
1

1

 
C Programming Examples"

2

Goals of this Lecture "
• Help you learn about:"

•  The fundamentals of C"
•  Program structure, control statements, character I/O"

•  Deterministic finite state automata (DFA)"
•  Some expectations for programming assignments"

• Why?"
•  The fundamentals of C provide a foundation for the

systematic coverage of C that will follow"
•  A power programmer knows the fundamentals of C well"
•  DFA are useful in many contexts "

•  A very important context: Assignment 1"

• How?"
•  Through some examples"

2

3

Overview of this Lecture"

• C programming examples"
•  Echo input to output"
•  Convert all lowercase letters to uppercase"
•  Convert first letter of each word to uppercase"

• Glossing over some details related to “pointers”"
•  … which will be covered subsequently in the course"

4

Example #1: Echo"
•  Problem: Echo input directly to output"
•  Program design"

•  Include the Standard Input/Output header file (stdio.h)"
#include <stdio.h>"

•  Allows your program to use standard I/O calls"
•  Makes declarations of I/O functions available to compiler"
•  Allows compiler to check your calls of I/O functions"

•  Define main() function"
int main(void) { … }
int main(int argc, char *argv[]) { … }

•  Starting point of the program, a standard boilerplate"
•  Hand-waving: argc and argv are for input arguments"

3

5

Example #1: Echo (cont.)"

•  Within the main program"

•  Read a single character"
c = getchar(); "

•  Read a single character from the “standard input
stream” (stdin) and return it"

•  Write a single character"
putchar(c); "

•  Write a single character to the “standard output
stream” (stdout)"

6

Putting it All Together"
#include <stdio.h>

int main(void) {
 int c;

 c = getchar();
 putchar(c);

 return 0;
}

Why int instead
of char?"

Why return a
value?"

4

7

Read and Write Ten Characters"
•  Loop to repeat a set of lines (e.g., for loop)"

•  Three expressions: initialization, condition, and increment"
•  E.g., start at 0, test for less than 10, and increment per iteration"

#include <stdio.h>

int main(void) {
 int c, i;

 for (i=0; i<10; i++) {
 c = getchar();
 putchar(c);
 }

 return 0;
}

Why not this instead:"
for (i = 1; i <= 10; i++)"

8

Read and Write Forever"
•  Infinite for loop"

•  Simply leave the expressions blank"
•  E.g., for (; ;) "
•  No initial value, no per-iteration test, no increment at end of iteration"

#include <stdio.h>
 int main(void) {
 int c;

 for (; ;) {
 c = getchar();
 putchar(c);
 }

 return 0;
}

When will this
be executed?"

How would you terminate
this program?"

5

9

Read and Write Until End-Of-File"
•  Test for end-of-file"

• EOF is a global constant, defined in stdio.h"
•  The break statement jumps out of the innermost enclosing loop"

#include <stdio.h>
int main(void) {
 int c;
 for (; ;) {
 c = getchar();
 if (c == EOF)
 break;
 putchar(c);
 }
 return 0;
}

do some stuff

done yet?

before the loop

do more stuff

after the loop

10

Many Ways to Do the Same Job"

for (;;) {
 c = getchar();
 if (c == EOF)"
 break;
"putchar(c);
}"

for (c=getchar(); c!=EOF; c=getchar())

 " putchar(c);

while ((c=getchar())!=EOF)

 putchar(c);"

Typical idiom in C, but
messy side-effect in
loop test"

c = getchar();

while (c!= EOF){

" putchar(c);
 c = getchar();

}

Which approach
is best?"

6

11

Review of Example #1"
•  Character I/O"

•  Including stdio.h
•  Functions getchar() and putchar()
•  Representation of a character as an integer"
•  Predefined constant EOF

•  Program control flow"
•  The for and while statements"
•  The break statement"
•  The return statement"

•  Operators"
•  Assignment operator: = "
•  Increment operator: ++"
•  Relational operator to compare for equality: =="
•  Relational operator to compare for inequality: !="

12

Example #2: Convert to Uppercase"
•  Problem: Write a program to convert a file to all uppercase"

•  Leave non-alphabetic characters alone"

•  Program design:"

 repeat in a loop
 Read a character
 If unsuccessful, break out of loop
 If the character is lower-case, convert to upper-
case

 Write the character
 "

"

7

13

ASCII"
American Standard Code for Information Interchange"
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

 16 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

 32 SP ! " # $ % & ' () * + , - . /

 48 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

 64 @ A B C D E F G H I J K L M N O

 80 P Q R S T U V W X Y Z [\] ^ _

 96 ` a b c d e f g h i j k l m n o

112 p q r s t u v w x y z { | } ~ DEL

Lower case: 97-122 and upper case: 65-90"
E.g., ‘a’ is 97 and ‘A’ is 65 (i.e., 32 apart)"

14

#include <stdio.h>
int main(void) {
 int c;
 for (; ;) {
 c = getchar();
 if (c == EOF) break;
 if ((c >= 97) && (c < 123))
 c -= 32;
 putchar(c);
 }
 return 0;
}

Implementation in C"

8

It works!"

•  Submit"

•  Receive your grade with quiet confidence "

15

It’s a …"
"

B-"
16

9

17

What? But it works …"

• A good program is:"
•  Clean"
•  Readable"
•  Maintainable"

•  It’s not enough that your program works!"

• We take this seriously in COS 217"
•  Seriously == It affects your grade substantially"

18

#include <stdio.h>

int main(void) {

 int c;

 for (; ;) {

 c = getchar();

 if (c == EOF) break;

 if ((c >= 97) && (c < 123))

 c -= 32;

 putchar(c);

 }

 return 0;
}

Avoid Hard-coded Numbers"

Ugly. "
And works for
ASCII only"

10

19

#include <stdio.h>

int main(void) {

 int c;

 for (; ;) {

 c = getchar();

 if (c == EOF) break;

 if ((c >= ’a’) && (c <= ’z’))

 c += ’A’ - ’a’;

 putchar(c);

 }

 return 0;
}

Improvement: Character Constants"

Better. "
But still
assumes that
alphabetic
character codes
are contiguous"

20

Standard C Library Functions ctype(3C)

NAME

 ctype, isdigit, isxdigit, islower, isupper, isalpha, isalnum, isspace, iscntrl, ispunct, isprint,
isgraph, isascii - character handling

SYNOPSIS
 #include <ctype.h>
 int isalpha(int c);
 int isupper(int c);
 int islower(int c);
 int isdigit(int c);
 int isalnum(int c);
 int isspace(int c);
 int ispunct(int c);
 int isprint(int c);
 int isgraph(int c);
 int iscntrl(int c);
 int toupper(int c);
 int tolower(int c);

Improvement: Existing Functions"

DESCRIPTION
 These macros classify character-
coded integer values. Each is a
predicate returning non-zero for true, 0
for false...

 The toupper() function has as a
domain a type int, the value of which is
representable as an unsigned char or
the value of EOF.... If the argument of
toupper() represents a lower-case
letter ... the result is the corresponding
upper-case letter. All other arguments
in the domain are returned unchanged.

Section 3C is for C
library functions"

11

21

Using the ctype Functions"
#include <stdio.h>
#include <ctype.h>
int main(void) {
 int c;
 for (; ;) {
 c = getchar();
 if (c == EOF) break;
 if (islower(c))
 c = toupper(c);
 putchar(c);
 }
 return 0;
}

Returns non-zero"
(true) iff c is a lowercase"
character"

22

% ls

upper.c

% gcc217 upper.c –o upper

% ls

upper upper.c

% upper

We’ll be on time today!

WE’LL BE ON TIME TODAY!

^D

%

Building and Running"

12

23

% upper < upper.c
#INCLUDE <STDIO.H>
#INCLUDE <CTYPE.H>
INT MAIN(VOID) {
 INT C;
 FOR (; ;) {
 C = GETCHAR();
 IF (C == EOF) BREAK;
 IF (ISLOWER(C))
 C = TOUPPER(C);
 PUTCHAR(C);
 }
 RETURN 0;
}

Run the Code on Itself"

24

% upper < upper.c > junk.c

% gcc217 junk.c –o junk
test.c:1:2: invalid preprocessing directive #INCLUDE

test.c:2:2: invalid preprocessing directive #INCLUDE

test.c:3: syntax error before "MAIN"

etc...

Output Redirection"

13

25

Review of Example #2"
•  Representing characters"

•  ASCII character set"
•  Character constants (e.g., ‘A’ or ‘a’)"

•  Manipulating characters"
•  Arithmetic on characters"
•  Functions like islower() and toupper()

•  Compiling and running C code"
•  Compile to generate executable file "
•  Invoke executable to run program"
•  Can redirect stdin and/or stdout"

So far, the action the program takes is based only on the
input (the character it reads)"

26

Example #3: Capitalize First Letter"
• Capitalize the first letter of each word"

•  “cos 217 rocks” à “Cos 217 Rocks”"

• Sequence through the string, one letter at a time"
•  Print either the character, or the uppercase version"

• Challenge: need to remember where you are"
•  Capitalize “c” in “cos”, but not “o” in “cos” or “c” in

“rocks”"

• The program should do different things for the
same input letter, "
•  “c” in “cos” (capitalize) versus “c” in rocks (don’t)"
•  Depends on “where the program is” right now"
"

14

States"
•  Where am I?"

•  I’m inside a word"
•  I’ve seen the first letter of it but not yet the space after it"
=> If I see a letter now, I should not capitalize it"

•  I’m not inside a word "
=> If I see a letter now, I should capitalize it"

•  I’m in my car"
=> If I receive a phone call I shouldn’t take it"

•  I’m in my room"
=> If I receive a phone call I can take it"

•  What am I doing?"
•  I’m awake, I’m asleep, …"

Program needs a way to keep track of states, and take
actions not only based on inputs but also on states" 27

28

Deterministic Finite Automaton"
Deterministic Finite Automaton (DFA)"

2"

letter"
(print uppercase equivalent)"

not-letter"
(print)" letter"

(print)"

1"

not-letter"
(print)"

Actions are not"
part of DFA formalism;"
but they’re helpful"

•  States"
•  State 1: I’m not inside a word"
•  State 2: I’m already inside a word"

•  Inputs: cause state transitions"
•  (Actions: determined by state+input)"

15

29

#include <stdio.h>
#include <ctype.h>
int main (void) {
 int c;
 for (; ;) {
 c = getchar();
 if (c == EOF) break;
 <process one character>
 }
 return 0;
}

Implementation Skeleton"

30

• Process one character:"
•  Check current state"
•  Check input character"
•  Based on state and character, check DFA and execute: "

•  a transition to new state, or stay in same state"
•  the indicated action"
•  Note: same input can lead to different actions"

Implementation Skeleton"

1" 2"

letter"
(print uppercase equivalent)"

letter"
(print)"

not-letter"
(print)"

not-letter"
(print)"

16

31

Process one character:

switch (state) {

 case 1:

 <state 1 input check and action>

 break;

 case 2:

 <state 2 input check and action>

 break;

 default:

 <this should never happen>
}

Implementation" 1 2
letter

letter

not-letter

not-letter

if input char is a letter {
 print uppercase (since
first letter of new word);
 move to state 2 (in word);
}
otherwise print char as is;

if input not a letter
 change state to 1 (not in
word);
in any case, print char as is;

32

#include <stdio.h>
#include <ctype.h>

int main(void) {
 int c; int state=1;
 for (; ;) {
 c = getchar();
 if (c == EOF) break;
 switch (state) {
 case 1:

 if (isalpha(c)) {
 putchar(toupper(c));
 state = 2;
 } else putchar(c);
 break;
 case 2:

 if (!isalpha(c)) state = 1;
 putchar(c);
 break;
 }
 }
 return 0;
}

Complete Implementation"

if input char is a letter {
 print uppercase (since
first letter of new word);
 move to state 2 (in word);
}
otherwise print char as is;

if input is not a letter
 change state to 1 (not
in word);
in any case, print char;

17

33

Running Code on Itself"
% gcc217 upper1.c -o upper1

% upper1 < upper1.c
#Include <Stdio.H>
#Include <Ctype.H>
Int Main(Void) {
 Int C; Int State=1;
 For (; ;) {
 C = Getchar();
 If (C == EOF) Break;
 Switch (State) {
 Case 1:
 If (Isalpha(C)) {
 Putchar(Toupper(C));
 State = 2;
 } Else Putchar(C);
 Break;
 Case 2:
 If (!Isalpha(C)) State = 1;
 Putchar(C);
 Break;
 }
 }
 Return 0;
}

It works!"

•  Submit"

•  What did I get? What did I get?"

34

18

Your grade"
"

B"
35

36

OK, That’s a B"

•  Works correctly, but"
•  Mysterious integer constants (“magic numbers”)"

•  What now?"
•  States should have names, not just 1, 2

19

37

Improvement: Names for States"

•  Define your own named constants"

enum Statetype {NOT_IN_WORD,IN_WORD};
•  Define an enumeration type"

enum Statetype state;"
•  Define a variable of that type"

38

#include <stdio.h>
#include <ctype.h>

enum Statetype {NOT_IN_WORD,IN_WORD};

int main(void) {
 int c; enum Statetype state = NOT_IN_WORD;
 for (; ;) {
 c = getchar();
 if (c == EOF) break;
 switch (state) {
 case NOT_IN_WORD:

 if (isalpha(c)) {
 putchar(toupper(c));
 state = IN_WORD;
 } else putchar(c);
 break;
 case IN_WORD:
 if (!isalpha(c)) state = NOT_IN_WORD;
 putchar(c);
 break;
 }
 }
 return 0;
}

Improvement: Names for States"

20

It still works, no magic constants"

•  Submit"

•  Can I have my A+ please? I have a party to go to."

39

Ask and you shall not receive …"
"

B+"
40

21

41

Huh?"

•  Works correctly, but"
•  No modularity"

•  Seriously, professor? What now?"
•  Should handle each state in a separate function

•  Each state handling function does the work for a given
state, including reading the input and taking the action

•  It returns the new state, which we will store in the
“state” variable for the next iteration of our infinite loop

42

Improvement: Modularity"
#include <stdio.h>
#include <ctype.h>
enum Statetype {NOT_IN_WORD,IN_WORD};
enum Statetype handleNotInwordState(int c) {...}
enum Statetype handleInwordState(int c) {...}

int main(void) {
 int c;
 enum Statetype state = NORMAL;
 for (; ;) {
 c = getchar();
 if (c == EOF) break;
 switch (state) {
 case NOT_IN_WORD:
 state = handleNotInwordState(c);
 break;
 case IN_WORD:
 state = handleInwordState(c);
 break;
 }
 }
 return 0;
}

22

43

Improvement: Modularity"

enum Statetype handleNotInwordState(int c) {

 enum Statetype state;

 if (isalpha(c)) {

 putchar(toupper(c));

 state = IN_WORD;

 }

 else {

 putchar(c);

 state = NOT_IN_WORD;

 }

 return state;

}

44

Improvement: Modularity"

enum Statetype handleInwordState(int c) {

 enum Statetype state;

 putchar(c);

 if (!isalpha(c))

 state = NOT_IN_WORD;

 else

 state = IN_WORD;

 return state;

}

23

It’s a thing of beauty …"
"

A-"
45

46

Seriously?? Lots of –ve ratings for professor"

•  No comments"

•  Should add (at least) function-level comments

24

47

Function Comments

• A function’s comment should:
•  Describe what the function does

•  Describe input to the function
•  Parameters, input streams

•  Describe output from the function
•  Return value, output streams, (call-by-reference

parameters)
•  Not describe how the function works

48

Function Comment Examples
• Bad main() function comment

 Read a character from stdin. Depending upon the
current DFA state, pass the character to an
appropriate state-handling function. The value
returned by the state-handling function is the
next DFA state. Repeat until end-of-file.

•  Describes how the function works"

• Good main() function comment
 Read text from stdin. Convert the first
character of each "word" to uppercase, where a
word is a sequence of letters. Write the result
to stdout. Return 0.

•  Describes what the function does from caller’s point of view"

25

49

#include <stdio.h>

#include <ctype.h>

enum Statetype {NOT_IN_WORD, IN_WORD};

/*--*/

/* handleNormalState: Implement the NOT_IN_WORD state of the DFA. */

/* c is the current DFA character. Return the next state. */

/*--*/

enum Statetype handleNotInwordState(int c) {

 enum Statetype state;

 if (isalpha(c)) {

 putchar(toupper(c));

 state = IN_WORD;

 }

 else {

 putchar(c);

 state = NOT_IN_WORD;

 }

 return state;

}

An “A” Effort"

50

/*--*/

/* handleInwordState: Implement the IN_WORD state of the DFA. */

/* c is the current DFA character. Return the next state. */

/*--*/

enum Statetype handleInwordState(int c) {

 enum Statetype state;

 putchar(c);

 if (!isalpha(c))

 state = NOT_IN_WORD;

 else

 state = IN_WORD;

 return state;

}

An “A” Effort"

26

51

/*--*/

/* main: Read text from stdin. Convert the first character */

/* of each "word" to uppercase, where a word is a sequence of */

/* letters. Write the result to stdout. Return 0. */

/*--*/

int main(void) {

 int c;

 enum Statetype state = NOT_IN_WORD;

 /* Use a DFA approach. state indicates the state of the DFA. */

 for (; ;) {

 c = getchar();

 if (c == EOF) break;

 switch (state) {

 case NOT_IN_WORD:

 state = handleNotInwordState(c);

 break;

 case IN_WORD:

 state = handleInwordState(c);

 break;

 }

 }

 return 0;

}

An “A” Effort"

52

Review of Example #3"
•  Deterministic finite state automaton"

•  Two or more states"
•  Transitions between states"

•  Next state is a function of current state and current input"
•  Actions can occur during transitions"

•  Expectations for COS 217 assignments"
•  Readable"

•  Meaningful names for variables and values"
•  qqq is not meaningful. Nor are foo and bar"

•  Modular"
•  Multiple functions, each of which does one well-defined job"

•  Function-level comments"
•  Should describe what function does"

•  See K&P book for style guidelines specification"
"

27

53

Another DFA Example"
• Does the string have “nano” in it?"

•  “banano”"
•  “nnnnnnnanofff” "
•  “banananonano”"
•  “bananananashanana”"

S 2 3
‘n’

‘n’

1
‘a’ ‘n’ ‘o’

F

‘a’

‘n’

No input shown on an
arc => any other input

54

Yet Another DFA Example"

• Valid numbers"
•  “-34”"
•  “78.1”"
•  “+298.3”"
•  “-34.7e-1”"
•  “34.7E-1”"
•  “7.”"
•  “.7”"
•  “999.99e99” "

•  Invalid numbers"
•  “abc”"
•  “-e9”"
•  “1e”"
•  “+”"
•  “17.9A”"
•  “0.38+”"
•  “.”"
•  “38.38f9” "

Question #4 from fall 2005 midterm
Identify whether or not a string is a floating-point number

28

55

Summary "
• Examples illustrating C"

•  Overall program structure"
•  Control statements (if, while, for, and switch)"
•  Character input/output (getchar() and putchar())"

• Deterministic finite state automata (i.e., state
machines)"

• Expectations for programming assignments"

