
in Java


Section 6.1
http://introcs.cs.princeton.edu

## Combinational circuits

Q. What is a combinational circuit?
A. A digital circuit (all signals are 0 or 1) with no feedback (no loops).
analog circuit: signals vary continuously
sequential circuit: loops allowed (stay tuned)
Q. Why combinational circuits?
A. Accurate, reliable, general purpose, fast, cheap.

Basic abstractions

- On and off.
- Wire: propagates on/off value.
- Switch: controls propagation of on/off values through wires.

Applications. Smartphone, tablet, game controller, antilock brakes, microprocessor, ...

## Programming

## 20. Combinational Circuits

in Java



An Interdisciplinary Approach
Robert Sedgewick • Kevin Wayne

- Building blocks
- Boolean algebra
- Digital circuits
- Adder


## Wires

Wires propagate on/off values

- ON (1): connected to power.
- OFF (0): not connected to power.
- Any wire connected to a wire that is ON is also ON .
- Drawing convention: "flow" from top, left to bottom, right.



## Controlled Switch

Switches control propagation of on/off values through wires.

- Simplest case involves two connections: control (input) and output.
- control OFF: output ON
- control ON: output OFF



## Controlled Switch

Switches control propagation of on/off values through wires.

- General case involves three connections: control input, data input and output.
- control OFF: output is connected to input
- control ON: output is disconnected from input


Idealized model of pass transistors found in real integrated circuits.

## Controlled switch: example implementation

A relay is a physical device that controls a switch with a magnet

- 3 connections: input, output, control.
- Magnetic force pulls on a contact that cuts electrical flow.



## First level of abstraction

Switches and wires model provides separation between physical world and logical world.

- We assume that switches operate as specified.
- That is the only assumption.
- Physical realization of switch is irrelevant to design.

Physical realization dictates performance

- Size.
- Speed.
- Power.

New technology immediately gives new computer.

Better switch? Better computer.

Basis of Moore's law.

"switches and wires"

Switches and wires: a first level of abstraction


Switches and wires: a first level of abstraction

VLSI $=$ Very Large Scale Integration
Technology
Deposit materials on substrate.
Key properties
Lines are wires.
Certain crossing lines are controlled switches.
Key challenge in physical world
Fabricating physical circuits with
billions of wires and controlled switches
Key challenge in "abstract" world
Understanding behavior of circuits with billions of wires and controlled switches

Bottom line. Circuit = Drawing (!)


Circuit anatomy



Need more levels of abstraction to understand circuit behavior

## Programming

## 20. Combinational Circuits

in Java



An Interdisciplinary Approach
Robert Sedgewick • Kevin Wayne

- Building blocks
- Boolean algebra
- Digital circuits
- Adder


## Programming

in Java



## 20. Combinational Circuits

- Building blocks
- Boolean algebra
- Digital circuits
- Adder


## Boolean algebra

Developed by George Boole in 1840s to study logic problems

- Variables represent true or false (1 or 0 for short).
- Basic operations are AND, OR, and NOT (see table below). Widely used in mathematics, logic and computer science.

| operation | Java notation | logic notation | circuit design <br> (this lecture) |  |
| :---: | :---: | :---: | :---: | :---: |
| AND | $\mathrm{x} \& \& \mathrm{y}$ | $x \wedge y$ | $x y$ |  |
| OR | $\mathrm{x} \\| \mathrm{y}$ | $x \vee y$ | $x+y$ | various notations |
| in common use |  |  |  |  |

## DeMorgan's Laws

Example: (stay tuned for proof)

$$
\begin{gathered}
(x y)^{\prime}=\left(x^{\prime}+y^{\prime}\right) \\
(x+y)^{\prime}=x^{\prime} y^{\prime}
\end{gathered}
$$

Relevance to circuits. Basis for next level of abstraction.


Copyright 2004, Sidney Harris http://www.sciencecartoonsplus.com

## Truth tables

A truth table is a systematic way to define a Boolean function

- One row for each possible set of argument values.
- Each row gives the function value for the specified argument values.
- $N$ inputs: $2^{N}$ rows needed.

| $x$ | $x^{\prime}$ | $x$ | $y$ | $x y$ | $x$ | $y$ | $x+y$ | $x$ | $y$ | $N O R$ | $x$ | $y$ | $X O R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| NOT | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 |  |

## Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic

- One row for each possibility.
- Identity established if columns match.


## Proofs of DeMorgan's laws

| $x$ | $y$ | $x y(x y){ }^{\prime}$ |  | $x$ | $y$ |  | $y^{\prime} x^{\prime}+y^{\prime}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |


| NOR |  |  |  |  |  |  |  | NOR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x$ | $y$ | $x+$ | + $\mathrm{y}^{\prime}$ | $x$ | $y$ | $x^{\prime}$ | $y^{\prime}$ | $x^{\prime} y^{\prime}$ |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |

## All Boolean functions of two variables

Q. How many Boolean functions of two variables?
A. 16 (all possibilities for the 4 bits in the truth table column).

Truth tables for all Boolean functions of 2 variables

| $x$ | $y$ | ZERO | AND |  | $x$ |  | $y$ | XOR | OR | NOR | EQ | $\neg y$ |  | $\neg x$ |  | NAND ONE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

## Functions of three and more variables

Q. How many Boolean functions of three variables?
A. 256 (all possibilities for the 8 bits in the truth table column).

| $x$ | $y$ | $z$ | $A N D$ | OR | NOR $M A J$ | $O D D$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |

Some Boolean functions of 3 variables

| Examples |  |  |
| :---: | :---: | :---: |
| AND | logical AND | 0 iff any inputs is 0 ( 1 iff all inputs 1) |
| OR | logical OR | 1 iff any input is 1 ( 0 iff all inputs 0 ) |
| NOR | logical NOR | 0 iff any input is 1 ( 1 iff all inputs 0 ) |
| MAJ | majority | 1 iff more inputs are 1 than 0 |
| $O D D$ | odd parity | 1 iff an odd number of inputs are 1 |
| Q. How many Boolean functions of $N$ variables? |  |  |
|  | $N$ | number of Boolean functions with $N$ variables |
|  | 2 | $2^{4}=16$ |
| A. $2^{2^{N}}$ | - 3 | $2^{8}=256$ |
|  | 4 | $2^{16}=65,536$ |
|  | 5 | $232=4,294,967,296$ |
|  | 6 | $2^{64}=18,446,744,073,709,551,616$ |

## Universality of AND, OR and NOT

Every Boolean function can be represented as a sum of products

- Form an AND term for each 1 in Boolean function.
- OR all the terms together.

| $x$ | $y$ | $z$ | $M A J$ | $x^{\prime} y z$ | $x y^{\prime} z$ | $x y z^{\prime}$ | $x y z$ | $x^{\prime} y z+x y^{\prime} z+x y z^{\prime}+x y z=M A J$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | Def. A set of operations is universal if |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | every Boolean function can be expressed |
| 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | using just those operations. |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | Fact. $\{$ AND, OR, NOT $\}$ is universal. |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |  |

## Programming

in Java



## 20. Combinational Circuits

- Building blocks
- Boolean algebra
- Digital circuits
- Adder


## Programming

in Java



## 20. Combinational Circuits

- Building blocks
- Boolean algebra
- Digital circuits
- Adder

COMPUTER SCIENCE
S E D G E W I C K / W A Y N E

## A basis for digital devices

Claude Shannon connected circuit design with boolean algebra in 1937.
"Possibly the most important, and also the most famous, master's thesis of the [20th] century."

- Howard Gardner

Key idea. Can use boolean algebra to systematically analyze circuit behavior.

A second level of abstraction: logic gates

| boolean function | notation | truth table | classic symbol | our symbol | under the cover circuit (gate) | proof |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NOT | $x^{\prime}$ | $x$ $x^{\prime}$ <br> 0 1 <br> 1 0 | $x->0-x^{\prime}$ | $x$ - $-x^{\prime}$ | $x-3$ | 1 iff $x$ is 0 |





## Gates with arbitrarily many inputs

## Multiway gates.

- OR: 1 if any input is 1 ; 0 if all inputs are 0 .
- NOR: 0 if any input is $1 ; 1$ if all inputs are 0 .
- Generalized: Negate some inputs.




$$
\left(u+v^{\prime}+w^{\prime}+x+y+z^{\prime}\right)^{\prime}=u{ }^{\prime} v w x^{\prime} y^{\prime} z
$$

Generalized NOR gate application: Decoder

A decoder uses a binary address to switch on a single output line

- $n$ address inputs, $2^{n}$ outputs.
- Uses all $2^{n}$ different generalized NOR gates.
- Addressed output line is 1 ; all others are 0 .

| $x$ | $y$ | $z$ | $a_{0}$ | $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ | $a_{7}$ |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x^{\prime} y^{\prime} z^{\prime}$ | $x^{\prime} y^{\prime} z$ | $x^{\prime} y z^{\prime}$ | $x^{\prime} y z$ | $x y^{\prime} z^{\prime}$ | $x y^{\prime} z$ | $x y z^{\prime}$ | $x y z$ |  |  |  |


| 0 | 0 | 0 | $\mathbf{1}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | $\mathbf{1}$ | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\mathbf{1}$ |

Next. Circuits for any boolean function.



Creating a digital circuit that computes a boolean function: majority
Use the truth table

- Identify rows where the function is 1 .
- Use a generalized NOR gate for each.
- OR the results together.

Example 1: Majority function


majority circuit


under the covers

Creating a digital circuit that computes a boolean function: odd parity
Use the truth table

- Identify rows where the function is 1.
- Use a generalized NOR gate for each.
- OR the results together.

Example 2: Odd parity function

| $x$ | $y$ | $z$ | ODD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |  |  |
| 0 | 0 | 1 | (1) | H突 IIT | $x^{\prime} y^{\prime} z=\left(x+y+z^{\prime}\right)^{\prime}$ |
| 0 | 1 | 0 | (1) | ¢ 4 INI | $x^{\prime} y z^{\prime}=\left(x^{\prime}+y^{\prime}+z\right)^{\prime}$ |
| 0 | 1 | 1 | 0 |  |  |
| 1 | 0 | 0 | (1) | $\underset{+}{x}+-11$ | $x y^{\prime} z^{\prime}=\left(x^{\prime}+y+z\right)^{\prime}$ |
| 1 | 0 | 1 | 0 |  |  |
| 1 | 1 | 0 | 0 |  |  |
| 1 | 1 | 1 | (1) | xメx | $x y z=\left(x^{\prime}+y^{\prime}+z^{\prime}\right)^{\prime}$ |

$O D D=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$



## Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

Ingredients

- OR gates.
- NOT gates.
- NOR gates.
- Wire.


## Method

- Step 1: Represent input and output with Boolean variables.
- Step 2: Construct truth table to define the function.
- Step 3: Identify rows where the function is 1.
- Step 4: Use a generalized NOR for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function. Caveat (stay tuned): Circuit might be huge.

## TEQ on combinational circuit design

Q. Design a circuit to implement $\operatorname{XOR}(\mathrm{x}, \mathrm{y})$. $\longleftarrow$ not really a $T E Q$ because we usually frame these as multiple choice

## TEQ on combinational circuit design

Q. Design a circuit to implement $\operatorname{XOR}(x, y)$.
$\longleftarrow$ not really a TEQ because we usually frame these as multiple choice
A. Use the truth table

- Identify rows where the function is 1 .
- Use a generalized NOR gate for each.
- OR the results together.

XOR function


```
circuit
``` (gates)

circuit

interface


\section*{Encapsulation}

Encapsulation in hardware design mirrors familiar principles in software design
- Building a circuit from wires and switches is the implementation.
- Define a circuit by its inputs and outputs is the API.
- We control complexity by encapsulating circuits as we do with ADTs.


\section*{Programming}

\author{
in Java
}


\section*{20. Combinational Circuits}
- Building blocks
- Boolean algebra
- Digital circuits
- Adder

COMPUTER SCIENCE
S E D G E W I C K / W A Y N E

\section*{Programming}
in Java



\section*{20. Combinational Circuits}
- Building blocks
- Boolean algebra
- Digital circuits
- Adder
http://introcs.cs.princeton.edu


COMPUTER SCIENCE
S E D G E W I C K / W A Y N E

\section*{Let's make an adder circuit}

Goal. \(x+y=z\) for 4-bit binary integers. same ideas scale to 64-bit adder in your computer
- 4-bit adder: 9 inputs, 5 outputs.
- Each output is a boolean function of the inputs.
\begin{tabular}{ccccc}
1 & 0 & 0 & 1 & \\
& 2 & 4 & 7 & 7 \\
+ & 9 & 5 & 1 & 9 \\
\hline 1 & 1 & 9 & 9 & 6
\end{tabular}


\section*{Let's make an adder circuit}

Goal: \(x+y=z\) for 4-bit integers.
\begin{tabular}{ccccc}
\(C_{4}\) & \(C_{3}\) & \(C_{2}\) & \(C_{1}\) & \(C_{0}\) \\
& \(x_{3}\) & \(x_{2}\) & \(x_{1}\) & \(x_{0}\) \\
\hline+ & \(y_{3}\) & \(y_{2}\) & \(y_{1}\) & \(y_{0}\) \\
\hline & \(Z_{3}\) & \(Z_{2}\) & \(Z_{1}\) & \(Z_{0}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{5}{*}{4-bit adder truth table} & \(C_{0}\) & \(X_{3}\) & \(X_{2}\) & \(X_{1}\) & \(X_{0}\) & y/ & \(y_{2}\) & \(y_{1}\) & yo & C4 & \(Z_{3}\) & \(Z_{2}\) & Z1 & \multicolumn{2}{|c|}{Z0} \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & & \multirow[t]{2}{*}{} \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & & \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & & \(\longleftrightarrow 2^{8+1}=512\) rows! \\
\hline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & \\
\hline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline
\end{tabular}
Q. Why is this a bad idea?
A. 128-bit adder: \(2^{256+1}\) rows >> \# electrons in universe!

\section*{Let's make an adder circuit}

Goal: \(x+y=z\) for 4-bit integers.
Do one bit at a time.
- Build truth table for carry bit.
- Build truth table for sum bit.

A surprise!
- Carry bit is MAJ.
\begin{tabular}{ccccc}
\(c_{4}\) & \(c_{3}\) & \(c_{2}\) & \(c_{1}\) & \(c_{0}\) \\
& \(x_{3}\) & \(x_{2}\) & \(x_{1}\) & \(x_{0}\) \\
+ & \(y_{3}\) & \(y_{2}\) & \(y_{1}\) & \(y_{0}\) \\
\hline & \(z_{3}\) & \(z_{2}\) & \(z_{1}\) & \(z_{0}\)
\end{tabular}
- Sum bit is ODD.
sum bit \begin{tabular}{cccc|cc}
\(x_{i}\) & \(y_{i}\) & \(c_{i}\) & \(z_{i}\) & \(O D D\) \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1
\end{tabular}

Let's make an adder circuit

Goal: \(x+y=z\) for 4 -bit integers.
Do one bit at a time.
- Use MAJ and ODD circuits.
- Chain together 1 -bit adders to "ripple" carries.
\begin{tabular}{c|c|c|c|c}
\(c_{4}\) & \(c_{3}\) & \(c_{2}\) & \(c_{1}\) & \(c_{0}\) \\
\hline & \(x_{3}\) & \(x_{2}\) & \(x_{1}\) & \(x_{0}\) \\
+ & \(y_{3}\) & \(y_{2}\) & \(y_{1}\) & \(y_{0}\) \\
\hline & \(z_{3}\) & \(z_{2}\) & \(z_{1}\) & \(z_{0}\) \\
\hline
\end{tabular}


\section*{Adder interface}

A bus is a group of wires that connect components (carrying data values).


\section*{Adder component-level view}


\section*{Adder switch-level view}


\section*{Arithmetic and logic unit (ALU)}

ALU: A large combinatorial circuit-the calculator at the heart of your computer
- Add \(x+y\).
- Subtract (by first negating \(y\) ).
- Bitwise AND (trivial).
- Bitwise XOR (TEQ).
- Shift left and right (details omitted).

Key component: A decoder!
- All circuits compute a result.
- Decoder uses opcode to select exactly one of the results for the output bus (many details omitted).

Example: tinyTOY ALU (see next lecture)


Lessons for software design apply to hardware!
- Interface describes behavior of circuit.
- Implementation gives details of how to build it.
- Boolean logic gives understanding of behavior.

Layers of abstraction apply with a vengeance!
- On/off.
- Controlled switch. [relay, pass transistor]
- Gates. [NOT, NOR, OR, AND]
- Boolean functions. [MAJ, ODD]
- Adder.
- ...
- ALU.
- ...
- TOY machine (stay tuned).
- Your computer.


\section*{Programming}
in Java



\section*{20. Combinational Circuits}
- Building blocks
- Boolean algebra
- Digital circuits
- Adder
http://introcs.cs.princeton.edu


COMPUTER SCIENCE
S E D G E W I C K / W A Y N E

in Java


Section 6.1
http://introcs.cs.princeton.edu```

