
1

1

COS 217: Introduction to
Programming Systems!

2

Goals for Today’s Class!
• Course overview"

•  Introductions"
• Course goals"
• Resources"
• Grading"
• Policies"

• Getting started with C"
• C programming language overview"

2

3

Introductions!
• Lecturer"

•  Prof. Jaswinder Pal (J.P.) Singh"

• Preceptors (in alphabetical order)"
•  Dr. Robert Dondero (Lead Preceptor)"
•  Mojgan Ghasemi"
•  Madhuvanthi Jayakumar"
•  Yi-Hsien (Stephen) Lin"
•  Dr. Iasonas Petras"
•  Raghav Sethi"
•  Logan Stafman"
•  Yannan Wang"
•  KatieAnna Wolf"

4

Course Goal 1: “Programming in the Large”!

• How to write large programs"
• Specifically, how to:"

•  Break things down into modules"
•  Use abstraction"
•  Write modular code"
•  Separate interface from implementation"
•  Write code as part of a large team"
•  Write portable code"
•  Test and debug your code"
•  Improve your code’s performance "
•  Use tools to support these activities"

3

5

Course Goal 2: “Under the Hood”!
•  What happens inside in computer systems?"

•  Specifically, two downward tours"
•  We will cover some key aspects of both"

•  Goal 2 supports Goal 1"
•  Reveals many examples of effective abstractions"

C Language"

Assembly Language"

Machine Language"

Application Program"

Operating System"

Hardware"

language"
levels"
tour"

service"
levels"
tour"

6

Course Goals: Why C, not Java?!
•  The course is not about a language. The language is

merely a vehicle to convey the key concepts. "

•  C happens to better support the goals of the course. "
•  C supports Goal 1 better"

•  C is a lower-level language"
•  Forces you to create your own abstractions"

•  C has some useful flaws"
•  Motivates discussion of software engineering principles"

•  C supports Goal 2 better"
•  C facilitates language levels tour"

•  C is closely related to assembly language"
•  C facilitates service levels tour"

•  Linux operating system is written in C"

4

7

Course Goals: Why Linux?!
• Q: Why Linux?"
• A: Good for education and research"

•  Linux is open-source and well-specified"

• A: Has good support for programming"
•  Linux is a variant of Unix"
•  Unix has GNU, a rich open-source programming

environment"

8

Course Goals: Summary!
• Help you to become a..."

Power Programmer!

5

9

Resources: Lectures and Precepts!

• Lectures"
•  Describe concepts at a high level"
•  Slides available online at course Web site"

• Precepts"
•  Support lectures by describing concepts at a lower level"
•  Support your work on assignments"

• Note: Precepts begin on Monday"

10

Resources: Website and Piazza!

• Website"
•  Access from http://www.cs.princeton.edu"

•  Academics → Course Schedule → COS 217"

• Piazza"
•  https://piazza.com/login?#cos217"
•  Subscription is required"
•  Instructions provided in first precept"

6

11

Resources: Books!
•  Required book"

•  C Programming: A Modern Approach (2nd Edition), King, 2008"
•  Covers the C programming language and standard libraries"

•  Highly recommended books"
•  The Practice of Programming, Kernighan and Pike, 1999. "

•  Covers “programming in the large”"
•  (Required for COS 333)"

•  Computer Systems: A Programmer's Perspective (2nd Edition),
Bryant and O'Hallaron, 2010."
•  Covers “under the hood”"
•  Some key sections are on electronic reserve"
•  First edition is sufficient"

"

•  All books are on reserve in Engineering Library!

12

Resources: Manuals!

•  Manuals (for reference only, available online)"
•  IA32 Intel Architecture Software Developer's Manual, Volumes 1-3!
•  Tool Interface Standard & Executable and Linking Format!
•  Using as, the GNU Assembler "
"

•  See also"
•  Linux man command"

• man is short for “manual”"
•  For more help, type man man"

7

13

Resources: Programming Environment!

Friend Center 016"
or 017 Computer"

nobel.princeton.edu"

SSH"

Lab TAs"

Linux"
GNU"

• Option 1"

Your"
Pgm"

davisson"
compton"

14

Resources: Programming Environment!

Your Windows/Mac/"
Linux computer"

nobel.princeton.edu"

SSH"Linux"
GNU"

• Option 2"

Your"
Pgm"

davisson"
compton"

Lab TAs"

8

15

Resources: Programming Environment!
•  Other options"

•  Use your own Windows/Mac/Linux computer; run GNU tools locally;
run your programs locally"

•  Use your own Windows/Mac/Linux computer; run a non-GNU
development environment locally; run your programs locally"

•  Build your own hardware, port Windows/Mac/Linux to it, …"
•  Develop a new material, build hardware using it, port a new OS to it,

…"

•  Notes"
•  Other options cannot be used for some assignments (esp. timing

studies)"
•  Instructors cannot promise support of other options"
•  Strong recommendation: Use Option 1 or 2 for all assignments"
•  First precept provides setup instructions"

16

Grading!
• Seven programming assignments (50%)"

•  Working code"
•  Clean, readable, maintainable code"
•  On time (penalties for late submission)"
•  Final assignment counts double"

• Exams (40%)"
•  Midterm (15%)"
•  Final (25%)"

• Class participation (10%)"
•  Lecture and precept attendance is mandatory!

9

17

Programming Assignments!
•  Programming assignments"

1.  A “de-comment” program (individual)"
2.  A string module (individual)"
3.  A symbol table module (individual)"
4.  IA-32 assembly language programs (individual)"
5.  A buffer overrun attack (teams-of-two)"
6.  A heap manager module (teams-of-two)"
7.  A Unix shell (individual)"

•  See course “Schedule” web page for due dates/times"
•  First assignment is available now"
•  Advice: Start early to allow time for "

•  Understanding the assignment and how to get started"
•  Debugging"
•  Osmosis, background processes, eureka moments …"

18

Leave lots of time for debugging …!

10

19

Policies: EXTREMELY IMPORTANT!
"

Study the course “Policies” web page!!!"

•  Especially the assignment collaboration policies"
•  Violation involves trial by Committee on Discipline!
•  Typical penalty is suspension from University for 1 academic year"

•  You are responsible for reading the Policies page carefully
and understanding it"
•  Saying I didn’t know or understand will not be okay"

•  Ask your preceptor for clarifications if necessary"

20

Course Schedule!
•  Very generally…"

Weeks" Lectures" Precepts"
1-2" Intro to C (conceptual)" Intro to Linux/GNU  

Intro to C (mechanical)"
3-6" “Prog. in the Large”" Advanced C"
6" Midterm Exam"
7" Recess"
8-13" “Under the Hood”" Assignment Support

Assembly Language"
Reading Period"

Final Exam"

•  See course “Schedule” web page for details"

11

21

Any questions before we start?"

22

C vs. Java: History!

BCPL" B" C" K&R C" ANSI C89"
ISO C90" ISO/ANSI C99"

1960" 1970" 1972" 1978" 1989" 1999"

LISP" Smalltalk" C++" Java"

Not yet popular;"
our compiler "
supports only"
partially"We will use"

12

23

C vs. Java: Design Goals!

•  Differences in design goals explain many differences
between the languages"

•  C’s design goal explains many of its eccentricities"

•  We’ll see examples throughout the course"

24

C vs. Java: Design Goals!
•  Java design goals"

•  Application programming in the age of multiple operating systems
that are highly networked"

•  Support object-oriented programming"
•  Allow same program to be executed on multiple operating systems "
•  Support download-and-run over computer networks "
•  Execute code from remote sources securely"
•  Adopt the good parts of other languages (esp. C and C++) "

•  Implications for Java"
•  High-level"

•  Virtual machine insulates programmer from underlying assembly
language, machine language, hardware"

•  Protects you from shooting yourself in the foot"
•  Portability over efficiency"
•  Security over efficiency and over flexiblity"

13

25

C vs. Java: Design Goals!
•  C design goals"

•  System-level programming with high efficiency"
•  Support structured programming"
•  Support development of the Unix OS and Unix tools"

•  As Unix became popular, so did C"

•  Implications for C"
•  Good for system-level programming"

•  And often used for application-level programming "
•  Low-level"

•  Close to assembly language; close to machine language; close
to hardware"

•  Efficiency over portability"
•  Efficiency and flexibility over security"
•  Shoot away (yourself, in the foot …)"
"

26

C vs. Java: Overview!

Dennis Ritchie on the nature of C:"

•  “C has always been a language that never attempts to tie a
programmer down.”"

•  “C has always appealed to systems programmers who like the terse,
concise manner in which powerful expressions can be coded.” "

•  “C allowed programmers to (while sacrificing portability) have direct
access to many machine-level features that would otherwise require
the use of assembly language.”"

•  “C is quirky, flawed, and an enormous success.”"
•  “While accidents of history surely helped, it evidently satisfied a need

for a system implementation language efficient enough to displace
assembly language, yet sufficiently abstract and fluent to describe
algorithms and interactions in a wide variety of environments.”"

14

27

C vs. Java: Overview (cont.)!

•  Bad things you can do in C that you can’t do in Java"
•  Shoot yourself in the foot (safety)"
•  Shoot others in the foot (security)"
•  Ignore wounds (error handling)"

•  Dangerous things you must do in C that you don’t in Java"
•  Explicitly manage memory via malloc() and free()

•  Good things you can do in C, but (more or less) must do in
Java"
•  Program using the object-oriented style"

•  Good things you can’t do in C but can do in Java"
•  Write completely portable code"

28

Course Goals: Why C, not Java?!
•  The course is not about a language. The language is

merely a vehicle to convey the key concepts. "

•  C happens to better support the goals of the course. "
•  C supports Goal 1 better"

•  C is a lower-level language"
•  Forces you to create your own abstractions"

•  C has some flaws"
•  Motivates discussion of software engineering principles"

•  C supports Goal 2 better"
•  C facilitates language levels tour"

•  C is closely related to assembly language"
•  C facilitates service levels tour"

•  Linux operating system is written in C"

15

29

Appendix!
!

C vs. Java: Details!
!

Read on your own!

30

C vs. Java: Details (cont.)!
Java! C!

Overall 
Program  
Structure!

Hello.java:

public class Hello {
 public static void
 main(String[] args) {
 System.out.println(
 "Hello, world");
 }
}

hello.c:

#include <stdio.h>

int main(void) {
 printf("Hello, world\n");
 return 0;
}

Building!

% javac Hello.java
% ls
Hello.class
Hello.java
%

% gcc217 hello.c
% ls
a.out
hello.c
%

Running!
% java Hello
Hello, world
%

% a.out
Hello, world
%

16

31

C vs. Java: Details (cont.)!

Java! C!
Character type! char // 16-bit unicode char /* 8 bits */

Integral types!
byte // 8 bits
short // 16 bits
int // 32 bits
long // 64 bits

(unsigned) char
(unsigned) short
(unsigned) int
(unsigned) long

Floating point
types!

float // 32 bits
double // 64 bits

float
double
long double

Logical type! boolean
/* no equivalent */
/* use integral type */

Generic
pointer type! // no equivalent void*

Constants! final int MAX = 1000;
#define MAX 1000
const int MAX = 1000;
enum {MAX = 1000};

32

C vs. Java: Details (cont.)!

Java! C!

Arrays!
int [] a = new int [10];
float [][] b =
 new float [5][20];

int a[10];
float b[5][20];

Array bound
checking! // run-time check /* no run-time check */

Pointer type! // Object reference is an
// implicit pointer

int *p;

Record type!

class Mine {
 int x;
 float y;
}

struct Mine {
 int x;
 float y;
}

17

33

C vs. Java: Details (cont.)!

Java! C!

Strings!
String s1 = "Hello";
String s2 = new
 String("hello");

char *s1 = "Hello";
char s2[6];
strcpy(s2, "hello");

String
concatenation!

s1 + s2
s1 += s2

#include <string.h>
strcat(s1, s2);

Logical ops! &&, ||, ! &&, ||, !

Relational ops! =, !=, >, <, >=, <= =, !=, >, <, >=, <=

Arithmetic
ops! +, -, *, /, %, unary - +, -, *, /, %, unary -

Bitwise ops! >>, <<, >>>, &, |, ^ >>, <<, &, |, ^

Assignment
ops!

=, *=, /=, +=, -=, <<=,
>>=, >>>=, =, ^=, |=, %=

=, *=, /=, +=, -=, <<=,
>>=, =, ^=, |=, %=

34

C vs. Java: Details (cont.)!

Java! C!

if stmt!

if (i < 0)
 statement1;
else
 statement2;

if (i < 0)
 statement1;
else
 statement2;

switch stmt!

switch (i) {
 case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

switch (i) {
 case 1:
 ...
 break;
 case 2:
 ...
 break;
 default:
 ...
}

goto stmt! // no equivalent goto SomeLabel;

18

35

C vs. Java: Details (cont.)!

Java! C!

for stmt! for (int i=0; i<10; i++)
 statement;

int i;
for (i=0; i<10; i++)
 statement;

while stmt! while (i < 0)
 statement;

while (i < 0)
 statement;

do-while stmt!
do {
 statement;
 …
} while (i < 0)

do {
 statement;
 …
} while (i < 0);

continue stmt! continue; continue;

labeled
continue stmt! continue SomeLabel; /* no equivalent */

break stmt! break; break;

labeled break
stmt! break SomeLabel; /* no equivalent */

36

C vs. Java: Details (cont.)!

Java! C!

return stmt! return 5;
return;

return 5;
return;

Compound stmt
(alias block)!

{
 statement1;
 statement2;
}

{
 statement1;
 statement2;
}

Exceptions! throw, try-catch-finally /* no equivalent */

Comments! /* comment */
// another kind

/* comment */

Method /
function call!

f(x, y, z);
someObject.f(x, y, z);
SomeClass.f(x, y, z);

f(x, y, z);

19

37

Example C Program!
#include <stdio.h>
#include <stdlib.h>

const double KMETERS_PER_MILE = 1.609;

int main(void) {
 int miles;
 double kmeters;
 printf("miles: ");
 if (scanf("%d", &miles) != 1) {
 fprintf(stderr, "Error: Expect a number.\n");
 exit(EXIT_FAILURE);
 }
 kmeters = miles * KMETERS_PER_MILE;
 printf("%d miles is %f kilometers.\n",
 miles, kmeters);
 return 0;
}

38

Summary!
•  Course overview"

•  Goals"
•  Goal 1: Learn “programming in the large”"

•  Modularity, abstraction, separation of interface from
implementation!

•  Goal 2: Look “under the hood”"
•  Goal 2 supports Goal 1"
•  Use of C and Linux supports both goals"

•  Learning resources"
•  Lectures, precepts, programming environment, Piazza, textbooks"
•  Course Web site: access via http://www.cs.princeton.edu"

20

39

Summary!

•  Getting started with C"
•  C was designed for system programming"

•  Differences in design goals of Java and C explain many
differences between the languages"

•  Knowing C design goals explains many of its eccentricities"
•  Knowing Java gives you a head start at learning C"

•  C is not object-oriented, but many aspects are similar"

40

Getting Started!

•  Check out course Web site soon"
•  Study “Policies” page"
•  First assignment is available"

•  Establish a reasonable computing environment soon!
•  Instructions given in first precept"
"

