
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

15. Symbol Tables

Section 4.4

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

FAQs about sorting and searching

3

Bottom line. Need a more flexible API.

Hey, Alice. That whitelist

filter with mergesort and binary

search is working great.

We have to sort the

whole list whenever we add

new customers.

Right, but it's a pain sometimes.

Also, we want to process

transactions and associate all sorts of

information with our customers.

Why?

Why are telephone books obsolete?

4

Unsupported operations

• Change the number associated with a given name.

• Add a new name, associated with a given number.

• Remove a givne name and associated number

Observation. Mergesort + binary search has the same problem with add and remove.

see Sorting and Searching lecture

Associative array abstraction

5

A fundamental abstraction

• Use keys to access associated values.

• Keys and values could be any type of data.

• Client code could not be simpler.

Imagine using arrays whose indices are string values.

phoneNumber["Alice"] = "(212) 123-4567"
phoneNumber["Bob"] = "(609) 987-6543"
phoneNumber["Carl"] = "(800) 888-8888"
phoneNumber["Dave"] = "(888) 800-0800"
phoneNumber["Eve"] = "(999) 999-9999"

Q. How to implement?

transactions["Alice"] = "Dec 12 12:01AM
$111.11 Amazon, Dec 12 1:11 AM $989.99 Ebay"
...

URL["128.112.136.11"] = "www.cs.princeton.edu"
URL["128.112.128.15"] = "www.princeton.edu"
URL["130.132.143.21"] = "www.yale.edu"
URL["128.103.060.55"] = "www.harvard.edu"

legal code in some programming

languages (not Java)

IPaddr["www.cs.princeton.edu"] = "128.112.136.11"
IPaddr["www.princeton.edu"] = "128.112.128.15"
IPaddr["www.yale.edu"] = "130.132.143.21"
IPaddr["www.harvard.edu"] = "128.103.060.55"

Symbol table ADT

6

Basic symbol-table operations

• Associate a given key with a given value.

[If the key is not in the table, add it to the table.]

[If the key is in the table, change its value.]

• Return the value associated with a given key.

• Test if a given key is in the table.

• Iterate though the keys.

A symbol table is an ADT whose values are sets of key-value pairs, with keys all different.

Useful additional assumptions

• Keys are comparable and iteration is in order.

• No limit on number of key-value pairs.

• All keys not in the table associate with null.

key: word

value: definition

key: time+channel

value: TV show
key: name

value: phone number

key: number

value: function value

key: term value: article

Benchmark example of symbol-table operations

7

 Keys. Strings from a sequence.

Values. Integers.

key it was the best of times it was the worst

value 1 1 1 1 1 1 2 2 2 1

symbol-table
contents

after
operation

it 1 it 1

was 1

it 1

the 1

was 1

best 1

it 1

the 1

was 1

best 1

of 1

it 1

the 1

was 1

best 1

of 1

it 1

the 1

times 1

was 1

best 1

of 1

it 2

the 1

times 1

was 1

best 1

of 1

it 2

the 1

times 1

was 2

best 1

of 1

it 2

the 2

times 1

was 2

best 1

of 1

it 2

the 2

times 1

was 2

worst 1

change
the value

Application. Count frequency of occurrence of strings in StdIn.

Java approach: Parameterized data types (generics)

• Use placeholder type names for both keys and values.

• Substitute concrete types for placeholder in clients.

Parameterized API for symbol tables

8

 public class ST<Key extends Comparable<Key>, Value> public class ST<Key extends Comparable<Key>, Value>

 ST<Key, Value>() create a symbol table

 void put(Key key, Value val) associate key with val

 Value get(Key key) return value associated with key, null if none

 boolean contains(Key key) is there a value associated with key?

Iterable<Key> keys() all the keys in the table

Symbol Table
API

Goal. Simple, safe, and clear client code for symbol tables holding any type of data.

“implements compareTo()”

Aside: Iteration (client code)

9

Q. How to print the contents of a stack/queue?

Enhanced for loop.

• Useful for any collection.

• Iterate through each entry in the collection.

• Order determined by implementation.

• Substantially simplifies client code.

• Works when API "implements Iterable".

Performance specification. Constant-time per entry.

A. Use Java's foreach construct.

public class Stack<Item> implements Iterable<Item>public class Stack<Item> implements Iterable<Item>

 Stack<Item>() create a stack of objects, all of type Item

 void push(Item item) add item to stack

 Item pop() remove and return item most recently pushed

boolean isEmpty() is the stack empty ?

 int size() # of objects on the stack

Java foreach construct

Stack<String> stack = new Stack<String>();
...
for (String s : stack)
 StdOut.println(s);
...

Aside: Iteration (implementation)

10

Q. How to "implement Iterable"?

Meets performance specification. Constant-time per entry.

A. We did it for Stack and Queue,

 so you don't have to.

public class Stack<Item> implements Iterable<Item>public class Stack<Item> implements Iterable<Item>

 Stack<Item>() create a stack of objects, all of type Item

 void push(Item item) add item to stack

 Item pop() remove and return item most recently pushed

boolean isEmpty() is the stack empty ?

 int size() # of objects on the stack

A. Implement an Iterator (see text pp. 588-89)

Bottom line. Use iteration in client code that uses collections.

Why ordered keys?

11

Natural for many applications

• Numeric types.

• Strings.

• Date and time.

• Client-supplied types (Account numbers, ...).

Enables efficient implementations

• Mergesort.

• Binary search.

• BSTs (this lecture).

Enables useful API extensions

• Provide the keys in sorted order.

• Find the k th largest key.

thingsorganizedneatly.tumblr.com

Symbol table client example 1: Sort (with dedup)

public class Sort
{
 public static void main(String[] args)
 { // Sort lines on StdIn
 BST<String, Integer> st = new BST<String, Integer>();
 while (StdIn.hasNextLine())
 st.put(StdIn.readLine(), 0);
 for (String s : st.keys())
 StdOut.println(s);
 }
}

12

Goal. Sort lines on standard input (and remove duplicates).

• Key type. String (line on standard input).

• Value type. (ignored).

% java Sort < tale.txt
it was the age of foolishness
it was the age of wisdom
it was the best of times
it was the epoch of belief
it was the epoch of incredulity
it was the season of darkness
it was the season of light
it was the spring of hope
it was the winter of despair
it was the worst of timesforeach

construct

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

Symbol table client example 2: Frequency counter

public class Freq
{
 public static void main(String[] args)
 { // Frequency counter
 BST<String, Integer> st = new BST<String, Integer>();
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (st.contains(key)) st.put(key, st.get(key) + 1);
 else st.put(key, 1);
 }
 for (String s : st.keys())
 StdOut.printf("%8d %s\n", st.get(s), s);
 }
}

13

Goal. Compute frequencies of words on standard input.

• Key type. String (word on standard input).

• Value type. Integer (frequency count).

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

% java Freq < tale.txt | java Sort
 1 belief
 1 best
 1 darkness
 1 despair
 1 foolishness
 1 hope
 1 incredulity
 1 light
 1 spring
 1 winter
 1 wisdom
 1 worst
 2 age
 2 epoch
 2 season
 2 times
 10 it
 10 of
 10 the
 10 was

Symbol table client example 3: Index

public class Index
{
 public static void main(String[] args)
 {
 BST<String, Queue<Integer>> st;
 st = new BST<String, Queue<Integer>>();
 int i = 0;
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (!st.contains(key))
 st.put(key, new Queue<Integer>());
 st.get(key).enqueue(i++);
 }
 for (String s : st.keys())
 StdOut.println(s + " " + st.get(s));
 }
}

14

Goal. Print index to words on standard input.

• Key type. String (word on standard input).

• Value type. Queue<Integer> (indices where word occurs).

% more tale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

% java Index < tale.txt
age 15 21
belief 29
best 3
darkness 47
despair 59
epoch 27 33
foolishness 23
hope 53
incredulity 35
it 0 6 12 18 24 30 36 42 48 54
light 41
of 4 10 16 22 28 34 40 46 52 58
season 39 45
spring 51
the 2 8 14 20 26 32 38 44 50 56
times 5 11
was 1 7 13 19 25 31 37 43 49 55
winter 57
wisdom 17
worst 9

Symbol-table applications

Symbol tables

are ubiquitous

in today's

computational

infrastructure.

15

application key value

contacts name phone number, address

credit card account number transaction details

file share name of song computer ID

dictionary word definition

web search keyword list of web pages

book index word list of page numbers

cloud storage file name file contents

domain name service domain name IP address

reverse DNS IP address domain name

compiler variable name value and type

internet routing destination best route

...

We're going to need

a good symbol-table

implementation!

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

% java Freq < mobydick.txt | java Sort
 ...
 1940 i
 2370 it
 2481 his
 2911 that
 4037 in
 4508 to
 4583 a
 6247 and
 6415 of
 13967 the

Benchmark

18

Goal. Validate Zipf's law for real natural language data.

Application. Linguistic analysis

Zipf's law (for a natural language corpus)

• Suppose most frequent word occurs about t times.

• 2nd most frequent word occurs about t/2 times.

• 3rd most frequent word occurs about t/3 times.

• 4th most frequent word occurs about t/4 times.

Method. % java Freq < data.txt | java Sort

Required. Efficient symbol-table implementation.

hypothesis

observation

Benchmark statistics

19

Goal. Validate Zipf's law for real natural language data.

Method. % java Freq < data.txt | java Sort

Required. Efficient symbol-table implementation.

file description words distinct

 mobydick.txt Melville's Moby Dick 210,028 16,834

liepzig100k.txt 100K random sentences 2,121,054 144,256

liepzig200k.txt 200K random sentences 4,238,435 215,515

liepzig1m.txt 1M random sentences 21,191,455 534,580

Reference: Wortschatz corpus, Universität Leipzig

http://corpora.informatik.uni-leipzig.de

Fatal flaw. How to insert a new key?

• To keep key array in order, need to move

larger entries ala insertion sort.

• Hypothesis: Quadratic time for benchmark.

Strawman I: Ordered array

20

Known challenge. How big to make the arrays?

Reasons (see "Sorting and Searching" lecture)

• Takes advantage of fast sort (mergesort).

• Enables fast search (binary search).

Idea

• Keep keys in order in an array.

• Keep values in a parallel array.

easy to validate with experiments

585

247

577

675

895

557

926

51

152

values

121

873

884

712

585

247

577

675

895

557

926

51

152

dave

erin

eve

oscar

peggy

trent

trudy

walter

wendy

keys

alice

bob

carlos

carol

dave

erin

eve

oscar

peggy

trent

trudy

walter

wendy

alice

bob

carlos

carol

craig

dave

erin

eve

oscar

peggy

trent

trudy

walter

wendy

values

121

873

884

712

999

585

247

577

675

895

557

926

51

152

keys

Fatal flaw. How to search?

• Binary search requires indexed access.

• Example: How to access the middle of a linked list?

• Only choice: search sequentially through the list.

• Hypothesis: Quadratic time for benchmark.

Strawman II: Linked list

21

Reason. Meets memory-use performance specification.

Idea

• Keep keys in order in a linked list.

• Add a value to each node.

easy to validate with experiments

alice 2 bob 7 carlos 1 carol 8 dave 2 erin 8 eve 1 oscar 8 peggy 2

Design challenge

22

Goal. Simple, safe, clear, and efficient client code.

Implement scalable symbol tables.

Performance
specifications

Are such guarantees achievable??

Can we implement associative arrays with just log-factor extra cost??

No way!

This lecture. Yes way!
phoneNumber["Alice"] = "(212) 123-4567"

• Order of growth of running time for put(), get() and contains() is logarithmic.

• Memory use is proportional to the size of the collection, when it is nonempty.

• No limits within the code on the collection size.

Only slightly more costly than

stacks or queues!

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

Doubly-linked data structures

25

With two links () a wide variety of data structures are possible.

Maintenance can be complicated!

From the point of view of a particular object,

all of these structures look the same.

General case

Binary tree
(this lecture)Doubly-linked list

Doubly-linked circular list

Tree

A doubly-linked data structure: binary search tree

26

Binary search tree (BST)

• A recursive data structure containing distinct comparable keys that is ordered.

• Def. A BST is a null or a reference to a BST node (the root).

• Def. A BST node is a data type that contains references to a key,

 a value, and two BSTs, a left subtree and a right subtree.

• Ordered. All keys in the left subtree of each node are smaller than its key

 and all keys in the right subtree of each node are larger than its key.

private class Node
{
 private Key key;
 private Value val;
 private Node left;
 private Node right;
} left right

A BST

BST processing code

27

Standard operations for processing data structured as a binary search tree

• Search for the value associated with a given key.

• Add a new key-value pair.

• Traverse the BST (visit every node, in order of the keys).

• Remove a given key and associated value (not addressed in this lecture).

bestbest 1

timestimes 1

root

itit 2

thethe 2

ofof 1

waswas 2

BST processing code: Search

28

public Value get(Key key)
{ return get(root, key); }
private Value get(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return get(x.left, key);
 else if (cmp > 0) return get(x.right, key);
 else if (cmp == 0) return x.val;
}

bestbest 1

timestimes 1

root

itit 2

thethe 1

ofof 1

waswas 2

the?

Goal. Find the value associated with a given key in a BST.

• If less than the key at the current node, go left.

• If greater than the key at the current node, go right.

GREATER
go right

LESS
go left

SEARCH HIT
return value

Example. get("the")

BST processing code: Associate a new value with a key

29

public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else x.val = val;
 return x;
}

bestbest 1

timestimes 1

root

itit 2

thethe 1

ofof 1

waswas 2

the?

Goal. Associate a new value with a given key in a BST.

• If less than the key at the current node, go left.

• If greater than the key at the current node, go right.

GREATER
go right

LESS
go left

SEARCH HIT
update value

Example. put("the", 2)

2

BST processing code: Add a new key

30

public void put(Key key, Value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
{
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else x.val = val;
 return x;
}

bestbest 1

timestimes 1

root

itit 2

thethe 2

ofof 1

waswas 2

worst?

Goal. Add a new key-value pair to a BST.

• Search for key.

• Return link to new node when null reached.

GREATER
go right

GREATER
go right

NULL
add new node

Example. put("worst", 1)

worstworst 1

Goal. Put keys in a BST on a queue, in sorted order.

• Do it for the left subtree.

• Put the key at the root on the queue.

• Do it for the right subtree.

BST processing code: Traverse the BST

31

public Iterable<Key> keys()
{
 Queue<Key> queue = new Queue<Key>();
 inorder(root, queue);
 return queue;
}
private void inorder(Node x, Queue<Key> queue)
{
 if (x == null) return;
 inorder(x.left, queue);
 q.enqueue(x.key);
 inorder(x.right, queue);
}

bestbest 1

timestimes 1

root

itit 2

thethe 2

ofof 1

waswas 2

best it of the times wasQueue
http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

ADT for symbol tables: review

34

An ADT allows us to write Java programs that use and manipulate symbol tables.

A symbol table is an idealized model of an associative storage mechanism.

API

 public class ST<Key extends Comparable<Key>, Value> public class ST<Key extends Comparable<Key>, Value>

 ST<Key, Value>() create a symbol table

 void put(Key key, Value val) associate key with val

 Value get(Key key) return value associated with key, null if none

 boolean contains(Key key) is there a value associated with key?

Iterable<Key> keys() all the keys in the table

Performance
specifications

• Order of growth of running time for put(), get() and contains() is logarithmic.

• Memory use is proportional to the size of the collection, when it is nonempty.

• No limits within the code on the collection size.

Symbol table implementation: Instance variables and constructor

35

Data structure choice. Use a BST to hold the collection. instance variables

constructor

methods

test client

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root = null;

 private class Node
 {
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 }
...
}

root

bestbest

timestimes

itit

thethe

ofof

waswas

BST implementation: Test client (frequency counter)

public static void main(String[] args)
{
 BST<String, Integer> st = new BST<String, Integer>();
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (st.contains(key)) st.put(key, st.get(key) + 1);
 else st.put(key, 1);
 }
 for (String s : st.keys())
 StdOut.printf("%8d %s\n", st.get(s), s);
}

36

What we expect, once the implementation is done.

instance variables

constructors

methods

test client

% java BST < tale.txt
 2 age
 1 belief
 1 best
 1 darkness
 1 despair
 2 epoch
 1 foolishness
 1 hope
 1 incredulity
 10 it
 1 light
 10 of
 2 season
 1 spring
 10 the
 2 times
 10 was
 1 winter
 1 wisdom
 1 worst

BST implementation: Methods

public class BST<Key extends Comparable<Key>, Value>
{
...

 public boolean isEmpty()
 { return root == null; }

 public void put(Key key, Value value)
 { /* See BST add slides and next slide. */ }

 public Value get(Key key)
 { /* See BST search slide and next slide. */ }

 public boolean contains(Key key)
 { return get(key) != null; }

 public Iterable<Key> keys()
 { /* See BST traverse slide and next slide. */ }

...
}

37

Methods define data-type operations (implement the API).
instance variables

constructors

methods

test client

 private Value get(Node x, Key key)
 {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return get(x.left, key);
 else if (cmp > 0) return get(x.right, key);
 else if (cmp == 0) return x.val;
 }

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else x.val = val;
 return x;
 }

 private void inorder(Node x, Queue<Key> q)
 {
 if (x == null) return;
 inorder(x.left, q);
 q.enqueue(x.key);
 inorder(x.right, q);
 }

 public static void main(String[] args)
 { // Frequency counter }

}

BST implementation

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root = null;

 private class Node
 {
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 }

 public boolean isEmpty()
 { return root == null; }

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 public Value get(Key key)
 { return get(root, key); }

 public boolean contains(Key key)
 { return get(key) != null; }

 public Iterable<Key> keys()
 {
 Queue<Key> q = new Queue<Key>();
 inorder(root, q);
 return q;
 }

38

instance variable

nested class

public

methods

test client

private

methods

Trace of BST construction

39

bestbest

timestimes

itit

thethe

ofof

waswas

bestbest

itit

thethe

ofof

waswas

bestbest

itit

thethe

waswas

itit

thethe

waswas

itit

waswas

itit

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

42

BST analysis

Costs depend on order of key insertion.

bestbest

timestimes

itit

thethe

ofof

waswas

Typical case

worstworst

thethe

ofof

itit

bestbest

Best case

worstworst

waswas

timestimes

thethe

ofof

itit

bestbest

Worst case

worstworst

waswas

timestimes

43

BST insertion: random order visualization

Insert keys in random order.

• Tree is roughly balanced.

• Tends to stay that way!

44

BST analysis

Model. Insert keys in random order.

• Tree is roughly balanced.

• Tends to stay that way!

Proof. A very interesting exercise in discrete math.
Interested in

details? Take a

course in

algorithms.

Running time depends on order of key insertion.

Proposition. Building a BST by inserting N randomly ordered keys into an initially

 empty tree uses ~2 N ln N (about 1.39 N lg N) compares.

• Order of growth of running time for put(), get() and contains() is logarithmic.

• Memory use is proportional to the size of the collection, when it is nonempty.

• No limits within the code on the collection size.

Performance
specifications

Benchmarking the BST implementation

45

BST implements the associative-array abstraction for randomly ordered keys.

Made possible by binary tree data structure.

✓
✓
✓
✓

 public class ST<Key extends Comparable<Key>, Value> public class ST<Key extends Comparable<Key>, Value>

 ST<Key, Value>() create a symbol table

 void put(Key key, Value value) associate key with value

 Value get(Key key) return value associated with key, null if none

 boolean contains(Key key) is there a value associated with key?

Iterable<Key> keys() all the keys in the table (sorted)

Symbol table
API

bestbest

timestimes

itit

thethe

ofof

waswas

worstworst

for random keys

(but stay tuned)

Empirical tests of BSTs

46

Count number of words

that appear more than

once in StdIn.

% java Generator 1000000 ...
263934 (5 seconds)
% java Generator 2000000 ...
593973 (9 seconds)
% java Generator 4000000 ...
908795 (17 seconds)
% java Generator 8000000 ...
996961 (34 seconds)
% java Generator 16000000 ...
999997 (72 seconds)

... = 6 0123456789 | java DupsBST

N TN

(seconds)
TN/TN/2

1 million 5

2 million 9 1.8

4 million 17 1.9

8 million 34 2

16 million 72 2.1

...

1 BILLION 4608 2

Confirms hypothesis that order of growth is N log N

6-digit integers

WILL scale

Easy to process 21M word corpus

NOT possible without BSTs

Frequency count

without the output

Performance guarantees

Practical problem. Keys may not be randomly ordered.

• BST may be unbalanced.

• Running time may be quadratic.

• Happens in practice (insert keys in order).

47

Remarkable resolution.

• Balanced tree algorithms perform simple

transformations that guarantee balance.

• AVL trees (Adelson-Velskii and Landis, 1962)

proved concept.

• Red-black trees (Guibas and Sedgewick, 1979)

are implemented in many modern systems.

48

Red-black tree insertion: random order visualization

Insert keys in random order.

• Same # of black links on

every path from root to leaf.

• No two red links in a row.

• Tree is roughly balanced.

• Guaranteed to stay that way!

ST implementation with guaranteed logarithmic performance

import java.util.TreeMap;

public class ST<Key extends Comparable<Key>, Value>
{
 private TreeMap<Key, Value> st = new TreeMap<Key, Value>();

 public void put(Key key, Value val)
 {
 if (val == null) st.remove(key);
 else st.put(key, val);
 }
 public Value get(Key key) { return st.get(key); }
 public Value remove(Key key) { return st.remove(key); }
 public boolean contains(Key key) { return st.containsKey(key); }
 public Iterable<Key> keys() { return st.keySet(); }
}

49

Interested in

details? Take a

course in

algorithms.

Proposition. In a red-black tree of size N, put(), get() and

contains() are guaranteed to use fewer than 2lg N compares.

Proof. A fascinating exercise in algorithmics.

Java's TreeMap library

uses red-black trees.

Several other

useful operations

also available.

50

Summary

 BSTs. Simple symbol-table implementation, usually efficient.

Red-black trees. More complicated variation, guaranteed to be efficient.

 Applications. Many, many, many things are enabled by efficient symbol tables.

Can we implement associative arrays with just log-factor extra cost??

YES!

Example. Search among 1 trillion customers with less than 80 compares!

Example. Search among all the atoms in the universe with less than 200 compares!

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

15.Symbol Tables

•APIs and clients
•A design challenge
•Binary search trees
•Implementation
•Analysis

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

15. Symbol Tables

Section 4.4

