

COMPUTER SCIENCE
SEDGEWICK/WAYNE

INTRODUCTION TO

Programming
in Java

14. Stacks and Quevues

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Section 4.3

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
o APIs
e Clients

e Strawman implementation
e Linked lists

* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

Data types and data structures

public class Complex

Data types | Complex(double real, double imag)

Complex plus(Complex b) sum of this number and b

|
public class Char¢ — Complex times(Complex b) product of this number and b

e Set of values.

Charge(dot double abs() magnitude
double . String toString() string representation

. public clas
» Set of operations on those values. o

. void turnLeft(double delta) rotate delta degrees counterclockwise
4 Some are bu I It I n to Java- -I nt’ dOUb-I e’ St r'-l ng’ = == void goForward(double step) move distance step, drawing a line

. ST USTIING TOSTrING () ~STFING representation of TNis color

L Most are not: Comp-l eX, P-I Ctu re, Charge, " s ow boolean equals(Color c) is this color the same as c's?

Data structures O/O\O\ <I>
e Represent data. ? O/ }%
e Represent relationships among data. A C{‘ éé

e Some are built in to Java: 1D arrays, 2D arrays, . ..
e Most are not: linked list, circular list, tree, . . .

Oo—0O0—0—0—0—0

Design challenge for every data type: Which data structure to use?
e Resource 1: How much memory is needed?
e Resource 2: How much time do data-type methods use?

Stack and Queue APIs

A collection is an ADT whose values are a multiset of items, all of the same type.

Two fundamental collection ADTs differ in just a detail of the specification of their operations.

Add to the Take from the TaIL(e frOrT‘ the
. beginning beginning . Al
Stack operations N\ Queue operations
 Add an item to the collection. e Add an item to the collection.
e Remove and return the item Last e Remove and return the item First
most recently added (LIFO). In least recently added (FIFO). Fi'pst
e Test if the collection is empty. F(')Lstt * Test if the collection is empty. Out
e Return the size of the collection. e Return the size of the collection.
1
Stacks and queues both arise naturally in countless applications. tﬁgde:%

A key characteristic. No limit on the size of the collection.

Example of stack operations

push to the pop from the
beginning beginning

Push. Add an item to the collection.
Pop. Remove and return the item most recently added. Last
Filrnst
push to the Out
beginning 28 (et
the beginning
/N [
push to be or not to - be - - that - - - is
pop l to l be not that or be
A ve /
to be
v ! not || not | | not | | not | | not that
C;,l;?ecms ! | or or or or or or | or | or | or | !
after | | be||be]|be||be]]|be||bel|be]|bel|be]]|be|]be] | is |
operation 1o || to || to [[to || to [| to || to || to || to || to || to || to || to || to |

Example of queue operations

Enqueue. Add an item to the collection.

Dequeue. Remove and return the item /east recently added.

enqueue

dequeue

queue
contents
dfter
operation

to be or

not

to

dequeue from the beginning —

| to to
be

or

|to
| be ||

enqueue at
the end

to
be

or

not

to
be
or
nhot

to

to

be
or
not

to

/ be/
be or
or not
not to
to be

be

not| not
to | to
be | be

that

dequeue from
the beginning

I

First
In
First
Out

T

enqueue at
the end

be chat| |is

Parameterized data types

Goal. Simple, safe, and clear client code for collections of any type of data.

Java approach: Parameterized data types (generics)
* Use placeholder type name in definition.
» Substitute concrete type for placeholder in clients. <«——stay tuned for examples

public class Stack<Item>

Stack<Item>() create a stack of objects, all of type Iltem
Stack API void push(Item item) add 1item to stack
Item pop() remove and return the item most recently pushed
boolean isEmpty() is the stack empty?
int size() # of objects on the stack
public class Queue<Item>
Queue<Item>() create a queue of objects, all of type Item
void enqueue(Item item) additem to queue
QUG AA Item dequeue() remove and return the item least recently enqueued
boolean isEmpty() is the queue empty?

int size() # of objects on the queue

Performance specifications

Challenge. Provide guarantees on performance.

Goal. Simple, safe, clear, and efficient client code.

Typically required for
client code to be scalable

/

e All operations are constant-time.

Performance * Memory use is proportional to the size of the
specifications collection, when it is nonempty.

e No limits within the code on the collection size.

Java. Any implementation of the APl implements the stack/queue abstractions.

RS+KW. Implementations that do not meet performance specs do not implement the abstractions.

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
o APIs
e Clients

e Strawman implementation
e Linked lists

* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

e Strawman implementation
e Linked lists

* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

Stack and queue applications

Queues
e First-come-first-served resource allocation.
* Asynchronous data transfer (Stdin, StdOut).
* Dispensing requests on a shared resource (printer, processor).
e Simulations of the real world (guitar string, traffic analysis, ...)

Stacks
e Last-come-first-served processes (browser, e-mail).
e Function calls in programming languages.
e Basic mechanism in interpreters, compilers.

Queue client example: Read all strings from StdIn into an array

public class QEx Note: StdIn has this
{ / functionality

public static String[] readAl11Strings()

Challenge { // See next slide. }

e Can’t store strings in array
before creating the array. public static void main(String[] args)
e Can’t create the array without {

knowing how many strings are
in the input stream.

String[] words = readAl11Strings();
for (int i = 0; 1 < words.length; i++)
StdOut.printin(words[i]);

e Can’t know how many strings ¥
are in the input stream without }
reading them all. ?’oﬂiva A s meby et
Solution: Use a Queue<String>. % more moby.txt dick
moby dick herman
herman melville melville
call me ishmael some years ago never call
mind how long precisely having me
TittTe or no money ishmael
some
years

Queue client example: Read all strings from StdIn into an array

Solution: Use a Queue<String>. ¢
e Store strings in the queue.

e Get the size when all have been
read from StdIn.

e Create an array of that size.
e Copy the strings into the array.

public static String[] readAl11Strings()

Queue<String> q = new Queue<String>();

while (!StdIn.isEmpty())
g.enqueue(StdIn.readString());

int N = g.size();

String[] words = new String[N];

for (int i = 0; i < N; i++)
words[i] = q.dequeue();

return words;

Stack example: "Back" button in a browser

e 06

Introduction to Programming in Java: An Interdisciplinary Approach

<> | [O] (2] (@ introcs.cs princeton.edu/javahome/

) - 1]

6 06

Algorithms and Data Structures

Prog < > | O] [2] (@ introcs.cs.princeton.edu

806

Stacks and Queues

[0

n <>) [S)] (2] (@ mrocs.cs princeton.eau
4 Prog

8 06

Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne

Pr. < > | (O] (2] (@ algsa.cs.princeton.edu/home/

Igorithm

ALGORITHMS, 4TH EDITION
1. Fundamentals
2. Sorting

3. Searching

0.
5.
5.
Arcorniieg
8.
9. Sci
ALGORIT
ReLATED BooKsiTES

AKATYOR
ALGORITHMS

[Wen Resounces —— |

FAQ

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [Amazon - Pearson - InformiT] surveys the most important algorithms and
data structures in use today. The textbook is organized into six chapters:

Chapter 1: Fundamentals introduces a scientific and engineering basis for comparing algorithms and making predictions. It also includes our programming
model.

Chapter 2: Sorting considers several classic sorting algorithms, including insertion sort, mergesort, and quicksort. It also includes a binary heap implementation of
a priority queue.

Chapter 3: Searching describes several classic symbol table implementations, including binary search trees, red-black trees, and hash tables.

Chapter 4: Graphs surveys the most important graph processing problems, including depth-first search, breadth-first search, minimum spanning trees, and

shortest paths.

e Chapter 5: Strings investi ithms for string p , including radix sorting, substring search, tries, regular expressions, and data
compression.

® Chapter 6: Context highlights tions to systems ing, scientific i ial applications, research, and intractability.

Applications to science, engineering, and industry are a key feature of the text. We motivate each algorithm that we address by examining its impact on specific

Data
Code
Errata

References

Online Course
Lecture Slides
Programming Assignments

Booksite. Reading a book and surfing the web are two different activities: This booksite is intended for your use while online (for example, while programming and
while browsing the web); the textbook is for your use when initially learning new material and when reinforcing your understanding of that material (for example, when
reviewing for an exam). The booksite consists of the following elements:

® Excerpts. Acondensed version of the text narrative, for reference while online.
® Java code. The algorithms and clients in this textbook.
® Exercise solutions. Solutions to selected exercises.
To get started. Here are instructions for setting up a simple Java programming environment [Mac OS X - Winc|

Online course. You can take our free Coursera courses: Algorithms, Part | (next offering August 23, 2013) and

Typical scenario
e Visit a page.

e Click a link to another page.
e Click a link to another page.
e Click a link to another page.
e Click "back" button.
e Click "back" button.
e Click "back" button.

http://introcs.cs.princeton.edu/java/43stack/

| http://introcs.cs.princeton.edu/java/40algorithms/

http://introcs.cs.princeton.edu/java/home/

Autoboxing

Challenge. Use a primitive type in a parameterized ADT.

Wrapper types primitive type

* Each primitive type has a wrapper reference type. int

* Wrapper type has larger set of operations than primitive type. Jong

Example: Integer.parseInt().
: double

» Values of wrapper types are objects.

* Wrapper type can be used in a parameterized ADT. boolean
Autoboxing. Automatic cast from primitive type to wrapper type.
Auto-unboxing. Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer>();
Simple client code —— stack.push(17); // Autobox (int -> Integer)

USRS int a = stack.pop(); // Auto-unbox (Integer -> int)

wrapper type
Integer
Long
Double

Boolean

Stack client example: Postfix expression evaluation

Infix. Standard way of writing arithmetic expressions, using parentheses for precedence.
Example. (1+((2+3)*(4*5))) = (1+(5*20)) = 101

Postfix. Write operator after operands (instead of in between them).

Jan tukasiewicz

1 23 +45 ** 4 <«——also called "reverse Polish" notation (RPN)
1878-1956

Example.

Remarkable fact. No parentheses are needed!

1 2 3 + 45 * * 4

find first operator, convert

way to parentnesize | (2 F3)4 5 T T F < Tionfix,enclose in 0 HP-35 (1972)
a postfix expression. & & First handheld calculator.
T ((2+3)*(4%5))+ > iterate, treating subexpressions "Enter" means "push”.
in parentheses as atomic No parentheses.

(1+((2+3)*(47*5)))

o
E ir\
.

Next. With a stack, postfix expressions are easy to evaluate.
Made slide rule obsolete (!)

B

Postfix arithmetic expression evaluation

Algorithm
e While input stream is nonempty, read a token.

* Value: Push onto the stack.

» Operator: Pop operand(s), apply operator, push the result.

20 100101

Il
w1
Il

- N W

— w1 N

— U1 A~ U

20

1

100
1

‘101‘

Stack client example: Postfix expression evaluation

public class Postfix
{
public static void main(String[] args)
{
Stack<DoubTle> stack = new Stack<Double>();
while (!StdIn.isEmpty())
{
String token = StdIn.readString(Q);
if (token.equals("*"))
stack.push(stack.pop() * stack.pop());
else if (token.equals("+"))
stack.push(stack.pop() + stack.pop());
else if (token.equals("-"))
stack.push(- stack.pop() + stack.pop(Q));
else if (token.equals("/"))
stack.push((1.0/stack.pop()) * stack.pop());
else if (token.equals("sqrt"))
stack.push(Math.sqrt(stack.pop()));
else
stack.push(Double.parseDouble(token));

}
StdOut.printin(stack.pop());

% java Postfix

123 +45*%*+
101

15 sqrt +2 /

% java Postfix 1 Jr_\/g
1.618033988749895

Perspective

e Easy to add operators of all sorts.

e Can do infix with two stacks (see text).
e Could output TOY program.

* Indicative of how Java compiler works.

Real-world stack application: PostScript

PostScript (Warnock-Geschke, 1980s): A turtle with a stack.

e Postfix program code (push literals; functions pop arguments).
e Add commands to drive virtual graphics machine.
* Add loops, conditionals, functions, types, fonts, strings....

push(100)
100 moveto

100 300 Tineto defi h
300 300 Tlineto efine 2 pa
300 100 Tlineto

stroke <«—— draw the path

. call "moveto" (takes args from stack)
PostScript code

A simple virtual machine, but not a toy
» Easy to specify published page.
* Easy to implement on various specific printers.
e Revolutionized world of publishing.

Another stack machine: The JVM (Java Virtual Machine)!

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

e Strawman implementation
e Linked lists

* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

 Strawman implementation
e Linked lists

e Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

Strawman ADT for pushdown stacks

Warmup: simplify the ADT
* Implement only for items of type String.
* Have client provide a stack capacity in the constructor.

values

public class StrawStack

StrawStack(int max) create a stack of capacity max

void push(String item) add 1tem to stack
Strawman API
String pop(Q) return the string most recently pushed
boolean isEmpty() is the stack empty?
int size(Q) number of strings on the stack

Rationale. Allows us to represent the collection with an array of strings.

23

Strawman implementation: Instance variables and constructor

Data structure choice. Use an array to hold the collection.

public class StrawStack

{
private String[] a;
private int N = 0;

public StrawStack(int max)
{ a = new String[max]; }

a[o0]
a[1]
al[2]

N——

>items on stack

"upside down"
representation of

| instance variables |
constructor

24

Strawman stack implementation: Test client

public static void main(String[] args)
{
int max = Integer.parseInt(args[0]);
StrawStack stack = new StrawStack(max) ;
while (!StdIn.isEmpty())
{
String item = StdIn.readString(Q);
if (item.equals("-"))
stack.push(item);
else
StdOut.print(stack.pop());

}
StdOut.printin();

% more tobe.txt

% java StrawStack 20 < tobe.txt
to be not that or be

test client

to be or not to - be - - that - - - 1is

What we expect, once the implementation is done. /

25

TEQ 1 on stacks

Q. Can we always insert pop() commands to make items come out in sorted order?

Example 1. 6 5 4 3 2 1 - - - - - -
Example 2. 1 - 2 - 3 - 4 -5 - 6 -
Example 3. 4 1 - 32 - - - 65 - -

1 2 3 4 5 6

N

w
w

: ‘

4‘4 |

26

TEQ 1 on stacks

Q. Can we always insert pop() commands to make items come out in sorted order?

Example 1. 6 5 4 3 2 1 - - - - - -
Example 2. 1 - 2 - 3 - 4 - 5 - 6 -
Example 3. 4 1 - 3 2 - - - 65 - -
A. No. Example. 5 6

no way for 5 to be
popped before 6

Note. In a queue, they always come out in the order they came in.

27

Strawman implementation: Methods

Methods define data-type operations (implement APIs).

after

push() methods

public class StrawStack

{
...pub1ic boolean isEmpty()
{ return (N ==0); }

public void push(Objektt item)
{ a[N++] = item; }

public String pop() after
{ vreturn a[--N]; } N — pop ()

public int size() all constant-time
{ return N; } one-liners!

Strawman pushdown stack implementation

public class StrawStack

{

private String[] a;

&
<

private int N = 0;

public StrawStack(int max)

{ a = new String[max]; } <

public boolean isEmpty()

{ return (N == 0); }
public void push(String 1item)
{ a[N++] = item; }

A

constructor

public String pop()
{ return a[--N]; 3}

public int size()
{ return N; 1}

methods

public static void main(String[] args)

{

int max = Integer.parseInt(args([0]);

StrawStack stack = new StrawStack(max);

while (!StdIn.isEmpty())

{
String item = StdIn.readStringQ);
if (item.compareTo("-") != 0)
stack.push(item);
else
StdOut.print(stack.pop());
}

StdOut.println();

«—— test client

instance variables

% more tobe.txt
to be or not to - be - - that - - - 1is

% java StrawStack 20 < tobe.txt
to be not that or be

29

Trace of strawman stack implementation (array representation)

push
pop

stack
contents

after
operation

al0]
a[1]
a[2]
a[3]
a[4]
a[5]
al6]
al7]
a[8]
al9]
al10]
a[11]
a[12]
a[13]
a[14]
a[15]
a[16]
a[17]
a[18]
a[19]

to

be

or

to
be
or

L

not to - be - - that -
to be not that

to to to to to to to to

be be be be be be be be

or or or or or or or or =
not not not not not=p- that =

to be = >
> >

N
/

T

Significant wasted space when stack size
is not near the capacity (typical).

l

/
N

or

to
be =

be

to

L

to
is

30

Benchmarking the strawman stack implementation

StrawStack implements a fixed-capacity collection that behaves like a stack if the data fits.
It does not implement the stack APl or meet the performance specifications.

StrawStack requires client to provide capacity
Stack APl public class Stack<Item>

Stack<Item©x create a stack of objects, all of type Item
void push(Item item) additem to stack

StrawStack
works only —> xpop() remove and return the item most recently pushed
for strings boolean isEmpty() is the stack empty?
int size(Q) # of objects on the stack
e All operations are constant-time. v
Performance * Memory use is proportional to the size of the X
specifications collection, when it is nonempty.

e No limits within the code on the collection size. X

Nice try, but need a new data structure.

31

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

 Strawman implementation
e Linked lists

e Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

e Strawman implementation
* Linked lists

* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

Data structures: sequential vs. linked

Sequential data structure
e Put objects next to one another.
e TOY: consecutive memory cells.
e Java: array of objects.
* Fixed size, arbitrary access. «<— ith element

Linked data structure
e Associate with each object a link to another one.
e TOY: link is memory address of next object.
e Java: link is reference to next object.
e Variable size, sequential access. «<—— next element
e Overlooked by novice programmers.
* Flexible, widely used method for organizing data.

Array at CO

addr

—> (0

C1
C2
C3
C4
c5
C6
C7
C8
9
CA
CB

Linked list at C4

value

"Carol"

null

—> C

Co

Simplest singly-linked data structure: linked list

Linked list
e A recursive data structure. private class Node
e Def. A linked list is null or a reference to a node. t .
private String item;
e Def. A node is a data type that contains a reference to a node. private Node next;

e Unwind recursion: A linked list is a sequence of nodes. }

Representation
e Use a private nested class Node to implement the node abstraction.
e For simplicity, start with nodes having two values: a String and a Node.

A linked list

first — "Alice" e——> "Bob" e—— "Carol" e

. T null
item next

35

Singly-linked data structures

Even with just one link ((O—) a wide variety of data structures are possible.

Linked list (this lecture) h g& Rho ‘\O
O—rO—O—O—O—O o 1
Iy 4

Circular list (TSP) General case ?

g 0 o
— WZ%\?

~®

From the point of view of a particular object,

Multiply linked structures: many more possibilities! Ul G006 SUMEIIIES BEL s SaL

36

Building a linked list

Node third
third.item
third.next

Node second

new Node();

= "Carol";

second.item =

second.next

Node first
first.item
first.next

null;

new Node();
IlBobll ;
third;

new Node();

"Alice";
second;

first

second

"Alice"

—_—

third CO
second CA

first C4

third

"Bob" —— "Carol" e

null

addr

value

"Carol"

null

37

List processing code

Standard operations for processing data structured as a singly-linked list
e Add a node at the beginning.
e« Remove and return the node at the beginning.
* Add a node at the end (requires a reference to the last node).
e Traverse the list (visit every node, in sequence).

An operation that calls for a doubly-linked list (slightly beyond our scope)
e Remove and return the node at the end.

38

List processing code: Remove and return the first item

Goal. Remove and return the first
item in a linked list first.

first — "Alice" e——> "Bob" e—— "Carol" e

item
Ice first —> "Alice" e—> "Bob" e—> "Carol" e

item /\
first = first.next; "Alice" first "Bob"
available for /

garbage collection

o——> "Carol" e

item
return 1item; "Alice" first —> "Bob" e——> "Carol" e

List processing code: Add a new node at the beginning

Goal. Add itemto a linked list first. item

Node second = first;

first = new Node();

first.item
first.next

item;
second;

llDavell

first — "Alice" e——> "Bob"

second

first —» "Alice" e—> "Bob"

second

first —» ° "Alice" e——> "Bob"

second

first — "Dave" e——> "Alice" e——> "Bob"

e——> "Carol

e——> "Carol"

e——> "Carol"

e——> "Carol"

40

List processing code: Traverse a list

Goal. Visit every node on a linked list first.

* Node x = first; «
while (x !'= null)
{
StdOut.printin(x.item);

X = X.next;

N

first — "Alice" e——> "Bob"

Alice

StdOut Bob
Carol

e——> "Carol"

41

TEQ 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node 1ist = null;

while (!StdIn.isEmpty())

{
Node old = T1ist;
Tlist = new Node();
Tist.item = StdIn.readString(Q);
Tist.next = old;

ks

for (Node t = 1list; t != null; t = t.next)
StdOut.printin(t.item);

42

TEQ 1 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node 1list = null; .
while (1StdIn.isEmpty()) Tist —/” or [~—>[be [—>[to [-]
{ . old

Node old = T1ist;

Tlist = new Node(); _

list.item = StdIn.readString(); Tist —>| not || /1’ or |~—>| be [~—>[to [-]

Tist.next old;
} old

for (Node t = 1list; t != null; t = t.next)

StdOut.printin(t.item); 11‘st—>] not \-—Q—»] or \-—Q—»] be \—Q-»] to \.\

A. Prints the strings from StdIn on StdOut, in reverse order.

Note. Better to use a stack.

43

TEQ 2 on stacks

Q. Give code that uses a stack to print the strings from StdIn on StdOut, in reverse order.

44

TEQ 2 on stacks

Q. Give code that uses a stack to print the strings from StdIn on StdOut, in reverse order.

A. Stack<String> stack = new Stack<String>(Q);
while (!StdIn.isEmpty())
stack.push(StdIn.readString());
while (!stack.isEmpty())
StdOut.printin(stack.pop());

45

TEQ 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node Tist new Node();
Tist.item = StdIn.readString(Q);
Node last = 1ist;

while (!StdIn.isEmpty())

{

last.next = new Node();

last = Tast.next;

Tast.item = StdIn.readString();
}

46

TEQ 2 on linked lists

Q. What is the effect of the following code (not-so-easy question)?

Node 1ist

= new Node();)
list.item = StdIn.readString(Q); Tist —>{ to | > be [—=—>| or [-]
Node last = 1list; 1ast(1
while (!StdIn.isEmpty())
{ :
last.next = new Node(); Tist —| to | > be | ;J or | >| -]
Tast = last.next; Tast

Tast.item = StdIn.readString(Q);

tist —[T [5—[be [3—{or [3—>[mor [

last

A. Puts the strings from StdIn on a linked list, in the order they are read (assuming at least one string).

Note. Better to use a queue, in most applications.

AN

In this course, we restrict use of linked lists to data-type implementations 0

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

e Strawman implementation
* Linked lists

* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

e Strawman implementation
e Linked lists
* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

ADT for pushdown stacks: review

A pushdown stack is an idealized model of a LIFO storage mechanism.

An ADT allows us to write Java programs that use and manipulate pushdown stacks.

public class Stack<Item>

Stack<Item>() create a stack of objects, all of type ltem

void push(Item item) additem to stack

API
Item pop() remove and return the item most recently pushed
boolean isEmpty() is the stack empty?
int size() # of objects on the stack

e All operations are constant-time.

Performance * Memory use is proportional to the size of the
specifications collection, when it is nonempty.

¢ No limits within the code on the collection size.

50

Pushdown stack implementation: Instance variables and constructor

Data structure choice. Use a linked list to hold the collection. Linstance variables |

‘ constructor \

public class Stack<Item>

{
private Node first = null;
private int N = 0;
private class Node use in place of concrete type
{ objects on stack
private Item 1item;
private Node next;
}
first — > > > - |
}

Annoying exception (not a problem here).

Can't declare an array of Item objects (don't ask why).

Need cast: Item[] a = (Item[]) new Object[N]

51

Stack implementation: Test client

public static void main(String[] args)

{

Stack<String> stack = new Stack<String>(Q);
while (!StdIn.isEmpty())

{ ,
String item = StdIn.readString(Q); test client
if (item.equals("-"))

stack.push(item);
else
System.out.print(stack.pop());
}
StdOut.printin(); % more tobe.txt
to be or not to - be - - that - - - is

% java Stack < tobe.txt
to be not that or be

What we expect, once the implementation is done./

52

Stack implementation: Methods

Methods define data-type operations (implement the API).

public class Stack<Item>
{
...pub11c boolean isEmpty()

{ return first == null; }
public void push(Item item)
{

Node second = first;
first = new Node();

first.item = item;
first.next = second;
N++; add a new node

}

public Item pop()

{
Item item = first.item;
first = first.next;
N--;
return item;

}

public int size()
{ return N; 1}

to the beginning of the list

\ remove and return

first item on list

methods

instance

variable

first—{l > [->{7]-]

first—{ |-l - [

local variable

second i)

first >l > [-»7]-]
first—{ [~ -]

53

Stack implementation

public class Stack<Item>

{
P vate Node First = null; | instance variables
private class Node
{
private Item item; |[< nested class
private Node next;
b
public boolean isEmpty()
{ return first == null; }
public void push(Item item)
{
Node second = first; 0
First = new Node(): % more tobe.txt .
first.item = item: to be or not to - be - - that - - - is
first.next = second;
N++; % java Stack < tobe.txt
} blic Tt O D methods to be not that or be
public Item pop
{
Item item = first.item;
first = first.next;
N--;
return item;
}
public int size()
{ return N; 1}
?ub1ic static void main(?tring[] args) test client

Trace of stack implementation (linked list representation)

Push to the

beginning
push pop l
to —{ 10 [+
be —> be [~=—>] to [°]
or —>| or |=—>| be |~=—>| to |-]
not —>| not [=—>| or [=—>| be [—+—>[to |-]
to —>| to [+—>|not |- or [+—>] be [+[—>] to |]
- to ‘/—ﬂnot\—’—»] or [~—>| be |4—>| to ||
be —>| be |——>| not [——>| or || be [F—> to [-]
- be ?’nOt\Hor\Hbe\HtO\
- not —> or [~=—>| be [=—>] to |°]
that —>[that [=—>[or [=—>] be [=—>| to |-]
- that ‘/—> or |- be |- to |»
or [+—>[be [+ to [*]
o S le
 be — Slw]
is T —> is [~ to [°]

Pop from the
beginning

55

Benchmarking the stack implementation

Stack implements the stack abstraction.
It does implement the API and meet the performance specifications.

Stack APl public class Stack<Item>

Stack<Item>() create a stack of objects, all of type Item

void push(Item item) add item to stack

Item pop() remove and return the item most recently pushed
boolean isEmpty() is the stack empty?
int size(Q) # of objects on the stack ‘/

e All operations are constant-time. v

Performance * Memory use is proportional to the size of the v
specifications collection, when it is nonempty.

¢ No limits within the code on the collection size. ‘/

dequeue(): same code as pop () _
Made possible by linked data structure. enqueue(): slightly more complicated, like TEQ 2

Also possible to implement the queue abstraction with a singly-linked list (see text).

56

Summary

push to the pop from the
Stacks and queues beginning

Linked structures

dequeue from

beginning the beginning
e Fundamental collection abstractions. T
e Differ only in order in which items are removed. Last FiIrSt
n
* Performance specifications: Constant-time for all stack Filpst queue | rirst
operations and space proportional to number of objects. Out Out
enqueue at
the end
 Fundamental alternative to sequential structures.
* Enable implementations of the stack/queue abstractions
that meet performance specifications.
—> [[T [[T [[T H—/jl -]

Next: Symbol tables

57

COMPUTER SCIENCE
SEDGEWICK/WAYNE

Programming 14 Stacks and Queues
* APIs
e Clients

e Strawman implementation
e Linked lists
* Implementations

Robert Sedgewick ~ Kevin Wayne

http://introcs.cs.princeton.edu

COMPUTER SCIENCE
SEDGEWICK/WAYNE

INTRODUCTION TO

Programming
in Java

14. Stacks and Quevues

An Interdisciplinary Approach

Robert Sedgewick Kevin Wayne

Section 4.3

http://introcs.cs.princeton.edu

