 69
 - The original number 69: 0100 0101
 - One's complement of 69: 1011 1010
 - Two's complement of 69: 1011 1011
 - Add to the number 172: 1010 1100
 - The sum comes to:
 - 0110 0111
 - Equals: 103 in decimal

1010 1100

+ 1011 1011 10110 0111

Signed Integers

How to represent negative as well as positive numbers

- Sign-magnitude representation
 - Use one bit to store the sign, (n-1) for magnitude
 - · Sign bit is 0 for positive number, 1 for negative number
 - Examples
 - E.g., 0010 1100 → 44
 - E.g., 1010 1100 → -44
 - · Hard to do arithmetic this way, so rarely used
- Complement representation
 - · One's complement
 - Flip every bit: E.g., 1101 0011 → -44
 - Two's complement
 - Flip every bit, then add 1: E.g., 1101 0100 → -44

Overflow: Running Out of Room

- · Adding two large integers together
 - · Sum might be too large to store in the number of bits available
 - · What happens?
- Unsigned integers
 - · All arithmetic is "modulo" arithmetic
 - · Sum would just wrap around
 - End up with sum modulo 2n
- Signed integers
 - · Can get nonsense values
 - · Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536

13

Bitwise Operators: AND and OR

• Bitwise AND (&)

- · Mod on the cheap!
 - E.g., 53 % 16
 - · ... is same as 53 & 15;

1 | 1 1

• Bitwise OR (I)

Bitwise Operators: Not and XOR

- Not or One's complement (~)
 - Turns 0s to 1s, and 1s to 0s
 - E.g., set last three bits to 0
 - $x = x \& \sim 7$;
- XOR (^)
 - 0 if both bits are the same
 - 1 if the two bits are different

Bitwise Operators: Shift Left/Right

- Shift left (<<): Multiply by powers of 2
 - · Shift some # of bits to the left, filling the blanks with 0

- Shift right (>>): Divide by powers of 2
 - · Shift some # of bits to the right
 - · For unsigned integer, fill in blanks with 0
 - · What about signed negative integers?
 - · Can vary from one machine to another!

Example: Counting the 1's

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?

0 0 1 1 0 1 0 1

- · Four 1 bits
- · How to count them?
 - · Look at one bit at a time
 - · Check if that bit is a 1
 - · Increment counter
- · How to look at one bit at a time?
 - · To look at the value of the last bit: n & 1
 - To check if it is a 1: (n & 1) == 1, or simply (n & 1)

17

Counting the Number of '1' Bits


```
#include <stdio.h>
#include <stdib.h>
int main(void) {
   unsigned int n;
   unsigned int count;
   printf("Number: ");
   if (scanf("%u", &n) != 1) {
      fprintf(stderr, "Error: Expect unsigned int.\n");
      exit(EXIT_FAILURE);
   }
   for (count = 0; n > 0; n >>= 1)
      count += (n & 1);
   printf("Number of 1 bits: %u\n", count);
   return 0;
}
```

Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, ...
 - Pixels, sounds, colors, etc.
- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two's complement for subtraction
- Bitwise operators
 - AND, OR, NOT, and XOR
 - · Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic