
1
http://xkcd.com/730/

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

21. Central Processing Unit

Sections 6.2 and 6.3

Let's build a computer!

CPU = Central Processing Unit

Computer
 Display
 Touchpad
 Battery
 Keyboard
 ...
 CPU (difference between a TV set and a computer)

Previous lecture
 Combinational circuits
 ALU (calculator)

This lecture
 Sequential circuits with memory
 CPU (computer)

3

CPU

A smaller computing machine: TinyTOY

TOY instruction-set architecture.

• 256 16-bit words of memory.

• 16 16-bit registers.

• 1 8-bit program counter.

• 2 instruction types

• 16 instructions.

TinyTOY instruction-set architecture.

• 16 10-bit words of memory.

• 4 10-bit registers.

• 1 4-bit program counter.

• 2 instruction types

• 16 instructions.

4

4 bits to specify
one of 16 registers

8 bits to specify one
of 256 memory words

Type 1 instruction
opcodeopcodeopcodeopcode RdRdRdRd RsRsRsRs RtRtRtRt

Type 2 instruction
opcodeopcodeopcodeopcode RdRdRdRd addraddraddraddraddraddraddraddr

Purpose of TinyTOY. Illustrate CPU circuit design for a "typical" computer.

2 bits to specify
one of 4 registers

4 bits to specify one
of 16 memory words

Type 1 instruction
opcodeopcodeopcodeopcode RdRd RsRs RtRt

Type 2 instruction
opcodeopcodeopcodeopcode RdRd addraddraddraddr

5

Review: the state of the machine

Contents of memory, registers, and PC at a particular time

• Provide a record of what a program has done.

• Completely determines what the machine will do.

Memory Registers

PC

IR

ALU

ALU and IR hold

intermedate states

of computation

Goal. Complete CPU circuit for TinyTOY (same design extends to TOY and to your computer).

CPU circuit components for TinyTOY

TinyTOY CPU

• ALU

• Memory

• Registers

• PC

• Control

• Clock

6

MAIN MEMORY
16 10-bit words

ALU

REGISTERS
4 10-bit words

CONTROL

IRPC

Perspective

Q. Why TinyTOY?

A. Toy circuit width would be about 5 times TinyTOY circuit width.

7

TOY

TinyTOY

Sobering fact. The circuit for your computer is hundreds to thousands of times wider.

Reassuring fact. Design of all three is based on the same fundamental ideas.

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

Sequential circuits

Q. What is a sequential circuit?

A. A digital circuit (all signals are 0 or 1) with feedback (loops).

9

Q. Why sequential circuits?

A. Memory (difference between a DFA and a Turing machine).

Basic abstractions

• On and off.

• Wire: Propagates an on/off value.

• Switch: Controls propagation of on/off values through wires.

• Flip-flop: Remembers a value.

10

A new ingredient: Circuits with memory

Feedback leads to circuits with one of two states

• Ex. two switches, each blocked by the other.

• State determined by whichever switches first.

• Stable (once set, state never changes).

An SR flip-flop is two cross-coupled NOR gates.

• Adds an extra line to each switch.

• R (reset) sets state to 0.

• S (set) sets state to 1.

 NOR

S

Q

components

 NOR

R
classic notation switches

set to 0

Caveat. Timing of switch vs. propagation delay.
a "buzzer"

Note. Feedback with three switches is not stable.

stays 0 set to 1 stays 1 unused
output
value

11

One bit in a processor register (PC and IR)

Add logic to an SR flip-flop for more precise control

• Provide data value on an input wire instead of using S and R controls.

• Use enable write signal to control timing of write.

• Flip-flop value is always available.

1 on R line (write 0)
when input is 0

AND enable write is 1

1 on S line (write 1)
when input is 1

AND enable write is 1

12

Processor registers

Processor registers (PC and IR)

• Store W bits.

• Input and output on W-wire busses.

• Register contents always available on
output bus.

• When enable write is asserted, W input
bits get copied into register.

Ex 1. PC holds 4-bit address.
Ex 2. IR holds 10-bit current instruction.

under the
cover

under the cover
circuit (gate)

component
level

input
bus

interface

input
bus

enable
write

output
bus

W = 4

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

15

One bit in a main memory bank

Add a selection mechanism

• Flip-flop value is not always available.

• Use select for read signal to make it available.

• "1-hot" OR to collect the one bit value that is selected.

1-hot OR

16

Main memory bank: interface

Main memory bank.

• Bank of N words; each stores W bits.

• Read and write data to one of N words.

• Address inputs select one word.

• Addressed word always on output bus.

• When write enabled, W input bits are
copied into addressed word.

number of
words

bits per
word

address
bits

this slide 4 6 2

tinyTOY 16 10 4

TOY 256 16 8

your computer 1 billion 64 32

interface
(four 6-bit words)

17

Main memory bank: component level

Main memory bank.

• Bank of N words; each stores W bits.

• Read and write data to one of N words.

• Address inputs select one word.

• Addressed word always on output bus.

• When write enabled, W input bits are
copied into addressed word.

component-level implementation (four six-bit words)

Basic mechanisms

• A decoder uses address to switch on
one line (through the addressed word)

• "1-hot" OR gates at each bit position
take word contents to the output bus.

1
0Example: Read word 2 (10)

18

Main memory bank: switch level

Main memory bank.

• Bank of N words; each stores W bits.

• Read and write data to one of N words.

• Address inputs select one word.

• Addressed word always on output bus.

• When write enabled, W input bits are
copied into addressed word.

switch-level implementation
(four 6-bit words)

TinyTOY main memory bank

Interface

• Input bus for "store"

• Output bus for "load"

• Address bits to select a word

• Enable write control signal

19

Connections

• Input bus from registers

• Output bus to IR and registers

• Address bits from PC, IR, registers

• Enable write from "control"

switch levelinterface

MAIN MEMORY
16 10-bit

words

input bus

output bus

enable
write

address
bits

20

One bit in a TinyTOY register bank

Need a second selection mechanism to read two registers at once

• Flip-flop value is not always available.

• Use select 1 for read signal to make it available on output line 1.

• Use select 2 for read signal to make it available on output line 2.

• "1-hot" OR to collect the selected bit values on each line.

interface

"Dual port"
memory bit

switch level

opcodeopcodeopcodeopcode RdRd RsRs RtRt
Type 1 instruction

TinyTOY register bank

Interface

• Input bus

• Two output busses

• Address bits to select word

• Address bits to select 2nd word

• Enable write control signal

21

Connections

• Input bus from MUX (stay tuned)

• Output busses to ALU, memory

• Address bits from IR

• Enable write from "control"

interface

REGISTER BANK
4 10-bit words

input bus

switch level

enable
write

address
bits

output busses

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

24

Designing a digital circuit: overview

Steps to design a digital (sequential) circuit

• Design interface: input busses, output busses, control signals.

• Determine components.

• Determine datapath requirements: "flow" of bits.

• Establish control sequence.

Warmup. Design tinyTOY program counter (PC). Three components and three control signals

Another useful combinational circuit: Multiplexer

Multiplexer (MUX). Combinational circuit that selects among input buses.

• Exactly one select line i is activated.

• Puts bit values from input bus i onto output bus.

25

Typical use. Connect a component in different ways at different times.

switch levelinterface

unary input (MUX in text takes binary input)

26

Counter interface

A counter holds a value that represents a binary integer and supports three control signals:

• Load. Set value from input bus.

• Increment. Add one to value.

• Enable write. Make value available on output bus.

COUNTER (4-bit)
input bus

load

increment

enable write

output bus

TinyTOY PC: 4-bit counter

Components inside

• Input and output busses.

• Processor register.

• Incrementer (add 1).

• 2-way MUX.

27

Counter layout and implementation

Layout and connections establish data paths where information travels.

Next: Sequence of control signals that effects desired behavior

(2-WAY)
input bus

enable write

output bus

load

increment

component-level implementation switch-level implementation

(2-WAY)

Simplified adder
with y = 0001

Control signal sequences and data paths for counter

28

load

LOAD: input bus to MUX output to register

input bus

enable
write

output bus

ENABLE WRITE: register contents to output bus

increment

INCREMENT: register output to incrementer
 incrementer output to MUX
 increment selects copy to register input
 enable write OFF blocks feedback loop

enable write off

29

Summary of TinyTOY PC circuit

The program counter holds an address and supports two control signal sequences:

• Load, then enable write. Set value from input bus (example: branch instruction).

• Increment, then enable write. Add one to value.
Value is written to an internal processor register and available on output bus in both cases.

input bus
PC (4-bit)

load

increment

enable write

output bus

Next. CPU circuit (10 components, 27 control signals).

(2-WAY)

component-level implementationinterface

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

CPU is a circuit inside the machine

Interface to outside world

• Switches and lights

• ON/OFF

• RUN

Connections (omitted)

• ADDR to PC

• DATA to memory bank input bus

• Buttons to control signals that
implement memory load/store

TinyTOY: Interface

32

TinyTOY
A computing machine

TinyTOY CPU components and layout

33

MAIN MEMORY BANK
16 10-bit words

ALU

REGISTER BANK
4 10-bit words

CONTROL

IR
PC

Register
input
MUX

Memory
addr
MUX

Components

• ALU

• Main memory

• Registers

• PC

• IR

• MUX switches

• Control

• Clock

Review: Program counter and instruction register

34

Fetch-increment-execute cycle

• Fetch: Get instruction from memory into IR.

• Increment: Update PC to point to next instruction.

• Execute: Move data to or from memory, change PC,
or perform calculations, as specified by IR.

FETCH

INCREMENT
EXECUTE

Critical abstractions in making this happen

• Program Counter (PC). Memory address of next instruction.

• Instruction Register (IR). Instruction being executed.

TOY operates by executing a sequence of instructions.

35

TinyTOY control lines and data paths

control lines
PC

CONTROL

MAIN MEMORY BANK
16 10-bit words

Mem
addr
MUX

IR REGISTER BANK
4 10-bit words

Reg
MUX

ALU

Control lines

• PC to MA MUX
• IR enable write
• increment PC
• PC enable write
• memory enable write
• reg bank enable write
• ...
[20-30 additional lines]

data paths

TinyTOY control sequences

36

FETCH PC to mem addr MUX
IR enable write

INCREMENT PC increment
PC enable write

EXECUTE

0 halt ...

EXECUTE

1 add

[IR opcode to decoder]
 [decoder to ALU select]

switch reg input MUX to ALU
reg bank enable write

EXECUTE

2 subtract [IR opcode to decoder]
 [decoder to ALU select]

switch reg input MUX to ALU
reg bank enable write

EXECUTE

3 and
[IR opcode to decoder]

 [decoder to ALU select]
switch reg input MUX to ALU

reg bank enable write

EXECUTE

4 xor

[IR opcode to decoder]
 [decoder to ALU select]

switch reg input MUX to ALU
reg bank enable write

EXECUTE

5 shift left

[IR opcode to decoder]
 [decoder to ALU select]

switch reg input MUX to ALU
reg bank enable write

EXECUTE
6 shift right

[IR opcode to decoder]
 [decoder to ALU select]

switch reg input MUX to ALU
reg bank enable write

EXECUTE 7 load address ...EXECUTE
8 load ...

EXECUTE

9 store ...

EXECUTE

A load indirect ...

EXECUTE

B store indirect ...

EXECUTE

C branch zero ...

EXECUTE

D branch positive ...

EXECUTE

E jump register ...

EXECUTE

F jump and link ...

FETCH

INCREMENT
EXECUTE

Control sequences choreograph the
flow of information through the CPU.

• Example 1: Fetch

• Example 2: Increment

• Example 3: ALU instruction
[small sequence for each instruction]

1

2

3

37

Datapath for an add instruction

FETCH

PC to mem addr MUX
IR enable write

INCREMENT

PC increment
PC enable write

[IR opcode to control/decoder]
 [decoder to ALU select]

switch reg input MUX to ALU
reg bank enable write

EXECUTE

38

Datapath for a load instruction

FETCH

PC to mem addr MUX
IR enable write

INCREMENT

PC increment
PC enable write

EXECUTE

[IR opcode to control/decoder]
 [decoder to ALU select]

[IR to addr MUX]
switch reg input MUX to memory

reg bank enable write

Clock

A CLOCK provides a regular ON-OFF pulse.

39

Q. How to implement a clock?

A. Use an external device.

A. Use a buzzer.

TinyTOY
A computing machine

Requirement. Clock cycle longer than max switching time.

Last step

Use a clock to raise a sequence of signals.

40

Note. TinyTOY circuit (and your computer) uses a more efficient clocking scheme.

Brute force approach

• Connect clock to simple counter.

• Connect counter to decoder.

Result: A sequence of (control) signals.

SIMPLE COUNTER
(3-bit)

increment

DECODER

raised in a
cyclic

sequence

input bus
and MUX not

needed

41

One final combinational circuit: Control

data bus
to memory input

control lines
to ALU

opcode
from IR

Control lines to processor
registers and ALU are raised
in sequence determined by
clock and opcode.

clock just ticks

data bus
from ALU

Control. The circuit that determines control line sequencing.

opcode decoder

for conditional
branches

Tick-Tock

CPU is a circuit, driven by a clock.

Initalize via console switches.

Press RUN: clock starts ticking

• PC to mem addr MUX
• IR enable write
• PC increment
• PC enable write

.

.

.
[details of instruction execution differ]
.
.
.

Faster clock? Faster computer!

42
And THAT . . . is how your computer works!

FETCH

INCREMENT
EXECUTE

TinyTOY
A computing machine

43

TOY "Classic", back-of-envelope design (circa 2005) TinyTOY CPU component-level view

44

MAIN MEMORY
16 10-bit words

ALU

REGISTERS
4 10-bit words

Register
input MUX

CONTROL

IRPCPC
input
MUX

Memory
addr
MUX

TinyTOY CPU switch-level view

45 46

A real microprocessor (MIPS R10000)

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

21. CPU

•Bits and registers
•Main memory and register banks
•Program counter
•Putting the pieces together

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

21. Central Processing Unit

Sections 6.2 and 6.3

