
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

16. Programming
Languages

3

The Tower of Babel

A story about the origins of multiple languages

• [After the flood]

“The whole earth was of one language and one speech.”

• They built a city and tower at Babel, believing that with

a single language, people will be able to do anything

they imagine.

• Yahweh disagrees and

“confounds the language of all the earth”

• Why?

Proliferation of cultural differences (and multiple languages) is one basis of civilization. http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

5

Several ways to solve a transportation problem

6

Several ways to solve a programming problem

public class ThreeSum
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 int[] a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = StdIn.readInt();
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 StdOut.println(a[i] + " " + a[j] + " " + a[k]);
 }
}

Java

7

You can write Java code.

You can write a Java program.

ThreeSum.java

3-sum

• Read int values from StdIn.

• Print triples that sum to 0.

• [See Performance lecture]

% more 8ints.txt
30 -30 -20 -10 40 0 10 5
% javac ThreeSum.java
% java ThreeSum 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

#include <stdio.h>
#include <stdlib.h>
main(int argc, char *argv[])
{
 int N = atoi(argv[1]);
 int *a = malloc(N*sizeof(int));
 int i, j, k;
 for (i = 0; i < N; i++)
 scanf("%d", &a[i]);
 for (i = 0; i < N; i++)
 for (j = i+1; j < N; j++)
 for (k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 printf("%4d %4d %4d\n", a[i], a[j], a[k]);
}

C

8

You can also write C code.

You can write a Java program.

ThreeSum.c

Noticable differences

• library conventions

• array creation idiom

• standard input idiom

• pointer manipulation

(stay tuned)

% more 8ints.txt
30 -30 -20 -10 40 0 10 5

% cc ThreeSum.c
% ./a.out 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

A big difference between C and Java (there are many!)

9

C++ (Stroustrup 1989)

• Adds data abstraction to C.

• "C with classes".

• Embodies many OOP innovations.

NO DATA ABSTRACTION

• No objects in C.

• A C program is a sequence of static methods.

“ There are only two kinds of programming
languages: those people always [gripe]
about and those nobody uses.”

− Bjarne Stroustrup

#include <iostream.h>
#include <stdlib.h>
main(int argc, char *argv[])
{
 int N = atoi(argv[1]);
 int *a = new int[N];
 int i, j, k;
 for (i = 0; i < N; i++)
 cin >> a[i];
 for (i = 0; i < N; i++)
 for (j = i+1; j < N; j++)
 for (k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 cout << a[i] << " " << a[j] << " " << a[k] << endl;
}

C++

10

You can also write C++ code.

You can write a Java program.

ThreeSum.cxx

Noticable differences

• library conventions

• standard input idiom

• standard output idiom

• pointer manipulation

(stay tuned)

% cpp ThreeSum.cxx
% ./a.out 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

Example 1. Use C++ like C.

template <class Item, class Key>
class ST
{
 private:
 struct node
 { Item item; node *l, *r; int N;
 node(Item x)
 { item = x; l = 0; r = 0; N = 1; }
 };
 typedef node *link;
 link head;
 Item nullItem;

 Item searchR(link h, Key v)
 { if (h == 0) return nullItem;
 Key t = h->item.key();
 if (v == t) return h->item;
 if (v < t) return searchR(h->l, v);
 else return searchR(h->r, v);
 }
...
}

C++

11

You can also write C++ code.

You can write a Java program.

BST.cxx

Challenges

• libraries/idioms

• pointer manipulation

• templates (generics)

Example 2. Use C++ like Java to

implement the symbol table ADT.

1990

A big difference between C/C++ and Java (there are many!)

12

C/C++: YOU are responsible for memory allocation

• Programs manipulate pointers.

• System provides memory allocation library.

• Programs explicitly call methods that “allocate”

and “free” memory for objects.

• Pitfall: “memory leaks”.

double arr[] = calloc(5,sizeof(double));
...
free(arr);
arr = calloc(10, sizeof(double));

C code that reuses an array name

Java: Automatic "garbage collection"

• System keeps track of references.

• System manages memory use.

• System reclaims memory that is no longer

accessible from your program.

double[] arr = new double[5];
...
arr = new double[10];

Java code that reuses an array name

Fundamental challenge. C/C++ code that manipulates pointers is inherently unsafe.

% python
Python 2.7.1 (r271:86832, Jun 16 2011, 16:59:05)
Type "help" for more information.
>>> 2+2
4
>>> (1 + sqrt(5))/2
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'sqrt' is not defined
>>> import math
>>> (1 + math.sqrt(5))/2
1.618033988749895

Python

13

You can also use Python.

You can write a Java program.

Example 1. Use Python like a calculator.

import sys
def main():
 N = int(sys.argv[1])
 a = [0]*N
 for i in range(N):
 a[i] = int(sys.stdin.readline())
 for i in range(N):
 for j in range(i+1, N):
 for k in range(j+1, N):
 if (a[i] + a[j] + a[k]) == 0:
 print repr(a[i]).rjust(4),
 print repr(a[j]).rjust(4),
 print repr(a[k]).rjust(4)
main()

Python

14

You can also write Python code.

You can write a Java program.

threesum.py

Example 2. Use Python like Java.

% python threesum.py 8 < 8ints.txt
 30 -30 0
 30 -20 -10
-30 -10 40
-10 0 10

Noticable differences

• No braces (indents instead).

• No type declarations.

• Array creation idiom.

• I/O idioms.

• for (iterable) idiom.

range(8) is [0,1,2,3,4,5,6,7]

"printable representation"

Compilation vs. Interpretation

15

Definition. A compiler translates your entire program to (virtual) machine code.

Definition. An interpreter simulates the operation of a (virtual) machine running your code.

"java"

INTERPRETER

ThreeSum.class
"javac"

COMPILER JVM code

ThreeSum.java

Java source codeJava

threesum.c

Java source code COMPILER machine code

"cc"

C

a.out

threesum.py

Python source code INTERPRETER

"py"

Python

A big difference between Python and C/C++/Java (there are many!)

16

NO COMPILE-TIME TYPE CHECKING

• No need to declare types of variables.

• System checks for type errors at RUN time.

Implications

• Easier to write small programs.

• More difficult to debug large programs.

Typical (nightmare) scenario

• Scientist/programmer makes a small mistake in a big program.

• Program runs for hours or days.

• Program crashes without writing results.

Reasonable approaches

• Throw out your calculator; use Python.

• Prototype in Python, then convert to Java for "production" use.

Using Python for large problems is playing with fire.

...
for i = 0:N-1
 for j = i+1:N-1
 for k = j+1:N-1
 if (a(i) + a(j) + a(k)) == 0:
 sprintf("%4d %4d %4d\n", a(i), a(j), a(k));
 end
 end
 end
end
...

Matlab

17

You can write Matlab code.

You can write a Java program.

Example 1. Use Matlab like Java.

Example 2 (more typical). Use Matlab for matrix processing.

A = [1 3 5; 2 4 7]
B = [-5 8; 3 9; 4 0]
C = A*B
C =
 24 35
 30 52

-5 8

 3 9

 4 0

 24 35
 30 52* = 1 3 5

 2 4 7

Big differences between Matlab and C/C++/Java/Python (there are many!)

18

1. MATLAB IS NOT FREE.

2. Most Matlab programmers use only ONE data type (matrix).

Notes

• Matlab is written in Java.

• The Java compiler and interpreters are written in C.

[Modern C compilers are written in C.]

• Matrix libraries (written in C) are accessible from C/C++/Java/Python.

Reasonable approaches

• Use Matlab as a "matrix calculator" (if you own it).

• Convert to or use Java or Python if you want to do anything else.

Example. Matlab code "i = 0" means

 "redefine the value of the complex number i to be a 1-by-1 matrix whose entry is 0"

Matrix calculator

Android app

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

21

Why Java? [revisited from second lecture]

Java features

• Widely used.

• Widely available.

• Continuously under development since early 1990s.

• Embraces full set of modern abstractions.

• Variety of automatic checks for mistakes in programs.
James Gosling
http://java.net/jag

Java economy

• Mars rover.

• Cell phones.

• Blu-ray Disc.

• Web servers.

• Medical devices.

• Supercomputing.

•…

$100 billion,
5 million developers

Why do we use Java in this course?

22

language widely
used

widely
available

full set of
modern

abstractions

modern
libraries

and systems

automatic
checks

for bugs

✓ ✓ ✗ ✗ ✓

✓ ✓ ✓ maybe ✓

✓ ✓ ✓ ✓ ✓

✓ $ maybe* ✓ ✗

✓ ✓ maybe ✓ ✗

* OOP recently added but not embraced by most users

Why learn another programming language?

Good reasons to learn a programming language

• Offers something new.

• Need to interface with co-workers.

• Better than Java for the application at hand.

• Provides an intellectual challenge

• Opportunity to learn something about computation.

• Introduces a new programming style.

23

Something new: a few examples

1960s: Assembly language

• symbolic names

• relocatable code

1970s: C

• “high-level” language

• statements, conditionals, loops

• machine-independent code

• functions and libraries

1990s: C++/Java

• data abstraction (OOP)

• extensive libraries

2000s: AJAX/PHP/Ruby/Flash

• scripting

• libraries for web development

24

Programming styles

25

style execution model examples

procedural
step-by-step instruction execution

usually compiled

scripted
step-by-step command execution

usually interpreted

special-purpose optimized around certain data types

object-oriented focus on objects that do things

functional
focus on what to do

as opposed to how to do it
http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

Object-oriented programming

28

Procedural programming

• Tell the computer to do this.

• Tell the computer to do that.

Objected oriented programming (OOP)

• Programming paradigm based on data types.

• Identify things that are part of the problem domain or solution.

• Things in the world know something: instance variables.

• Things in the world do something: methods.

A different philosophy

• Software is a simulation of the real world.

• We know (approximately) how the real world works.

• Design software to (approximately) model the real world.

 VERB-oriented

 NOUN-oriented

Why OOP?

29

Essential features of OOP

• Encapsulation to hide information to make programs robust.

• Type checking to avoid and find errors in programs.

• Libraries to reuse code.

• Immutability to guarantee stability of program data.

Essential questions

• Is my program easy to write?

• Is it easy to find errors and maintain my program?

• Is it correct and efficient?

Warning: OOP involves deep,

difficult, and controversial issues.

Further study may be fruitful, but

is likely to raise more questions

than answers!

Does OOP make it easy to write and maintain correct and efficient programs?

• Difficult for you to know, because you haven't programmed in another style.

• Ongoing debate among experts intensifies as time goes on.

• Meanwhile, millions of people (including YOU) are reaping the benefits of OOP.

OOP pioneers

30

Kristen Nygaard and O.J. Dahl. (U. Oslo 1960s)

• Invented OOP for simulation.

• Developed Simula programming language.

• Studied formal reasoning about OO programs.

Alan Kay. (Xerox PARC 1970s)

• Developed Smalltalk programming language.

• Promoted OOP for widespread use.

• Computer science visionary.

Barbara Liskov. (MIT 1970s)

• Developed CLU programming language.

• Pioneered focus on data abstraction.

• Research provided basis for Java, C++, ...

Alan Kay
2003 Turing Award

Kristen Nygaard and O.J. Dahl
2001 Turing Award

Barbara Liskov
2008 Turing Award

Alan Kay: a computer science visionary

31

“ The best way to predict the future is to invent it." (1971)
“ The computer revolution hasn't happened yet." (1997)

− Alan Kay

Typical "mainframe" computer: IBM 360/50

1970s

First PC: Xerox Alto

1970s

Alan Kay's vision for the future

Dynabook prototype

Key feature: OOP software (Smalltalk)

1970s

Modern personal computer

MacBook Air

Key feature: OOP software (Objective C)

2010s

Still relevant today!
http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

Type checking

34

Static (compile-time) type checking (e.g. Java)

• All variables have declared types.

• System checks for type errors at compile time.

Dynamic (run-time) type checking (e.g. Python)

• Values, not variables, have defined types.

• System checks for type errors at run time.

A. Religious wars ongoing!

• Static typing worth the trouble?

• Compiled code more efficient?

• Type-checked code more reliable?

• Advanced features (e.g. generics)

too difficult to use with static typing?

Q. Which is best?

Example: Diametrically opposed points of view

35

“ Program testing can be a
very e"ective way to show
the presence of bugs, but it is
hopelessly inadequate for
showing their absence.”

— Edsgar Dijkstra (1969)

Issue. Type checking or automated program testing?

“ Since static type checking can't
cover all possibilities, you will
need automated testing. Once
you have automated testing,
static type checking is redundant.

 — Python blogger (2009)

A letter from Dave Walker

36

Dear random python blogger:

Why don't you think of static type checking as a complementary
form of completely automated testing to augment your other
testing techniques? I actually don't know of any other testing
infrastructure that is as automated, fast and responsive as a
type checker, but I'd be happy to learn.

By the way, type checking is a special kind of testing that
scales perfectly to software of arbitrary size because it checks
that the composition of 2 modules is ok based only on their
interfaces, without re-examining their implementations.
Conventional testing does not scale the same way. Also, did you
know that type checking is capable of guaranteeing the absence
of certain classes of bugs? That is particularly important if
you want your system to be secure. Python can't do that.

 dpw (in mail to rs)

Programming folklore: Hungarian type system

37

Early programming languages had little support for types.

An advantage: Can “type check” while reading code.

A disadvantage: shrt vwl-lss vrbl nms.

Hungarian type system (Charles Simonyi, 1970s)

• Encode type in first few characters of variable name.

• 8 character limit? Leave out the vowels, truncate.

Used in first version of Microsoft Word (and extensively before that time).

Lesson. Type-checking has always been important in large software systems.

Example. arru8Fbn

variable name
short for Fibonacci

array of 8-bit
integers (unsigned)

Charles Simonyi
Introduced OOP to Microsoft

Charles Simonyi: A legendary programmer

38

Owns 230’ luxury yacht Skat

Dated Martha Stewart (1993-2008)

Windows 2000 mansion in Seattle

Developed Bravo at

Xerox PARC (1970s)

Space tourist
(2007 and 2009)

Simonyi Hall at the Institute for Advanced Study

Oversaw development of

MS Word/Excel (1983)

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

Functional programming

41

Q. Why can’t we use functions as arguments in Java programs?

A. Good question. We can, but doing so requires interfaces and is cumbersome.

Functional programming is a function-oriented programming style.

• Functions are first-class entities

(can be arguments and return values of other functions or stored as data).

• On-demand execution model.

• "What" rather than "how".

Advantages of functional programming

• Often leads to more compact code than alternatives.

• More easily admits type system that can result in "provably correct" code.

• More easily supports concurrency (programming on multiple processors).

Disadvantage. Can be more difficult to focus on performance.

Functional programming example

42

A Python program that prints a tables of squares.

def sq(x):
 return x*x

def table(f, R):

 for x in R:
 print x,

 print f(x)

print table (sq, range(10))

a function that returns the
square of its argument

a function that takes a function and
a range as arguments and prints a

table of values of the function for

every value in the range

print a table of the
squares of the numbers

from 0 to 9

% python squares.py
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81

squares.py

Functions that operate on functions

43

Functions as first-class objects admit compact code for powerful operations.

def sq(x):
 return x*x

def odd(x):
 return 2*x + 1

print map (odd, range(10))
print map (sq, range(10))

a function that returns the
square of its argument

print the squares of the
numbers from 0 to 9

% python map.py
[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

map.py

Example 1. The MAP operation takes a function and a list as arguments.

 MAP(f, L) is the result of replacing every x in L by f(x).

Functions that operate on functions

44

Functions as first-class objects admit compact code for powerful operations.

def plus(x, y):
 return x + y

def odd(x):
 return 2*x + 1

print reduce(plus, map(odd, range(10)))

% python reduce.py
100

reduce.py

Example 2. The REDUCE operation takes a function and a list as arguments.

 REDUCE(f, L) is f(car(L), REDUCE(f, cdr(L))).

reduce(plus, [1, 3, 5, 7, 9, 11, 13, 15, 17, 19])
 = 1 + reduce(plus, [3, 5, 7, 9, 11, 13, 15, 17, 19])
 = 1 + 3 + reduce(plus, [5, 7, 9, 11, 13, 15, 17, 19])
 = 1 + 3 + 5 + reduce(plus, [7, 9, 11, 13, 15, 17, 19])
 = 1 + 3 + 5 + 7 + reduce(plus, [9, 11, 13, 15, 17, 19])
 = 1 + 3 + 5 + 7 + 9 + reduce(plus, [11, 13, 15, 17, 19])
 = 1 + 3 + 5 + 7 + 9 + 11 + reduce(plus, [13, 15, 17, 19])
 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + reduce(plus, [15, 17, 19])
 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + reduce(plus, [17, 19])
 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + reduce(plus, [19])
 = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19
= 100

first entry on L all but first entry on L

Why learn functional programming?

45

Intro CS at MIT is taught in
Scheme (a functional language)

Good reasons to learn a programming language

• Offers something new.

• Need to interface with co-workers.

• Better than Java for the application at hand.

• Provides an intellectual challenge

• Opportunity to learn something about computation.

• Introduces a new programming style.

Functional Programming Jobs ?!!

Modern applications

• Communications systems

• Financial systems

• Google MapReduce

Deep and direct connections to theoretical CS (stay tuned).

Warning. Functional programming may be addictive.

✓
✓
✓
✓
✓
✓

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

16. Programming Languages

•Popular languages
•Java in context
•Object-oriented programming
•Type checking
•Functional programming

The Tower of Babel

47

An apt metaphor.

• Would a single programming language enable us to do anything that we imagine?

• Is the proliferation of languages a basis of civilization in programming?

Image from cover of Programming
Languages by Jean Sammet (1969).

Already 120+ languages!

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

16. Programming
Languages

