

Intractability

Fundamental questions

- \bullet What is a general-purpose computer? \checkmark
- Are there limits on the power of digital computers? \checkmark
- Are there limits on the power of machines we can build? I focus of today's lecture

John Nash Michael Rabin Dana Scott

Asked the question Asked the question in a "lost letter" to von Neumann the NSA

Introduced the critical concept of nondeterminism

Asked THE question Answer still unknown

• Reasonable questions

- Poly-time reductions from SAT

COMPUTER SCIENCE

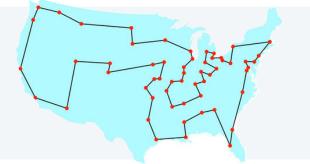
SEDGEWICK/WAYNE

- NP-completeness
- Living with intractability

A difficult problem

Traveling salesperson problem (TSP)

- Given: A set of N cities, distances between each pair of cities, and a distance M.
- Problem: Is there a tour through all the cities of length less than or equal to M?



Exhaustive search. Try all N! orderings of the cities to look for a tour of length less than M.

How difficult can it be?

Excerpts from a recent blog...

If one took the 100 largest cities in the US and wanted to travel them all, what is the distance of the shortest route? I'm sure there's a simple answer. Anyone wanna help? A quick google revealed nothing.

I don't think there's any substitute for doing it manually. Google the cities, then pull out your map and get to work. It shouldn't take longer than an hour. Edit: I didn't realize this was a standardized problem.

Writing a program to solve the problem would take 5 or 10 minutes for an average programmer. However, the amount of time the program would need to run is, well, a LONG LONG LONG time.

My Garmin could probably solve this for you. Edit: probably not.

Someone needs to write a distributed computing program to solve this IMO.

How difficult can it be?

Imagine an UBERcomputer (a giant computing device)...

- With as many processors as electrons in the universe...
- Each processor having the power of today's supercomputers...
- Each processor working for the lifetime of the universe..

quantity	value (conservative estimate)
electrons in universe	1079
supercomputer instructions per second	1013
age of universe in seconds	1017

Q. Could the UBERcomputer solve the TSP for 100 cities with the brute force algorithm?

A. Not even close. $100! > 10^{157} >> 10^{79}10^{13}10^{17} = 10^{109}$ \longleftarrow Would need 10⁴⁸ UBERcomputers

Lesson. Exponential growth dwarfs technological change.

Reasonable questions about algorithms

Q. Which algorithms are useful in practice?

Model of computation

- Running time: Number of steps as a function of input length N.
- Poly-time: Running time less than aN^b for some constants a and b.
- Definitely not poly-time: Running time $\sim c^N$ for any constant c > 1.
- Specific computer generally not relevant (simulation uses only a polynomial factor).

"Extended Church-Turing thesis"

Def (in the context of this lecture). An algorithm is efficient if it is poly-time for all inputs.

outside this lecture: "guaranteed polynomial time"

Q. Can we find efficient algorithms for the practical problems that we face?

Reasonable questions about problems

- Q. Which problems can we solve in practice?
- A. Those for which we know efficient (guaranteed poly-time) algorithms.

Definition. A problem is intractable if no efficient algorithm exists to solve it.

- Q. Is there an easy way to tell whether a problem is intractable?
- A. Good question! Focus of today's lecture.

Existence of a faster algorithm like mergesort is not relevant to this discussion

Example 1: Sorting.Not intractable. (Insertion sort takes time proportional to N2.)Example 2: TSP.??? (No efficient algorithm known, but no proof that none exists.)

Four fundamental problems

	Example of an instance	A solution
LSOLVE • Solve simultaneous linear equations. • Variables are real numbers.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$x_0 =25$ $x_1 = .5$ $x_2 = .5$
LP • Solve simultaneous linear <i>inequalities</i> . • Variables are real numbers.	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ x_0 = 1 $ $ x_1 = 1 $ $ x_2 = 0.2 $
ILP • Solve simultaneous linear inequalities. • Variables are 0 or 1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ x_0 = 0 $ $ x_1 = 1 $ $ x_2 = 1 $
SAT • Solve simultaneous <i>boolean sums</i> . • Variables are <i>true</i> or <i>false</i>	$ \begin{array}{cccc} \neg x_1 & \lor & x_2 = & true \\ \neg x_0 & \lor \neg x_1 & \lor \neg x_2 = & true \\ & x_1 & \lor \neg x_2 = & true \end{array} $	$ x_0 = false x_1 = true x_2 = true $

Intractability

Definition. An algorithm is efficient if it is polynomial time for all inputs.

Definition. A problem is intractable if no efficient algorithm exists to solve it.

Definition. A problem is tractable if it solvable by an efficient algorithm.

Turing taught us something fundamental about computation by

- Identifying a problem that we might want to solve.
- Showing that it is not possible to solve it.

A reasonable question: Can we do something similar for intractability?

decidable : undecidable :: tractable : intractable

Q. We do not know efficient algorithms for a large class of important problems. Can prove one of them to be intractable?

COMPUTER SCIENCE S E D G E W I C K / W A Y N E

19. Intractability

- Reasonable questions
- P and NP
- Poly-time reductions from SAT
- NP-completeness
- Living with intractability

19. Intractability

- Reasonable questions
- P and NP
- Poly-time reductions from SAT

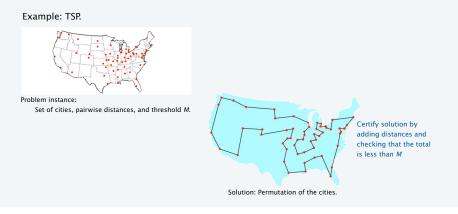
COMPUTER SCIENCE

SEDGEWICK/WAYNE

- NP-completeness
- Living with intractability

Search problems

Search problem. Any problem for which an efficient algorithm exists to certify solutions.



NP

Definition. NP is the class of all search problems.

problem	description	instance I	solution S	certification method
TSP(S,M)	Find a tour of cities in S of length < M		Film	Add up distances and check that the total is less than M
ILP (A, b)	Find a binary vector x that satisfies $Ax \le b$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ x_0 = 0 $ $ x_1 = 1 $ $ x_2 = 1 $	plug in values and check each equation
SAT (Φ, b)	Find a boolean vector x that satisfies $Ax = b$	$ \begin{array}{rcl} \neg x_1 \lor & x_2 = & true \\ \neg x_0 \lor \neg x_1 \lor \neg x_2 = & true \\ & x_1 \lor \neg x_2 = & true \end{array} $	$x_0 = false$ $x_1 = true$ $x_2 = true$	plug in values and check each equation
FACTOR (x)	Find a nontrivial factor of the integer <i>x</i>	147573952589676412927	193707721	long division

Significance. Problems that scientists, engineers, and applications programmers aspire to solve.

Brute force search

Brute-force search. Given a search problem, find a solution by checking all possibilities.

problem	description	number of possibilities
TSP (S, M)	Find a tour of cities in S of length < M	<i>N</i> ! (<i>N</i> is the number of cities)
ILP (A, b)	Find a binary vector x that satisfies $Ax \leq b$	2 ^N
SAT (Find a boolean vector x that satisfies $Ax = b$	2 ^N
FACTOR (x)	Find a nontrivial factor of the integer x	10^{N} (<i>N</i> is the number of digits in <i>x</i>)

Challenge. Brute-force search is easy to implement, but not efficient.

ition. P is the class o	f all tractable search problems. 🔹	solvable by an efficient (guaranteed poly-time) algorithm
problem	description	efficient algorithm
SORT (S)	Find a permutation that puts the items in S in order	Insertion sort, Mergesort
3-SUM (S)	Find a triple in S that sums to 0	Triple loop
LSOLVE (A, b)	Find a vector x that satisfies $Ax = b$	Gaussian elimination
LP (A, b)	Find a vector x that satisfies $Ax \leq b$	Ellipsoid
	problem SORT (S) 3-SUM (S) LSOLVE (A, b)	SORT (S) Find a permutation that puts the items in S in order 3-SUM (S) Find a triple in S that sums to 0 LSOLVE (A, b) Find a vector x that satisfies $Ax = b$

Significance. Problems that scientists, engineers and applications programmers *do* solve.

Note. All of these problems are also in NP.

Types of problems

Search problem. *Find* a solution. Decision problem. Does there *exist* a solution? Optimization problem. Find the *best* solution.

Some problems are more naturally formulated in one regime than another.

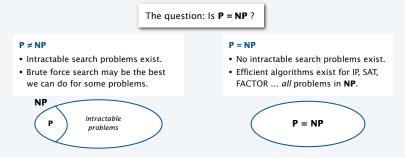
The regimes are not technically equivalent, but conclusions that we draw apply to all three.

Note. Classic definitions of **P** and **NP** are in terms of decision problems.

The central question

Ρ

- NP. Class of all search problems, some of which seem solvable only by brute force.
- P. Class of search problems solvable in poly-time.



Frustrating situation. Researchers believe that $P \neq NP$ but no one has been able to prove it (!!)

17

Nondeterminism: another way to view the situation

A nondeterministic machine can choose among multiple options at each step and can guess the option that leads to the solution.

Seems like a fantasy, but...

P ≠ NP

- Intractable search problems exist. • Nondeterministic machines would
- admit efficient algorithms.
- ←0:0 two choices

Example: Turing machine.

P = NP

- No intractable search problems exist. · Nondeterministic machines would be
- of no help!

Frustrating situation. No one has been able to prove that nondeterminism would help (!!)

Creativity: another way to view the situation

Creative genius versus ordinary appreciation of creativity.

Examples

21

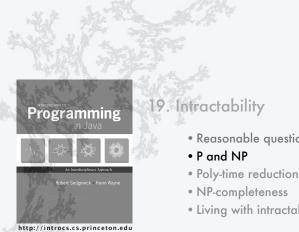
- Mozart composes a piece of music; the audience appreciates it.
- Wiles proves a deep theorem; a colleague checks it.
- Boeing designs an efficient airfoil; a simulator verifies it.
- · Einstein proposes a theory; an experimentalist validates it.

Ordinary appreciation

COMPUTER SCIENCE SEDGEWICK/WAYNE

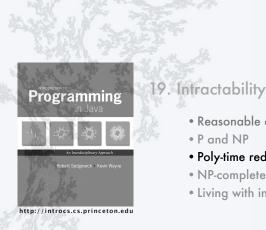
Computational analog. P vs NP.

Frustrating situation. No one has been able to prove that creating a solution to a problem is more difficult than checking that it is correct.



COMPUTER SCIENCE SEDGEWICK/WAYNE

- Reasonable questions
- Poly-time reductions from SAT
- Living with intractability



- Reasonable questions
- Poly-time reductions from SAT
- NP-completeness
- Living with intractability

Classifying problems

Q. Which problems are in **P**?

A. The ones that we're solving with provably efficient algorithms.

Can I solve it on my cellphone or do I need 1048 UBERcomputers??

25

Q. If $P \neq NP$ which problems are in NP but not in P (intractable)?

A. Difficult to know (no one has found even one such problem).

Possible starting point: Assume that SAT is intractable (and hence $P \neq NP$)

• Brute-force algorithm finds solution for any SAT instance.

No known efficient algorithm does so.

A reasonable assumption.

Next. Proving relationships among problems.

Q. If $P \neq NP$ and SAT is intractable, which other problems are intractable?

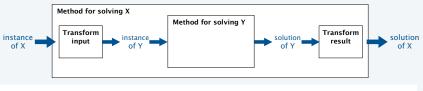
Poly-time reduction

Definition. Problem X poly-time reduces to problem Y if you can use an	X→Y
efficient solution to Y to develop an efficient solution to X .	X→ I

Typical reduction: Given an efficient solution to Y, solve X by

- Using an efficient method to transform the instance of X to an instance of Y.
- Calling the efficient method that solves Y.
- Using an efficient method to transform the solution of Y to an solution of X.

Similar to using a library method in modular programming.

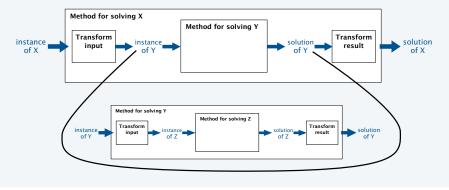


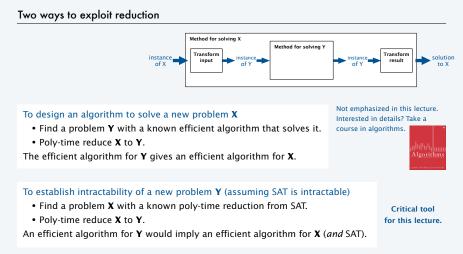
Note. Many ways to extend. (Example: Use a polynomial number of instances of Y.)

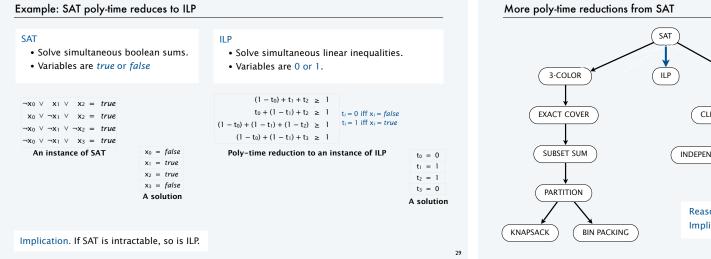
Key point: poly-time reduction is transitive

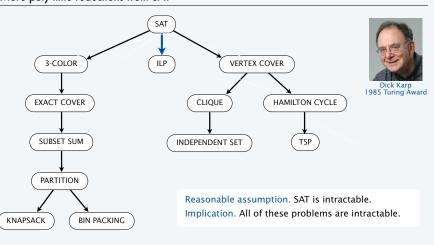
If X poly-time reduces to Y and Y poly-time reduces to Z, then X poly-time reduces to Z.

If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

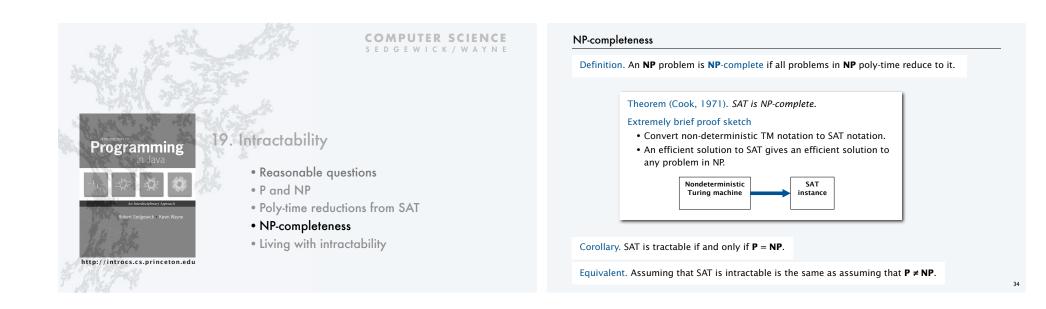


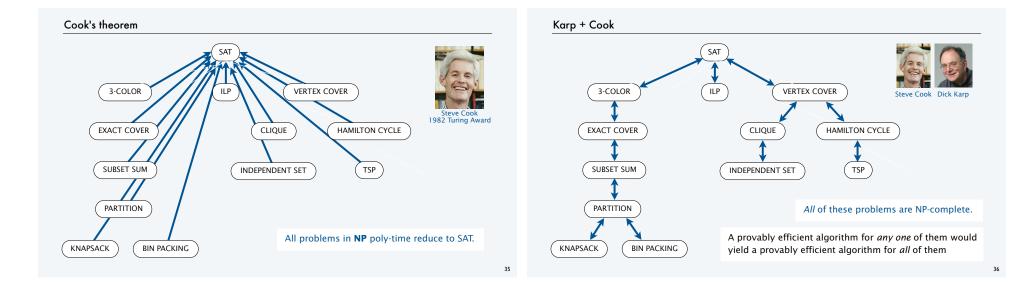












Two possible universes

P ≠ NP

- Intractable search problems exist.
- Nondeterminism would help.
- Computing an answer is more difficult than correctly guessing it.
- Can prove a problem to be intractable by poly-time reduction from an **NP**-complete problem.

 $\mathbf{P} = \mathbf{N}\mathbf{P}$

• No intractable search problems exist.

• Finding an answer is just as easy as

• Guaranteed poly-time algorithms exist for

• Nondeterminism is no help.

all problems in NP.

correctly guessing an answer.

Frustrating situation. No progress on resolving the question despite 40+ years of research.

Summary

37

39

- $\ensuremath{\,\text{NP}}$. Class of all search problems, some of which seem solvable only by brute force.
- P. Class of search problems solvable in poly-time.

NP-complete. "Hardest" problems in NP.

Intractable. Search problems not in P (if $P \neq NP$).

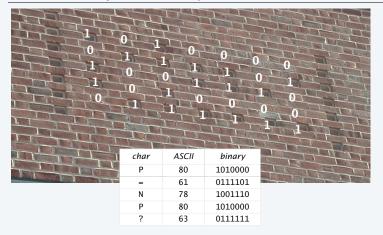
TSP, SAT, ILP, and thousands of other problems are NP-complete.

Use theory as a guide

- An efficient algorithm for an NP-complete problem would be a stunning scientific breakthrough (a proof that P = NP)
- You will confront NP-complete problems in your career.
- It is safe to assume that $P \neq NP$ and that such problems are intractable.
- Identify these situations and proceed accordingly.

Princeton CS building, west wall

Princeton CS building, west wall (closeup)



T H E O R

COMPUTER SCIENCE SEDGEWICK/WAYNE

19. Intractability

- Reasonable questions
- P and NP
- Poly-time reductions from SAT
- NP-completeness
- Living with intractability

COMPUTER SCIENCE SEDGEWICK/WAYNE

- Reasonable questions
- Poly-time reductions from SAT
- NP-completeness
- Living with intractability

Living with intractability

- When you encounter an NP-complete problem
- It is safe to assume that it is intractable.
- What to do?

Four successful approaches

- Don't try to solve intractable problems.
- Try to solve real-world problem instances.
- Look for approximate solutions (not discussed in this lecture).
- Exploit intractability.

Understanding intractability: An example from statistical physics

1926: Ising introduces a mathematical model for ferromagnetism.

1930s: Closed form solution is a holy grail of statistical mechanics.

1944: Onsager finds closed form solution to 2D version in tour de force.

1950s: Feynman and others seek closed form solution to 3D version.

2000: Istrail shows that 3D-ISING is NP-complete.

Bottom line. Search for a closed formula seems futile.

Living with intractability: look for solutions to real-world problem instances

Observations

- Worst-case inputs may not occur for practical problems.
- Instances that do occur in practice may be easier to solve.

Reasonable approach: relax the condition of *guaranteed* poly-time algorithms.

SAT

- Chaff solves real-world instances with 10,000+ variables.
- Princeton senior independent work (!) in 2000.

TSP

- Concorde routinely solves large real-world instances.
- 85,900-city instance solved in 2006.

ILP

- CPLEX routinely solves large real-world instances.
- Routinely used in scientific and commercial applications.

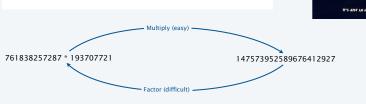
Exploiting intractability: RSA cryptosystem

Modern cryptography applications

- Electronic banking.
- Credit card transactions with online merchants.
- Secure communications.
- [very long list]

RSA cryptosystem exploits intractability

- To use: Multiply/divide two N-digit integers (easy).
- To break: Factor a 2*N*-digit integer (intractable?).



RSA cryptosystem exploits intractability To use: Multiply/divide two N-digit integers (easy). To break: Solve FACTOR for a 2N-digit integer (difficult). To break: Solve FACTOR for a 2N-digit integer (difficult). It is the solution of the solutio

Example: Factor this 212-digit integer

Exploiting intractability: RSA cryptosystem

74037563479561712828046796097429573142593188889231289 08493623263897276503402826627689199641962511784399589 43305021275853701189680982867331732731089309005525051 16877063299072396380786710086096962537934650563796359

TSP solution for 13,509 US cities

Q. Is FACTOR intractable?

- A. Unknown. It is in NP, but no reduction from SAT is known.
- Q. Is it safe to assume that FACTOR is intractable?
- A. Maybe, but not as safe an assumption as for an NP-complete problem.

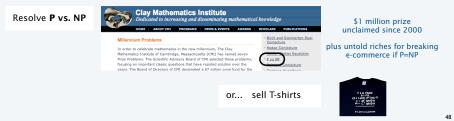
Factor this 74037563479561712828046796097429573142593188889231289 08493623263897276503402826627689199641962511784399589 212-digit integer 16877063299072396380786710086099692537934650563796359

Create an e-commerce company based on the difficulty of factoring

\$30.000 prize

claimed in July, 2012

The Security Division of EMC



A final thought

- Q. Is FACTOR intractable?
- A. Unknown. It is in NP, but no reduction from SAT is known.
- Q. Is it safe to assume that FACTOR is intractable?
- A. Maybe, but not as safe an assumption as for an NP-complete problem.
- Q. What else might go wrong?

Theorem (Shor, 1994). An N-bit integer can be factored in N^3 steps on a *quantum computer*.

Q. Do we still believe in the Extended Church-Turing thesis?

Running time on all computers within a polynomial factor of one another

49

COMPUTER SCIENCE SEDGEWICK/WAYNE

19. Intractability

- Reasonable questions
- P and NP
- Poly-time reductions from SAT
- NP-completeness
- Living with intractability

