COMPUTER SCIENCE
SEDGEWICK/WAYNE

INTRODUCTION TO

Programming
in Java

20. Combinational Circuits

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Section 6.1

http://introcs.cs.princeton.edu

Combinational circuits

Q. What is a combinational circuit?

A. A digital circuit (all signals are 0 or 1) with no feedback (no loops).

analog circuit: signals vary continuously sequential circuit: loops allowed (stay tuned)

Q. Why combinational circuits?

A. Accurate, reliable, general purpose, fast, cheap.

Basic abstractions
e On and off.
e Wire: propagates on/off value.
* Switch: controls propagation of on/off values through wires.

_\’//

Applications. Smartphone, tablet, game controller, antilock brakes, microprocessor, ...

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
* Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

Wires

Wires propagate on/off values
* ON (1): connected to power.
e OFF (0): not connected to power.
e Any wire connected to a wire that is ON is also ON.
* Drawing convention: "flow" from top, left to bottom, right.

thick wires are ON

o- 1

power /

connection

thin wires are OFF

Controlled Switch

Switches control propagation of on/off values through wires.
e Simplest case involves two connections: control (input) and output.
e control OFF: output ON
e control ON: output OFF

control input OFF control input ON

| !
%4— output ON

output OFF

Controlled Switch

Switches control propagation of on/off values through wires.
e General case involves three connections: control input, data input and output.
e control OFF: output is connected to input
e control ON: output is disconnected from input

control input OFF control input ON

data input OFF > @ < output OFF data input OFF > v < output OFF
control input OFF control input ON

data input ON %% <«<—— output ON data input ON ﬁ@ < output OFF

Idealized model of pass transistors found in real integrated circuits.

Controlled switch: example implementation

A relay is a physical device that controls a switch with a magnet
e 3 connections: input, output, control.
* Magnetic force pulls on a contact that cuts electrical flow.

schematic

control off
magnet
(off)
connection
<«—spring
0 0

o—l—o 1—'—1

control on
magnet on
pulls
connection contact up
broken
1 1

o—f—0 r1emd—o

First level of abstraction

Switches and wires model provides separation
between physical world and logical world.

* We assume that switches operate as specified.

e That is the only assumption.

* Physical realization of switch is irrelevant to design.

Physical realization dictates performance
e Size.
e Speed.
e Power.

New technology immediately gives new computer.

Better switch? Better computer.

all built with
Basis of Moore's law. "switches afERC]

Switches and wires: a first level of abstraction

technology switch
technology “information” switch

relay

pneumatic air pressure
vacuum tube

fluid water transistor

pressure
“pass transistor” in I
integrated circuit
rela electric
Y potential _
atom-thick
transistor

Amusing attempts that do not
scale but prove the point Real-world examples that prove the point

Switches and wires: a first level of abstraction

VLSI = Very Large Scale Integration

Technology
Deposit materials on substrate.

Key properties
Lines are wires.

Certain crossing lines are controlled switches.

Key challenge in physical world
Fabricating physical circuits with
billions of wires and controlled switches

Key challenge in “abstract” world
Understanding behavior of circuits with
billions of wires and controlled switches

Bottom line. Circuit = Drawing (!)

Circuit anatomy

connected
wires
crossing
wires
‘ |
switch

Need more levels of abstraction
to understand circuit behavior

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
* Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
* Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

Boolean algebra

Developed by George Boole in 1840s to study logic problems
* Variables represent true or false (1 or O for short).
e Basic operations are AND, OR, and NOT (see table below).
Widely used in mathematics, logic and computer science.

circuit design

operation Java notation logic notation (this lecture)

AND X && y XAy Xy

various notations
OR X ||y xXVy X+y E in common use
NOT I'x - X X'

DeMorgan's Laws

(xy)' = (x"+ y)

Example: (stay tuned for proof) , L
(X + y)' =x'y

Relevance to circuits. Basis for next level of abstraction.

George Boole
1815-1864

&%oo\/e ORDERS LUNCH l

W No, No, YES,
\Eﬁciﬂo, NO,YES...

VY

Copyright 2004, Sidney Harris
http://www.sciencecartoonsplus.com

Truth tables

A truth table is a systematic way to define a Boolean function
* One row for each possible set of argument values.
* Each row gives the function value for the specified argument values.
e Ninputs: 2N rows needed.

X X X y Xy X y XxX+vy X y NOR X
o | 1 o 0] o o o] o o 0|1 0
1|o o 11]o0 o 1|1 o 1| o0 0
NOT 1 0o 1 0|1 1 0| o0 1
1 1|1 1 1|1 1 1] o0 1

AND OR NOR

XOR
0
1 1
0 1
1 0
XOR

Truth table proofs

Truth tables are convenient for establishing identities in Boolean logic
* One row for each possibility.
 |dentity established if columns match.

Proofs of DeMorgan's laws

R RBr O O X

y
0
1
0
1

xy (xy)'

0

0
0
1

1
1
1
0
N

X
0
0
1
1

(xy)'

y
0
1
0
1

© O R B X

© Rr O KR X

© r R R~ +

= (x' + y')/

R R O O X

All Boolean functions of two variables

Q. How many Boolean functions of two variables?

A. 16 (all possibilities for the 4 bits in the truth table column).

Truth tables for all Boolean functions of 2 variables

X y ZERO AND X y XOR OR NOR EQ -y —x NAND ONE
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
o 1 o o0 o0 o0 1 1 1 1 o0 o o0 o0 1 1 1 1
1 o o o0 1 1 o OO 1 1 o0 o0 1 1 o0 o0 1 1
1 1 o 1 o 1 o 1 o0 1 o0 1 o0 1 o0 1 0 1

Functions of three and more variables

Q. How many Boolean functions of three variables?

A. 256 (all possibilities for the 8 bits in the truth table column).

all extend to N variables

x 'y z AND OR NOR MAJ ODD Examples
0 0 0 0 0 1 0 0 AND logical AND 0 iff any inputs is 0 (1 iff all inputs 1)
OR logical OR 1 iff any input is 1 (0 iff all inputs 0)
0 0 1 0 1 0 0 1 NOR logical NOR 0 iff any input is 1 (1 iff all inputs 0)
0 1 0 0 1 0 0 1 MAJ majority 1 iff more inputs are 1 than O
OoDD odd parity 1 iff an odd number of inputs are 1
0 1 1 0 1 0 1 0
1 0 ofof1]0]O0]|1 Q. How many Boolean functions of N variables?
1 0 1 0 1 0 1 0 N number of Boolean functions with N variables
4 =
1 1 olofl1flol1]o 2 2¢=16
3 28 =256
A. 22"
1 1 1 1 1 0 1 1 . 4 216 =65,536
]] 5 232 =4,294,967,296
Some Boolean functions of 3 variables 6 264 = 18,446,744,073,709,551,616

Universality of AND, OR and NOT

Every Boolean function can be represented as a sum of products
e Form an AND term for each 1 in Boolean function.

e OR all the terms together.

x

R, ~ B R O O O O

y z
0 0 0
0 1 0
1 0 0
1 1 1
0 0 0
0 1 1
1 0 1
1 1 1

Expressing MA]J as a sum of products

0

o O o o »r»r o o

0

o B O O O o

0

MAJ x'yvz xy'z xyz'

0

R O O O O O

0

Xyz

R O O O O O o o

R, B O BB O O O

X'yz + xy'z+ xyz'+ xyz = MAJ

Def. A set of operations is universal if
every Boolean function can be expressed
using just those operations.

Fact. { AND, OR, NOT }is universal.

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
* Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
e Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

A basis for digital devices

Claude Shannon connected circuit design with boolean algebra in 1937.

“Possibly the most important, and also the most
famous, master's thesis of the [20th] century.”

— Howard Gardner

Key idea. Can use boolean algebra to
systematically analyze circuit behavior.

A Symbolic Analysis of Relay and
Switching Circuits

By CLAUDE E. SHANNON

NROLLED STUDENT AJEE

L. Introduction

N THE CONTROL and protective
circuits of complex electrical systems

it is frequently necessary to make in-
tricate interconnections of relay contacts
and switches. Examples of these cir-
cuits occur in automatic telephone ex-
changes, industrial motor-control equip-
ment, and in almost any circuits designed
to perform complex operations auto-
matically. In this paper a mathematical
analysis of certain of the propertics of
such networks will be made. Particular
attention will be given to the problem of
network synthesis. Given certain char-
acteristics, it is rcqu:rcd o find a circuit

bolic study of logic. For the synthesis
problem the desired characteristics are
first written as a system of equations, and
the equations are then manipulated into
the form representing the simplest. cir-
cuit. The circuit may then be immedi-
ately drawn from the equations. By
this method it is always possible to find
the simplest circuit containing only
series and paralle] connections, and in
some cases the simplest circuit containing
any type of connection.

Our notation is taken chiefly from
symbolic logic. Of the many systems in
common use we have chosen the one
which seems simplest and most suggestive
for our interpretation. Some of our

The
solution of this type of problem is not
unique and methods of finding those par-
ticular circuits requiring the least num-
ber of relay contacts and switch blades
will be studied. Methods will also be
described for finding any number of cir-
cuits equivalent to a given circuit in all
operating characteristics. It will be
shown that several of the well-known
theorems on impedance networks have
roughly analogous theorems in relay
circuits. Notable among these are the
delta-wye and star-mesh transformations,
and the duality theorem.

The method of attack on these prob-
lems may be described briefly as follows:
any circuit is represented by a set of
equations, the terms of the equations
corresponding to the various relays and
switches in the circuit. A caloulus is
developed for manipulating these equa-
tions by simple mathematical processes,
most of which are similar to ordinary
algebraic algorisms. This caleulus is
shown to be exactly analogous to the
calculus of propositions used in the sym-

Paper aumber 3880, recommended by the ATEE
committees on communication and basi
4o presated ot the AISE summce couveation,
DC. June20-20, 1058, Manuscript
mbnlurd \um. 3, 1038; made available for
Moy o7 fogs

Cuvor B, Suauon is o reeareh wsstant i the

or 5. u c.umu .u of
N o it entonsagemen

1938, Vor. 57

as node, mesh, delta, wye,
ete, s borrowed from ordinary network

elosed cireuit, and the symbol 1 (unity) to
represent the hindrance of an open cir-
cuit. Thus when the circuit a-b is open
X, = 1 and when closed X, X
Two hindrances X,, and X, will be
said to be equal if whenever the circuit
a-b is open, the cireuit c-d is open, and
whenever ab is closed, cd is closed.
Now let the symbol + (plus) be defined
to mean the series connection of the two-
terminal circuits whose hindrances are
added together. Thus Xup + Xoz is the
hindrance of the circuit a-d when b and ¢
are connected together. Similarly the
product of two hindrances XX or
more briefly XpXe will be defined to
mean the hindrance of the circuit formed
by connecting the circuits a-b and ¢4 in
parallel. A relay contact or switch will
be represented in a circuit by the symbol
in figure 1, the letter being the cor-
responding hindrance function. Figure
2 shows the interpretation of the plus
sign and figure 3 the multiplication sign.
‘This choice of symbols makes the ma-
nipulation of hindrances very similar to
ordinary numerical algebra.

Itis evident that with the above defi-
nitions the following postulates will hold:

Postulates
L a 00 A closed circuit in parallel with a closed circuit is a closed
cireuit,
b l41m1 An open circuit in series with an open circuit is an open
circuit.

2 6. 14+0=0+1=1 An open circuit in serics with a closed circuit in either
order (i.c., whether the open circuit is to the right or left
of the closed circuit) is an open circuit.

b 01m10=0 A closed circuit in parallel with an open circuit in cither
order is a closed circuit.
3. 6. 040=0 A closed circuit in series with a closed circuit is a closed

circuit.
b1

circuit,

An open circuit in parallel with an open circuit is an open

4. At any given time cither X = 0 or X = 1.

theory for similar concepts in switching
circuits.

I Series-Parallel
Two-Terminal Circuits

FUNDAMENTAL DEFINITIONS
AND POSTULATES

We shall limit our treatment to cir-
cuits containing only relay contacts and
switches, and therefore at any given time
the cireuit between any two terminals
must be either open (infinite impedance)
or closed (zero impedance). Let us as-
sociate a symbol X, or more simply X,
with the terminals @ and b. This vari-
able, a function of time, will be called
the hindrance of the two-terminal cir-
cuit a-b. The symbol 0 (zero) will be
used to represent the hindrance of a

Shannon—Relay Circuits

These are sufficient to develop all the
theorems which will be used in connection
with circuits containing only series and
parallel connections. The postulates are
arranged in pairs to emphasize a duality
relationship between the operations of
addition and multiplication and the
quantities zero and one. Thus, if in
any of the a postulates the zero's are re-
placed by one’s and the multiplications
by additions and vice versa, the cor-
responding b postulate will result. This
fact is of great importance. It gives
cach theorem a dual theorem, it being
necessary to prove only one to establish
both. The only one of these postulates
which differs from ordinary algebra is 1b
However, this enables great simplifica-
tions in the manipulation of these
symbols.

713

Claude Shannon

1916-2001

22

A second level of abstraction: logic gates

boolgan notation truth table classic
function symbol
' X X'
NOT X 0 | 1 X — o— x'
1|0
X y NOR
0 0] 1
NOR (X + y)' 0 1| 0 X= o X+y
1 0|0 Y
1 1|0
x y OR
0 0]oO
OR X+ Yy 0 1]1 X7 xay
1 0|1 Y=
1 1|1
X y AND
0 0]oO .
AND Xy 0 1| o0 P
1 0|0
1 1|1

our symbol

X — - —X'

under the cover
circuit (gate)

Cally

—_—X+Yy

proof

1 iff x is O

1 iff x and y
are both 0

- .

NOR
x+y = (x + y))

_J-
—_I-

NOR
Xy — (XI + yl)l

23

Gates with arbitrarily many inputs

Multiway gates.
e OR: 1 ifany inputis 1; 0 if all inputs are 0.
* NOR: O if any inputis 1; 1 if all inputs are O.
e Generalized: Negate some inputs.

classic symbol our symbol under the cover
] uvwxyz Uvwxxyz UVWwWXyz
multiway O I I I B 111

X
111 e UV WA XY+ Z 0 if all inputs are 0;
OR gate OR 1 if any input is 1
|

U+ V+W+X+y+2z

LS & UVwXxyz UVWwWXXyz

[S ’||||i/| oy 1 if all inputs are 0;
0 if any input is 1

multiway
NOR gate NOR

T

(U+v+w+x+y+2z)' = u'v'w'x'y'z'

uvwx z
uvwxyz M =
LA |55] |5
generalized b : I 1 F_ u'vwx'y'z I iff u, x, and y are 0
? NOR and v, w, and z are 1

(u+v'+w'tx+y+z")' = u'vwx'y'z 24

Generalized NOR gate application: Decoder

A decoder uses a binary address to switch on a
single output line
e n address inputs, 27 outputs.
e Uses all 27 different generalized NOR gates.
e Addressed output line is 1; all others are O.

ao ai az as a4 as de az

xy'z" x'y'z x'yz' Xx'yz xy'z xXy'z xyz Xyz

X+y+2)" (x+y+2)" (x+y+2)' (x+y+z)' (xHy+2)' (x+y+2)' (x+y+2) ' (x+y+z)!

1

PRk RPrRPRPREPROOOO
PR RPOORR OO
PO pRrORr ORr o

Next. Circuits for any boolean function.

Xy z
\ Y/

DECODE
=1 |

NOR — do
=1

NOR — ai
T

NOR — 92
TI

NOR — @2
] |

N(IJR — 4
=] |

NOR — 3s
=)

NOR — 4
—1 1

NOR — 97

3-bit decoder

Xy z
\ Y/

DECODE

do

™

a

az

™

™
T™

as

o a

A

de

Feel

under the covers

25

Creating a digital circuit that computes a boolean function: majority

Use the truth table
* Identify rows where the function is 1.
* Use a generalized NOR gate for each.
* OR the results together.

Example 1: Majority function |

xyz Xyz MAJ
X y z MAJ : I—I_l(MAJ
0 0 0 0 generalized NORs INaR_' [| I I?(
o 0 1o rlmenaem 5
0 1 oo | Wor — gLg
0 1 1 @ ..I_?Sﬁ INSR" Xyz=x+y'+2z") = oR
10 010 NOR — .}{}(
1 0 1 M _'N’(I)R_' xy'z=x'+y+2z")' I
1 1 0 L8 ok vz =y N | ..F_[L_[S_-
1 1 1 LEE S 0z= Xy 2! | i

MAJ MA)J
majority circuit under the covers

MAJ = x'yz + xy'z + xyz'+ xyz

Creating a digital circuit that computes a boolean function: odd parity

Use the truth table

* Identify rows where the function is 1.
* Use a generalized NOR gate for each.
* OR the results together.

Example 2: Odd parity function

X y z ODD
0 0 0 0
0 0 1

0 1 O%
0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

s

O

D

ODD =x'y'z+ x'yz'+ xy'z'+ xyz

| 1=
NOR

sl

NOR

- | |
NOR

b B B |

NOR

Xyz=x+y+2z")'

Xyz'=x'+y'+ 2’

xy'z'=x'"+y+ 2’

xyz=x'+y'+ 2"’

Xyz
||_‘
NOR —
|
1=
NOR —
OR
NOR —
|
NOR —
I
ODD

odd parity circuit

Xyz

I— oop

T

™

e

Kk |

X

OoDD
under the covers

ODD

27

Combinational circuit design: Summary

Problem: Design a circuit that computes a given boolean function.

Ingredients
* OR gates.
e NOT gates.
* NOR gates.
e Wire.

Method
e Step 1: Represent input and output with Boolean variables.
e Step 2: Construct truth table to define the function.
e Step 3: Identify rows where the function is 1.
» Step 4: Use a generalized NOR for each and OR the results.

Bottom line (profound idea): Yields a circuit for ANY function.
Caveat (stay tuned): Circuit might be huge.

P PR PR PR O O O O X%

Xyz

R R O O R KRB O O X<

P O R O Rr O F O N

O00- 0 = -

MAJ

MAJ

MAJ

P P PR PR O O O O X%

Xyz

P PR O O R KRB O O X<
P O Rr O Rr O K O N

O--0-00- §

PR

OoDD

28

TEQ on combinational circuit design

Q. Design a circuit to implement XOR(x, y).

<«—not really a TEQ because we usually frame these as multiple choice

29

TEQ on combinational circuit design

Q. Design a circuit to implement XOR(x, y).

A. Use the truth table
* |Identify rows where the function is 1.
* Use a generalized NOR gate for each.
* OR the results together.

XOR function
XOR
0
| B

@ -I—lsf NOR @ XV =(+Y')
® #

=

NOR ™ Xxy'=X'+y)

R R O O X
R O R O X<

0

XOR = X'y + xy'

circuit
(gates)

circuit
Xy
1
X
S
XOR

<«—not really a TEQ because we usually frame these as multiple choice

interface

xy

XOR

XOR

30

Encapsulation

Encapsulation in hardware design mirrors familiar principles in software design
* Building a circuit from wires and switches is the implementation.
* Define a circuit by its inputs and outputs is the API.
e We control complexity by encapsulating circuits as we do with ADTs.

inputs

\/ -

Xyz
-_ ODD .
XOR
MAJ

e

output

31

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
e Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
* Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

Let's make an adder circuit

Goal. x + y =
e 4-bit adder:

9 inputs, 5 outputs.
e Each output is a boolean function of the inputs.

X3 V3 X2

carry out—»

NS N N\ \/

V2

X1

)4

Xo

z for 4-bit binary integers. «—

same ideas scale to 64-bit
adder in your computer

« carryin

<« carry in

1 0O O 1
2 4 7
+ 9 5 1
1 1 9 9
1 1 0
0O O 1
+ 0 1 1 1
1 0O O 1
carry out—» C4 G (6) a Co
X3 X2 X1 Xo
+ V3 V2 Vi Y0
zZ3 22 Z1 2o

34

Let's make an adder circuit

Goal: x + y = z for 4-bit integers.

Strawman solution: Build truth tables for each output bit.

4-bit adder
truth table

X3 X2 X1 Xo V3 V2 14 Yo

Q. Why is this a bad idea?

A. 128-bit adder:

2256+1 rows >> # electrons in universe!

Cs

G

Ci

Co

28+1 =512 rows!

X3 X2 X1 Xo
+ V3 V2)4 Yo
Z3 22 Z1 Z0
Z1 Z0
0
1
] 0
1 1
1 0

35

Let's make an adder circuit

Goal: x+ y = z for 4-bit integers.

Do one bit at a time.

e Build truth table for carry bit.

e Build truth table for sum bit.

Xi Yi Ci Ci+1 MAJ
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
carry bit 0 1 1 1 1
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

A surprise!

e Carry bit is MAJ.
e Sum bit is ODD.

sum bit

x

P P Bk PR O O O O

=

R B O O KB KB O O

o

R © B O B O B»B O

N

b © O B O BB BrBrBr O

Cs

G

(0

Ci

Co

X3 X2 X1 X0

LA Z S 72 AN
Z3 V4 Z1 20

ODD

0

1

1

0

1

0

0

1

36

Let's make an adder circuit

Goal: x+ y = z for 4-bit integers.

Do one bit at a time.
e Use MAJ and ODD circuits.
e Chain together 1-bit adders to
"ripple" carries.

C4 a () Ci Co

X3 X2 X1 X0

Z3 V4, Z1 20

X3

N\

C4—>

37

Adder interface

X0
A bus is a group of wires X _—
X3 inpu
that connect components Yo busses
. Y
(carrying data values). é [
«—carry in
Ca (6! (6) (@ Co
X3 X2 X Xo
+ y3 yz y] yo carry out—»
Z3 22 i 20
20 1 output
% “— bus

Adder component-level view

(o 2 Ci Co
X3 X2 X1 Xo
+ V3 V2 Vi Yo
zZ3 Z2 Z 20

input
busses

carry out—»

<«—carry in

ADD

output

bus

39

Adder switch-level view

X0
X1
X2 .
X3 input
Yo busses
yi
)%)
y3 .
<«—carry in
MA MA MA
| k% J B33 J] kX J |NMAJ
iR £ !‘ £ !‘ (e |+ ADD
}c!e }c X }c X xR
C4 C3 () Ci Co L
1335 Yok RRR £
X3 X2 X1 X0 " " T J "
+ y3 2 % Yo carry out—»
!‘ODD ODD ! ODD ! ODD
Z3 22 Z1 20 I t I £ l t I t
1] 1 B
k k k k
xXX xXX xXX ;';'L_ |
’ % ’ % ’ % %
20
Z1 output
z2 ‘ bus

Z3 40

Arithmetic and logic unit (ALU)

Example: tinyTOY ALU (see next lecture)

ALU: A large combinatorial circuit—the I e R _
calculator at the heart of your computer TG s
e Add x+y. negate
e Subtract (by first negating y).
e Bitwise AND (trivial). ADD
e Bitwise XOR (TEQ).
e Shift left and right (details omitted).
. AND
XOR
Key component: A decoder!
e All circuits compute a result.
e Decoder uses opcode to select SHIFT
exactly one of the results for the

output bus (many details omitted).

output bus

41

Summary

Lessons for software design apply to hardware!

e Interface describes behavior of circuit.

* Implementation gives details of how to build it.
* Boolean logic gives understanding of behavior.

Layers of abstraction apply with a vengeance!
e On/off.
e Controlled switch. [relay, pass transistor]
e Gates. [NOT, NOR, OR, AND]
* Boolean functions. [MAJ, ODD]
e Adder.

e ALU.

 TOY machine (stay tuned).
* Your computer.

AND

ODD

> A ._ﬁL

Xxyz
|—!I MAJ

! ¢ X

¥ & .

L I |

}‘!‘ MAJ w | wa mAJ

ik ADD

o ®

MA)J

ODD

ODD OoDD

OoDD

42

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 20 Combinational Circuits

* Building blocks
* Boolean algebra
* Digital circuits

e Adder

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

INTRODUCTION TO

Programming
in Java

20. Combinational Circuits

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Section 6.1

http://introcs.cs.princeton.edu

