
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

12. von Neumann Machines

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

TOY vs. your laptop

3

functions and libraries

any program you might want to write

objects

graphics, sound, and image I/O

arrays

Math text I/O

assignment statementsprimitive data types

conditionals and loops

Two different computing machines

• Both implement basic data types, conditionals, loops, and other low-level constructs.

• Both can have arrays, functions, libraries, and other high-level constructs.

• Both have infinite input and output streams.

Q. Is 256 words enough to do anything useful?

Q. Is 256 words enough?

A. Yes! (Stay tuned.)

OK, we definitely want a faster version with more memory when we can afford it...

Is 4096 bits of memory enough to do anything useful?

4

Core memory from the Apollo
Guidance Computer, 1966–1975

1 bit

1024 bits

Is thousands of bits of memory enough to do anything useful?

5

Prof. Clark’s father, 1963

LINC computer, MIT

12×2048 = 24576 bits of memory

Used for many biomedical and
other experiments

Prof. Clark and his father, 2013

6

Is 4096 bits enough to do anything useful?

Contents of memory, registers, and PC at a particular time

• Provide a record of what a program has done.

• Completely determines what the machine will do.

Total number of bits in the state of the machine

• 256 × 16 (memory)

• 16 × 16 (registers)

• 8 (PC)

Total number of different states: 24360 (! ! !)

Total number of different states that could be observed
if the universe were fully packed with laptops examining
states for its entire lifetime: << 2400.

Bottom line: We will never know what a 256-word machine can do.

Estimates
Age of the universe: 234 years
Size of the universe: 2267 cubic meters

Laptops per cubic meter: 214

States per year: 260

7

An early computer

ENIAC. Electronic Numerical Integrator and Calculator

• First widely known general purpose electronic computer.

• Conditional jumps, programmable, but no memory.

• Programming: Change switches and cable connections.

• Data: Enter numbers using punch cards.

ENIAC
1946

Facts and figures
30 tons

30 x 50 x 8.5 ft
17,468 vacuum tubes

300 multiply/sec

John W. Mauchly
1907–1980

J. Presper Eckert
1919–1995

A bit

8

A famous memo

First Draft of a report to the EDVAC, 1945

• Written by John von Neumann, Princeton mathematician

• EDVAC: second computer proposed by Eckert and Mauchly.

• Memo written on a train trip to Los Alamos.

• A brilliant summation of the stored program concept.

• Influenced by theories of Alan Turing.

• Has influenced the design of every computer since.

John von Neumann
1903–1957

Who invented the stored program computer?

• Fascinating controversy.

• Eckert-Mauchly discussed the idea before von Neumann arrived on the scene.

• Goldstine circulated von Neumann's first draft because of intense interest in the idea.

• Memo placed the idea in the public domain and prevented it from being patented.

• von Neumann never took credit for the idea, but never gave credit to others, either.

9

Another early computer

EDSAC. Electronic Delay Storage Automatic Calculator

• Second stored program computer (after EDVAC).

• Data and instructions encoded in binary.

• Could load programs, not just data, into memory.

• Could change program without rewiring.

EDSAC
1949

Facts and figures
512 17-bit words (8074 bits)

2 registers
16 instructions

input: paper tape
output: teleprinter

Maurice Wilkes
1913–2010

A bit

Implications

10

Stored-program (von Neumann) architecture is the basis of nearly all computers since the 1950s.

Practical implications

• Can load programs, not just data, into memory (download apps).

• Can write programs that produce programs as output (compilers).

• Can write programs that take programs as input (simulators).

Profound implications (stay tuned for theory lectures)

• TOY can solve any problem that any other computer can solve (!)

• Some problems cannot be solved by any computer at all (!!)

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

An instructive scenario

13

Alice, a scientist, develops a procedure for her experiments.

• Uses a scientific instrument connected to a paper tape punch.

• Takes the paper tape to a computer to process her data.

• Uses array code from last lecture to load her data.

• Writes array-processing code that analyzes her data.

• Punches out the results on paper tape to save them.
Alice

R1 ← 1

RA ← N

R6 ← 80

RB ← 0

if (RA == 0) PC ← 1B

read RC from stdin

R5 ← R6 + RB

mem[R5] ← RC

RB ← RB + 1

RA ← RA - 1

PC ← 14

[begin array processing code]

10 7 1 0 1
11 8 A F F
12 7 6 8 0
13 7 B 0 0
14 C A 1 B
15 8 C F F
16 1 5 6 B
17 B C 0 5
18 1 B B 1
19 2 A A 1
1A C 0 1 4
1B

............

PC

Arrays example: Read an array from standard input (continued from last lecture)

14

int a = StdIn.read();

arr = new int[];

int b = 0;

while (a != 0) {

 int c = StdIn.read();

 arr[b] = c;

 b++;

 a--;

}

Register trace

A 4 3 2 1 0

B 2 3 4 5 6

C 2 3 5 8 D

66

11

22

33

55

88

1313

S T D I N

Memory

80

81

82

83

84

85

...

0 0 0 1
0 0 0 2
0 0 0 3
0 0 0 5
0 0 0 8
0 0 0 D

6

0

1

5

1

An instructive scenario (continued)

15

Alice, a scientist, develops a procedure for her experiments.

• Uses a scientific instrument connected to a paper tape punch.

• Takes the paper tape to a computer to process her data.

• Uses array code from last lecture to load her data.

• Writes array-processing code that analyzes her data. Alice

Eve

Hey, Alice.
Could you process

my data?

Eve, a fellow scientist, runs some experiments, too.

Sure.

Eve's tape

16

8 8 1 1
9 8 F F
C 0 1 2

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
0 1 0 0 25610 ? A first clue that something is fishy.

146 words, all 8 8 8 8 .

Three additional suspicious words at the end.

Eve

What happens with Eve's tape

17

 Memory Memory Memory Memory Memory

00 0 0 0 0
01 F F F E
02 0 0 0 D
03 0 0 0 3
04 0 0 0 1
05 0 0 0 0
06 0 0 0 0
07 0 0 0 0
08 0 0 0 0
09 0 0 0 0
0A 0 0 0 0
0B 0 0 0 0
0C 0 0 0 0
0D 0 0 0 0
0E 0 0 0 0
0F 0 0 0 0

10 7 1 0 1
11 8 A F F
12 7 6 8 0
13 7 B 0 0
14 C A 1 B
15 8 C F F
16 1 5 6 B
17 B C 0 5
18 1 B B 1
19 2 A A 1
1A C 0 1 4
1B 0 0 1 0
1C 0 1 0 0
1D 1 0 0 0
1E 0 1 0 0
1F 0 0 1 0

80 8 8 8 8
81 8 8 8 8
82 8 8 8 8
83 8 8 8 8
84 8 8 8 8
85 8 8 8 8
86 8 8 8 8
87 8 8 8 8
88 8 8 8 8
89 8 8 8 8
8A 8 8 8 8
8B 8 8 8 8
8C 8 8 8 8
8D 8 8 8 8
8E 8 8 8 8
8F 8 8 8 8

F0 8 8 8 8
F1 8 8 8 8
F2 8 8 8 8
F3 8 8 8 8
F4 8 8 8 8
F5 8 8 8 8
F6 8 8 8 8
F7 8 8 8 8
F8 8 8 8 8
F9 8 8 8 8
FA 8 8 8 8
FB 8 8 8 8
FC 8 8 8 8
FD 8 8 8 8
FE 8 8 8 8
FF 8 8 8 8

...

Not what Alice expects!

• Memory 80-FE fills with 8888.

• 8888 appears on output.

• Address overflow from FF to 00.

• Memory 00-0F is overwritten.

...

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

And then things get worse...

Alice

??

S T D O U T

8 8 8 8
8 8 8 8

88888888

88888888

88888888

88118811

98FF98FF

C012C012

C
5

R1 ← 1

RA ← N

R6 ← 80

RB ← 0

if (RA == 0) PC ← 1B

read RC from stdin

R5 ← R6 + RB

mem[R5] ← RC

RB ← RB + 1

RA ← RA - 1

PC ← 14

[begin array processing code]

10 7 1 0 1
11 8 A F F
12 7 6 8 0
13 7 B 0 0
14 C A 1 B
15 8 C F F
16 1 5 6 B
17 B C 0 5
18 1 B B 1
19 2 A A 1
1A C 0 1 4
1B

............

PC

What happens with Eve's tape when things get worse

18

int a = StdIn.read();

arr = new int[];

int b = 0;

while (a != 0) {

 int c = StdIn.read();

 arr[b] = c;

 b++;

 a--;

}

Register trace

Memory

80

81

82

83

84

85

...

FE

FF

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

8 8 1 1
9 8 F F
C 0 1 2

8 8 8 8

8 8 8 8

8888 8888 8888 8811 98FF C012
0F 10 11 12 13 14

S T D I N

Data is
overwriting

code!

Or is it code
overwriting

code?

10 7 1 0 1
11 8 A F F
12 7 6 8 0
13 7 B 0 0
14 C A 1 B
15 8 C F F
16 1 5 6 B
17 B C 0 5
18 1 B B 1
19 2 A A 1
1A C 0 1 4
1B

............

What happens when things get worse: Eve OWNS Alice's computer

19

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

8 8 1 1
9 8 F F
C 0 1 2

8 8 8 8

Eve

Remember me?

[maniacal laugh]

R8 ← 8888

write R8 to stdout

PC ← 12

She could have loaded any program at all . . .

S T D O U T

2010-present
iPhone/iPad

Buffer overflow
is “top 5 vulnerability”

Buffer overflow in the real world

20

C/C++/Objective C string/array overflow

• Program does not check for long string.

• Hacker puts code at end of long string.

• Hacker owns your computer.

2004
.jpeg of death

Windows browsers
buffer overflow

on an image

#include <stdio.h>
int main(void)
{
 char buffer[100];
 scanf("%s", buffer);
 printf("%s\n", buffer);
 return 0;
}

unsafe C code

1988
Morris Worm

infected research
computers

throughout US

2000s
Xbox/Zelda/Pokemon

Buffer overflow
enables use of unlicensed

games

Note: Java tries to help us
write secure code

• Array bounds checking.

• Type safety.

Memory representation
main

buffer code for scanf() call

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

Programs that process programs on TOY

23

von Neumann architecture

• No difference between data and instructions.

• Same word can be data one moment, an instruction the next.

Early programmers immediately realized the advantages

• Can save programs on physical media (dump).

• Can load programs at another time (boot).

• Can develop higher-level languages (assembly language).

TEQ 3 on TOY

24

Q. What does the following program leave in R2?

RC ← 1010

PC ← 12
R2 ← R2 + R2
RC ← RC - 1
if (RC > 0) PC ← 12
HALT

R1 ← 1
R2 ← 1
PC ← 12

10 7 C 0 A
11 C 0 1 6
12 1 2 2 2
13 2 C C 1
14 D C 1 2
15 0 0 0 0
16 7 1 0 1
17 7 2 0 1
18 C 0 1 2

TEQ 3 on TOY

25

Q. What does the following program leave in R2?

Example of a patch—very common in early programming.

A. 210 = 102410 = 040016. Same as TEQ 2.

RC ← 1010

PC ← 12
R2 ← R2 + R2
RC ← RC - 1
if (RC > 0) PC ← 12
HALT

R1 ← 1
R2 ← 1
PC ← 12

10 7 C 0 A
11 C 0 1 6
12 1 2 2 2
13 2 C C 1
14 D C 1 2
15 0 0 0 0
16 7 1 0 1
17 7 2 0 1
18 C 0 1 2

Q. How to save a program for another day?

• Day’s work represents patches and other code entered via switches.

• Must power off (vacuum tubes can’t take the heat).

Dumping

26

A. Write a short program to dump contents of memory to tape.

• Key in program via switches in memory locations 00-08.

• Run it to save data/instructions in memory 10-FE. Why not 00-0F? Stay tuned.
Why not FF? It’s StdIn/StdOut.

R1 ← 1

R2 ← 10

R3 ← 00FF

RA ← mem[R2]

write RA to stdout

R2 ← R2 + 1

R4 ← 00FF - R2

if (R4 > 0) PC ← 03

halt

00 7 1 0 1
01 7 2 1 0
02 7 3 F F
03 A A 0 2
04 9 A F F
05 1 2 2 1
06 2 4 3 2
07 D 4 0 3
08 0 0 0 0

int i = 0x10;

do {

 a = mem[i];

 StdOut.print(a);

 i++;

 } while (i < 255)

}

DUMP code
hex literal

A. Reboot the computer.

• Turn it on.

• Key in boot code via switches in memory locations 00-08.

• Run it to load data/instructions in memory 10-FE.

Booting

27

Why not 00-0F? Would overwrite program!

Q. How to load a program on another day?

 BOOT DUMP
00: 7101
01: 7210
02: 73FF
03: 8AFF AA02
04: BA02 9AFF
05: 1221
06: 2432
07: D403
08: 0000

R1 ← 1

R2 ← 10

R3 ← 00FF

read from stdin to RA

mem[R2] ← RA

R2 ← R2 + 1

R4 ← 00FF - R2

if (R4 > 0) PC ← 03

halt

00 7 1 0 1
01 7 2 1 0
02 7 3 F F
03 8 A F F
04 B A 0 2
05 1 2 2 1
06 2 4 3 2
07 D 4 0 3
08 0 0 0 0

int i = 0x10;

do {

 StdIn.read(a);

 mem[i] = a;

 i++;

 } while (i < 255)

}

BOOT code

Early programmers would pride themselves
in the speed they could enter such code

Assembly language

28

Assembly language

• Program in a higher-level language.

• Write a machine-language program to translate.

• Used widely from early days through the 1990s.

• Still used today.

LA R1,01

LA R2,10

LA R3,FF

LOOP RD RA

SI RA,R2

A R2,R2,R1

S R4,R3,R2

BP R4, LOOP

H

00 7 0 0 1
01 7 2 1 0
02 7 3 F F
03 8 A F F
04 B A 0 2
05 1 2 2 1
06 2 4 3 2
07 D 4 0 3
08 0 0 0 0

TOY machine code TOY assembly code

Advantages

• Mnenomics, not numbers, for opcodes.

• Symbols, not numbers, for addresses.

• Relocatable.

First assembly language

Tip of the iceberg

29

Practical implications of von Neumann architecture

• Installers that download applications.

• Compilers that translate Java into machine language.

• Simulators that make one machine behave like another (stay tuned).

• Cross-compilers that make code for one machine on another.

• Dumping and booting.

• Viruses.

• Virus detection.

• Virtual machines.

• Thousands of high-level languages.

• [an extremely long list]

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

Is TOY real?

32

Q. How did we debug all our TOY programs?

A. We wrote a Java program to simulate TOY.

Comments

• YOU could write this program (stay tuned).

• We designed TOY by refining this code.

• All computers are designed in this way.

Provocative questions

• Is Android real?

• Is Java real?

• Suppose we run our TOY simulator on Android.
Is TOY real?

Estimated number of Android devices: 1 billion+

Estimated number of TOY devices: 0

Estimated number of TOY devices: 1 billion+

Toy simulator in Java

33

public class TOYlecture
{
 public static void main(String[] args)
 {
 int pc = 0x10; // program counter
 int[] R = new int[16]; // registers
 int[] mem = new int[256]; // main memory

 In in = new In(args[0]);
 for (int i = 0x10; i < 0xFF; i++)
 if (!in.isEmpty())
 mem[i] = Integer.parseInt(in.readString(), 16);

 while (true)
 {
 int inst = mem[pc++]; // fetch and increment
 // decode (next slide)
 // execute (second slide following)
 }
 }
}

% more add-stdin.toy
8C00
8AFF
CA15
1CCA
C011
9CFF
0000

% more data
00AE
0046
0003
0000

% java TOY add-stdin.toy < data
00F7

A Java program that simulates the TOY machine.

• Take program from a file named in the command line.

• Take TOY StdIn/StdOut from Java StdIn/Stdout.

TOY code to
add ints on StdIn

data

like StdIn but reads
from a file (see text)

base 16

TOY simulator: decoding instructions

int inst = mem[pc++]; // fetch and increment
int op = (inst >> 12) & 15; // opcode (bits 12-15)
int d = (inst >> 8) & 15; // dest d (bits 08-11)
int s = (inst >> 4) & 15; // source s (bits 04-07)
int t = (inst >> 0) & 15; // source t (bits 00-03)
int addr = (inst >> 0) & 255; // addr (bits 00-07)

34

Bitwhacking is the same in Java as in TOY

• Extract fields for both instruction formats.

• Use shift and mask technique.

decode

Example: Extract destination d from 1CAB

0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 1

1 C A B
inst

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
inst >> 8

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
15

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
(inst >> 8) & 15

C

Bitwise AND of data and “mask”
result is 0 where mask is 0
data bit where mask is 1

TOY simulator: executing instructions

if (op == 0) break; // halt

switch (op)
{
 case 1: R[d] = R[s] + R[t]; break;
 case 2: R[d] = R[s] - R[t]; break;
 case 3: R[d] = R[s] & R[t]; break;
 case 4: R[d] = R[s] ^ R[t]; break;
 case 5: R[d] = R[s] << R[t]; break;
 case 6: R[d] = R[s] >> R[t]; break;
 case 7: R[d] = addr; break;
 case 8: R[d] = mem[addr]; break;
 case 9: mem[addr] = R[d]; break;
 case 10: R[d] = mem[R[t]]; break;
 case 11: mem[R[t]] = R[d]; break;
 case 12: if (R[d] == 0) pc = addr; break;
 case 13: if (R[d] > 0) pc = addr; break;
 case 14: pc = R[d]; break;
 case 15: R[d] = pc; pc = addr; break;
}

35

Use Java switch statement to implement the simple state changes for each instruction.

execute

Toy simulator in Java

36

public class TOYlecture
{
 public static void main(String[] args)
 {
 int pc = 0x10; // program counter
 int[] R = new int[16]; // registers
 int[] mem = new int[256]; // main memory

 In in = new In(args[0]);
 for (int i = 0x10; i < 0xFF; i++)
 if (!in.isEmpty())
 mem[i] = Integer.parseInt(in.readString(), 16);

 while (true)
 {
 int inst = mem[pc++]; // fetch and increment

 int op = (inst >> 12) & 15; // opcode (bits 12-15)
 int d = (inst >> 8) & 15; // dest d (bits 08-11)
 int s = (inst >> 4) & 15; // source s (bits 04-07)
 int t = (inst >> 0) & 15; // source t (bits 00-03)
 int addr = (inst >> 0) & 255; // addr (bits 00-07)
 if (op == 0) break; // halt

 switch (op)
 {
 case 1: R[d] = R[s] + R[t]; break;
 case 2: R[d] = R[s] - R[t]; break;
 case 3: R[d] = R[s] & R[t]; break;
 case 4: R[d] = R[s] ^ R[t]; break;
 case 5: R[d] = R[s] << R[t]; break;
 case 6: R[d] = R[s] >> R[t]; break;
 case 7: R[d] = addr; break;
 case 8: R[d] = mem[addr]; break;
 case 9: mem[addr] = R[d]; break;
 case 10: R[d] = mem[R[t]]; break;
 case 11: mem[R[t]] = R[d]; break;
 case 12: if (R[d] == 0) pc = addr; break;
 case 13: if (R[d] > 0) pc = addr; break;
 case 14: pc = R[d]; break;
 case 15: R[d] = pc; pc = addr; break;
 }
 }
 }
}

execute

decode
fetch/inc

load

A few omitted details.

• R0 is always 0 (put R[0] = 0 before execute).

• StdIn/StdOut (add code to do it if addr is FF).

• Need casts and bitwhacking in a few places
because TOY is 16-bit and Java is 32-bit.

See full implementation TOY.java on booksite
 (also supports a more flexible input format)

Important TOY design goal:

 Simulator must fit on one slide for this lecture!

Toy simulator in Java

37

public class TOYlecture
{
 public static void main(String[] args)
 {
 int pc = 0x10; // program counter
 int[] R = new int[16]; // registers
 int[] mem = new int[256]; // main memory

 In in = new In(args[0]);
 for (int i = 0x10; i < 0xFF; i++)
 if (!in.isEmpty())
 mem[i] = Integer.parseInt(in.readString(), 16);

 while (true)
 {
 int inst = mem[pc++]; // fetch and increment

 int op = (inst >> 12) & 15; // opcode (bits 12-15)
 int d = (inst >> 8) & 15; // dest d (bits 08-11)
 int s = (inst >> 4) & 15; // source s (bits 04-07)
 int t = (inst >> 0) & 15; // source t (bits 00-03)
 int addr = (inst >> 0) & 255; // addr (bits 00-07)
 if (op == 0) break; // halt

 switch (op)
 {
 case 1: R[d] = R[s] + R[t]; break;
 case 2: R[d] = R[s] - R[t]; break;
 case 3: R[d] = R[s] & R[t]; break;
 case 4: R[d] = R[s] ^ R[t]; break;
 case 5: R[d] = R[s] << R[t]; break;
 case 6: R[d] = R[s] >> R[t]; break;
 case 7: R[d] = addr; break;
 case 8: R[d] = mem[addr]; break;
 case 9: mem[addr] = R[d]; break;
 case 10: R[d] = mem[R[t]]; break;
 case 11: mem[R[t]] = R[d]; break;
 case 12: if (R[d] == 0) pc = addr; break;
 case 13: if (R[d] > 0) pc = addr; break;
 case 14: pc = R[d]; break;
 case 15: R[d] = pc; pc = addr; break;
 }
 }
 }
}

% more read-array.toy
7100
8AFF
7680
...

% more eves-tape
0100
8888
8888
....

% java TOYlecture read-array.toy < eves-tape
8888
8888
8888
8888
8888

Comments.

• Runs any TOY program!

• Easy to change design.

• Can develop TOY code on another machine.

• Could implement in TOY (!!).

Toy development environment

38

Another Java program that simulates the TOY machine

• Includes graphical simulator.

• Includes single stepping, full display of state of
machine, and many other features.

• Includes many simple programs.

• Written by a COS 126 graduate.

• Available on the booksite.

• YOU can develop TOY software.

Same approach used for all
new systems nowadays

• Build simulator and
development environment.

• Develop and test software.

• Build and sell hardware.

Backward compatibility

39

Approach 1: Rewrite it all

• Costly and time-consuming.

• Error-prone.

• Boring.

Q. Time to build a new computer. What to do about old software?

Approach 2: Simulate the old computer on
the new one.

• Not very difficult.

• Still likely more efficient.

• Succeeds for all old software.

Result. Old software remains available.

Disturbing thought: Does anyone know how it works?

PacMac on a laptop 2000s

PacMac on a phone 2010s

PacMac machine 1980s

Another note of caution

An urban legend about backward compatability.

40

• Space shuttle solid rocket booster needed to be
transported by rail.

• US railroads were built by English expats, so
the standard rail gauge is 4 feet 8.5 inches.

• English rail gauge was designed to match ruts
on old country roads.

• Ruts on old country roads were first made by
Roman war chariots.

• Wheel spacing on Roman war chariots was
determined by the width of a horse’s back end.

Worthwhile takeaway. Backwards compatability is Not Necessarily Always a Good Thing.

End result. Key space shuttle dimension determined by the width of a war horse’s back end.

Backward compatibility is pervasive in today’s world

41

Much of our infrastructure was built in the 1970s on machines not so different from TOY.

Time to design and build something suited for today’s world? Go for it! That means YOU !

Documents need backward
compatibility with .doc format

Broadcast TV needs backward
compatibility with analog B&W

iPhone software is written
in an unsafe language

iPhone software written
in unsafe languageweb pages need compatibility

with new and old browsers

Business software is written
in a dead language and

run with many layers of emulation

Airline scheduling uses
1970s software

Virtual machines

42

Building a new rocket? Simulate it to test it.

• Issue 1: Simulation may not reflect reality.

• Issue 2: Simulation may be too expensive.

Building a new computer? Simulate it to test it.

• Advantage 1: Simulation is reality (it defines the new machine).

• Advantage 2: Can develop software without having machine.

• Advantage 3: Can simulate machines that may never be built.

Examples in today’s world.

• Virtual memory.

• Java virtual machine.

• Amazon cloud.

Internet commerce is moving to such machines.

Forming a startup? Use a virtual machine.
It is likely to perform better for you than
whatever real machine you might be able to afford.

A machine that may never be built

Virtual machines of many, many types
(old and new) are available for use on the web.

Layers of abstraction

43

Approaching a new problem?

• Build an (abstract) language for expressing solutions.

• Design an (abstract) machine to run programs written in the language.

• Food for thought: Why build the machine? Just simulate it instead!

Computer systems are built by accumulating layers of abstraction.

Processor

Machine language

Java virtual machine

Java

TOY simulator

TOY program

Is TOY real?

Is your computer real?

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

12. von Neumann machines

•Perspective
•A note of caution
•Practical implications
•Simulation

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

12. von Neumann Machines

