
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

11. A Computing
Machine

Section 4.1

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

3

What is TOY?

An imaginary machine similar to:

• Ancient computers.

• Today's smartphone processors.

• Countless other devices designed

and built over the past 50 years.

PDP-8, 1970s

Smartphone processor, 2010s

4

Reasons to study TOY

Learn about machine-language programming.

• How do Java programs relate to computer?

• Key to understanding Java references.

• Still necessary in modern applications.

Learn fundamental abstractions that have informed processor design for decades.

Prepare to learn about computer architecture

• How does your computer's processor work?

• What are its basic components?

• How do they interact?

multimedia, computer games, embedded devices, scientific computing,...

Bits and words

5

Everything in TOY is encoded with a sequence of bits (value 0 or 1).

• Why? Easy to represent two states (on and off) in real world.

• Bits are organized in 16-bit sequences called words.

More convenient for humans: hexadecimal notation (base 16)

• 4 hex digits in each word.

• Convert to and from binary 4 bits at a time.

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

1111 8888 EEEE 7777

binary hex

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

Inside the box

Components of TOY machine

• Memory

• Registers

• Arithmetic and logic unit (ALU)

• PC and IR

6

PC

IR

Memory Registers ALU

Memory

Holds data and instructions

• 256 words

• 16 bits in each word.

• Connected to registers.

• Words are addressable.

7

Use hexadecimal for addresses

• Number words from 00 to FF.

• Think in hexadecimal.

Table of 256 words completely specifies contents of memory.

 Memory Memory Memory Memory Memory

00 0 0 0 0
01 F F F E
02 0 0 0 D
03 0 0 0 3
04 0 0 0 1
05 0 0 0 0
06 0 0 0 0
07 0 0 0 0
08 0 0 0 0
09 0 0 0 0
0A 0 0 0 0
0B 0 0 0 0
0C 0 0 0 0
0D 0 0 0 0
0E 0 0 0 0
0F 0 0 0 0

10 8 A 0 1
11 8 B 0 2
12 1 C A B
13 9 C 0 3
14 0 0 0 1
15 0 0 1 0
16 0 1 0 0
17 1 0 0 0
18 0 1 0 0
19 0 0 1 0
1A 0 0 0 1
1B 0 0 1 0
1C 0 1 0 0
1D 1 0 0 0
1E 0 1 0 0
1F 0 0 1 0

20 7 1 0 1
21 8 A F F
22 7 6 8 0
23 7 B 0 0
24 C A 2 B
25 8 C F F
26 1 5 6 B
27 B C 0 5
28 2 A A 1
29 2 B B 1
2A C 0 2 4
2B 0 0 0 0
2C 0 0 0 0
2D 0 0 0 0
2E 0 0 0 0
2F 0 0 0 0

F0 F 0 F 0
F1 0 5 0 5
F2 0 0 0 D
F3 1 0 0 0
F4 0 1 0 1
F5 0 0 1 0
F6 0 0 0 1
F7 0 0 1 0
F8 0 1 0 0
F9 1 0 0 0
FA 0 1 0 0
FB 0 0 1 0
FC 0 0 0 1
FD 0 0 1 0
FE 0 1 0 0
FF 0 1 0 0

...

Arithmetic and logic unit (ALU)

8

ALU.

• TOY's computational engine.

• A calculator, not a computer.

• Hardware that implements all data-type operations.

• How? Stay tuned for computer architecture lectures.

ALU

Registers

9

 Registers Registers Registers Registers Registers
R0 0 0 0 0
R1 0 0 0 5
R2 0 0 0 8
R3 0 0 0 D
R4 0 0 0 1
R5 0 0 0 0
R6 F A C E
R7 0 0 0 0
R8 F 0 0 1
R9 0 0 0 0
RA 0 0 0 0
RB 0 0 0 0
RC 0 0 0 0
RD 0 0 0 0
RE 0 0 0 0
RF 0 0 0 0

Registers

• 16 words, addressable in hex from 0 to F (use names R0 through RF)

• Scratch space for calculations and data movement.

• Connected to memory and ALU

• By convention, R0 is always 0.

Q. Why not just connect memory directly to ALU?

Table of 16 words completely specifies contents of registers.

A. Too many different memory names (addresses).

Q. Why not just connect memory locations to one another?

A. Too many different connections.

often simplifies code (stay tuned)

In our code, we often also keep 0001 in R1.

Program counter and instruction register

10

Fetch-increment-execute cycle

• Fetch: Get instruction from memory into IR.

• Increment: Update PC to point to next instruction.

• Execute: Move data to or from memory, change PC,

or perform calculations, as specified by IR.

PC
10

FETCH

INCREMENT
EXECUTE

9 A 0 0
IRCritical abstractions in making this happen

• Program Counter (PC). Memory address of next instruction.

• Instruction Register (IR). Instruction being executed.

TOY operates by executing a sequence of instructions.

11

The state of the machine

Contents of memory, registers, and PC at a particular time

• Provide a record of what a program has done.

• Completely determines what the machine will do.

Memory Registers

PC

IR

ALU

ALU and IR hold

intermedate states

of computation

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

TOY data type

14

Two kinds of operations

• Arithmetic.

• Bitwise.

All values are represented in 16-bit words.

All other types of data must be implemented with software

• 32-bit and 64-bit integers.

• 32-bit and 64-bit floating point values.

• Characters and strings.

• ...

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

A data type is a set of values and a set of operations on those values.

TOY’s data type is 16-bit 2s complement integers.

TOY data type (original design): Unsigned integers

15

Values. 0 to 216 �1, encoded in binary (or, equivalently, hex).

Example. 637510 .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

212 +211+211 +27 +26 +25 +22 +21 +20

binary

1 8 E 7
1 ⇥ 163 + 8 ⇥ 162 + 14 ⇥ 16 + 7
4096 + 2048 + 224 + 7

hex

Operations.

• Add.

• Subtract.

• Test if 0.

0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0

Example. 18E7 + 18E7 = 31CE

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1

0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1+

=

Warning. TOY ignores overflow.

TOY data type (better design): 2s complement

16

decimal hex binary

+32,767 7FFF 0111111111111111

+32,766 7FFE 0111111111111110

+32,765 7FFD 0111111111111101

...

+3 0003

+2 0002

+1 0001

0 0000

�1 FFFF

�2 FFFE

�3 FFFD

...

�32,766 8002 1000000000000010

�32,767 8001 1000000000000001

�32,768 8000 1000000000000000

Useful properties

• Leading bit (bit 15) signifies sign.

• 0000000000000000 represents zero.

• Add/subtract is the same as for unsigned.

16 bit 2s complement

• 16-bit binary representation of x for positive x.

• 16-bit binary representation of 216 � |x| for negative x.

Values. � 215 to 215 �1, encoded in 16-bit 2s complement.

Operations.

• Add.

• Subtract.

• Test if positive, negative, or 0.

slight annoyance: one extra negative value

includes negative integers!

2s complement: conversion

17

To convert from decimal to 2s complement

• If greater than +32,767 or less than �32,768

report error.

• Convert to 16-bit binary.

• If not negative, done.

• If negative, flip all bits and add 1.

To convert from 2s complement to decimal

• If sign bit is 1, flip all bits and add 1 and

output minus sign.

• Convert to decimal.

ExamplesExamples

+1310 0000000000001011 000D

�1310 1111111111110101 FFF5

+25610 0000000100000000 0100

�25610 1111111100000000 FF00

To add/subtract

• Use same rules as for unsigned binary.

• (Still) ignore overflow.

ExamplesExamples

0001 0000000000000001 110

FFFF 1111111111111111 �110

FF0D 1111111100001101 �24310

00F3 0000000011110011 +24310

ExampleExample

�25610 1111111100000000 FF00

+1310 +0000000000001011 +000D

= �24310 =1111111100001101 =FF0D

Overflow in 2s complement

18

http://xkcd.com/571/

32,76710 = 215 �1 0111111111111111 7FFF

+1 + 0000000000000001 + 0001

= 1000000000000000 = 8000 = �215 = �32,76810
largest (positive)

number

smallest (negative)

number

TOY data type: Bitwise operations

19

Operations

• Bitwise AND.

• Bitwise XOR.

• Shift left.

• Shift right.

0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1AND

0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0=

Special note: Shift left/right operations also implement multiply/divide by powers of 2 for integers.

0 1 0 1 1 0 0 1 0 1 0 0 1 0 0 0

0 0 0 1 1 1 1 1 0 0 0 0 0 1 0 1XOR

0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1=

0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1

0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0Shift left 3

0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1Shift right 3

fill with 0s

fill with 0s

x y x AND y

0 0 0

0 1 0

1 0 0

1 1 1

x y x XOR y

0 0 0

0 1 1

1 0 1

1 1 0

shift right fills with 1s if leading bit is 1

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

TOY instructions

22

First hex digit specifies which instruction.
1
2
3
4
5
6

add

subtract

and

xor

shift left

shift right

7
8
9
A
B

load address

load

store

load indirect

store indirect

Each instruction changes machine state in well-defined ways.

category opcodes implements changes

operations 1 2 3 4 5 6 data-type operations registers

data

movement
7 8 9 A B data moves between

registers and memory

registers,

memory

flow of

control
0 C D E F conditionals, loops, and

functions
PC

opcode instruction

0 halt

C
D
E
F

branch if zero

branch if positive

jump register

jump and link

ANY 16-bit (4 hex digit) value defines a TOY instruction.

Encoding instructions

23

Two different instruction formats

• Type 1: Opcode and 3 registers.

• Type 2: Opcode, 1 register, and 1 memory address.

ANY 16-bit (4 hex digit) value defines a TOY instruction.
opcode instruction

0 1

1 1

2 1

3 1

4 1

5 1

6 1

halt

add

subtract

and

xor

shift left

shift right

A 1

B 1

load indirect

store indirect

7 2

8 2

9 2

load address

load

store

C 2

D 2

E 2

F 2

branch if zero

branch if positive

jump register

jump and link

ExamplesExamples

1 C A B add RA to RB and put result in RC

8 B 0 1 load contents of memory location 01into RB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcodeopcodeopcodeopcode destination Rddestination Rddestination Rddestination Rd source Rssource Rssource Rssource Rs source Rtsource Rtsource Rtsource Rt

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcodeopcodeopcodeopcode destination Rddestination Rddestination Rddestination Rd address ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDR

A TOY program

24

Memory

RA ← mem[01]
RB ← mem[02]
RC ← RA + RB
mem[03] ← RC
halt

00

01 0 0 0 8
02 0 0 0 5
03

04

............

10 8 A 0 1
11 8 B 0 2
12 1 C A B
13 9 C 0 3
14 0 0 0 0

............

Registers
............

A

B

C

............

PC

0 0 0 8
0 0 0 5
0 0 0 D

0 0 0 D

Add two integers

• Load operands from memory into registers.

• Add the registers.

• Put result in memory.

 Load into RA data from mem[01]

 Load into RB data from mem[02]

 Add RA and RB and put result into RC

 Store RC into mem[03]

 Halt

Q. How can you tell whether a word is an instruction?

A. If the PC has its address, it is an instruction!

Same program with different data

25

Memory

RA ← mem[01]
RB ← mem[02]
RC ← RA + RB
mem[03] ← RC
halt

00

01 F F F E
02 0 0 0 5
03

04

............

10 8 A 0 1
11 8 B 0 2
12 1 C A B
13 9 C 0 3
14 0 0 0 0

............

Registers
............

A

B

C

............

PC

F F F E
0 0 0 5
0 0 0 3

0 0 0 3

Add two integers

• Load operands from memory into registers.

• Add the registers.

• Put result in memory.

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

Outside the box

28

User interface

• Switches.

• Lights.

• Control Buttons.

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

First step: Turn on the machine!

ON

01: 0008
02: 0005

10: 8A00
11: 8B01
12: 1CAB
13: 9C02
14: 0000

Loading data into memory

29

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

To load data

• Set 8 memory address switches.

• Set 16 data switches to data encoding.

• Press LOAD to load data from switches into addressed memory word.

LOADLOAD ON

Looking at what's in the memory

30

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

To double check that you loaded the data correctly

• Set 8 memory address switches.

• Press LOOK to examine the addressed memory word.

ONLOOK 01: 0008
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

LOOK

Loading instructions into memory

31

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

Use the same procedure as for data

• Set 8 memory address switches.

• Set 16 data switches to instruction encoding.

• Press LOAD to load instruction from switches into addressed memory word.

ON 01: 0008
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

LOAD

Loading instructions into memory

32

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

Use the same procedure as for data

• Set 8 memory address switches.

• Set 16 data switches to instruction encoding.

• Press LOAD to load instruction from switches into addressed memory word.

ON 01: 0008
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

LOAD

Loading instructions into memory

33

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

Use the same procedure as for data

• Set 8 memory address switches.

• Set 16 data switches to instruction encoding.

• Press LOAD to load instruction from switches into addressed memory word.

ON 01: 0008
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

LOAD

Loading instructions into memory

34

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

Use the same procedure as for data

• Set 8 memory address switches.

• Set 16 data switches to instruction encoding.

• Press LOAD to load instruction from switches into addressed memory word.

ON 01: 0008
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

LOAD

Loading instructions into memory

35

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

Use the same procedure as for data

• Set 8 memory address switches.

• Set 16 data switches to instruction encoding.

• Press LOAD to load instruction from switches into addressed memory word.

ON 01: 0008
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

LOAD

Running a program

36

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

ON

To see the output, set the address switches to the address of expected result and press LOOK.

To run a program, set the address switches to the address of first instruction and press RUN.

[data lights may flash, but all go off when HALT instruction is reached]

RUN 01: 0008
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

03: 000D

Same program with different data

37

LOAD LOOK STEP RUN ON/OFF

TOY
A COMPUTING MACHINE

ADDR

DATA

ON

Look at the output: Set address switches to the address of expected result and press LOOK.

Load different data: Set address and data switches and press LOAD.

01:
02: 0005

10: 8A01
11: 8B02
12: 1CAB
13: 9C03
14: 0000

LOOK

03: 0003

Run the program: Set address switches to the address of first instruction and press RUN.

F F F E

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

Machine language programming

40

TOY instructions support the same basic programming

constructs that you learned in Java.

• Primitive data types.

• Assignment statements.

• Conditionals and loops.

• Standard input and output (this section).

• Arrays (this section).

and can support advanced constructs, as well.

• Functions and libraries.

• Objects.

Conditionals and loops

41

To infinity and beyond!

To control the flow of instruction execution

• Test a register's value.

• Change the PC, depending on the value.

Example: Absolute value of RAExample: Absolute value of RAExample: Absolute value of RAExample: Absolute value of RA

10 D A 1 2 If RA > 0 set PC to 12 (skip 11)

11 2A0A Subtract RA from 0 (R0) and put result into RA

12 . . .

Example: Typical while loop (assumes R1 is 0001)Example: Typical while loop (assumes R1 is 0001)Example: Typical while loop (assumes R1 is 0001)Example: Typical while loop (assumes R1 is 0001)

10 C A 1 5 If RA = 0 set PC to 15

11 . . .
12 . . .
13 2AA1 Decrement RA by 1

14 C010 Set PC to 10

15 . . .

while (a != 0) {

 ...

 ...

 a--;

}

opcode instruction

C
D

branch if zero

branch if positive

Standard input and output

42

An immediate problem

• We can't be using switches and lights all the time!

• One solution: Paper tape.

S T D I N STDOUT

Need to bolt new I/O devices

to the side of the machine.

Standard input and output

43

Punched paper tape

• Encode 16-bit words in two 8-bit rows.

• To write a word, punch a hole for each 1.

• To read a word, shine a light behind the tape and sense the holes.

TOY mechanism

• Connect hardware to memory location FF.

• To write the contents of a register to stdout, store to FF.

• To read from stdin into a register, load from FF.

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 11

11

22

33

55

88

1313

2121

3434

5555

Flow control and standard output example: Fibonacci numbers

44

Memory

PC R1 ← 1

RC ← 1

RB ← 0

RA ← mem[00]

if (RA == 0) PC ← 1A

write RC to stdout

RC ← RB + RC

RB ← RC - RB

RA ← RA - 1

PC ← 14

halt

00 0 0 0 A
01 0 0 0 1
02

............

10 8 1 0 1
11 8 C 0 1
12 2 B B B
13 8 A 0 0
14 C A 1 A
15 9 C F F
16 1 C B C
17 2 B C B
18 2 A A 1
19 C 0 1 4
1A 0 0 0 0

............

Register trace
C 2 3 5 8 13 21 34 55 89

B 1 2 3 5 8 13 21 34 55

A 8 7 6 5 4 3 2 1 0

int c = 1;

int b = 0;

int a = N;

while (a != 0) {

 StdOut.print(c);

 c = b + c;

 b = c - b;

 a--;

}

N FN

0 0

1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

9 34

10 55

S T D O U T

1

0

A

1

1

9

Arrays

45

To access an array element, use indirection

• Keep array address in a register.

• Add index

• Indirect load/store uses contents of a register.

Example: Indirect storeExample: Indirect storeExample: Indirect storeExample: Indirect store

12 7680 Load the address 80 into R6 array starts at mem location 80

13 7B00 Set RB to 0 b is the index

...

16 156B R5 ← R6 + RB compute address of a[b]

17 BC05 mem[R5] ← RC a[b] ← c

18 1BB1 RB ← RB + 1 increment b

...

opcode instruction

7
A
B

load address

load indirect

store indirect

To implement an array

• Keep items in an array contiguous starting at mem address a.

• Access a[i] at mem[a+i]. 80 0 0 0 0
81 0 0 0 1
82 0 0 0 1
83 0 0 0 2
84 0 0 0 3
85 0 0 0 5
86 0 0 0 8
87 0 0 0 D
88 0 0 1 5
89 0 0 2 2
8A 0 0 3 7

Array of length 11

Arrays example: Read an array from standard input

46

int a = StdIn.read();

arr = new int[];

int b = 0;

while (a != 0) {

 int c = StdIn.read();

 arr[b] = c;

 b++;

 a--;

}

To implement an array

• Keep items in an array contiguous starting at mem location a.

• Access a[i] at mem[a+i].

Stay tuned.

Full trace in next lecture.

10 7 1 0 1 R1 ← 1

11 8 A F F RA ← N

12 7 6 8 0 R6 ← 80

13 7 B 0 0 RB ← 0

14 C A 1 B if (RA == 0) PC ← 1B

15 8 C F F read RC from stdin

16 1 5 6 B R5 ← R6 + RB

17 B C 0 5 mem[R5] ← RC

18 1 B B 1 RB ← RB + 1

19 2 A A 1 RA ← RA - 1

1A C 0 1 4 PC ← 14

1B [begin array processing code]

............

PC

TOY vs. your laptop

47

Two different computing machines

• Both implement basic data types, conditionals, loops, and other low-level constructs.

• Both can have arrays, functions, and other high-level constructs.

• Both have infinite input and output streams.

Q. Is 256 words enough to do anything useful?

Q. Is 256 words enough?

A. Yes! (Stay tuned for next lecture.)

OK, we definitely want a faster version with more memory when we can afford it...

functions and libraries

any program you might want to write

objects

graphics, sound, and image I/O

arrays

Math text I/O

assignment statementsprimitive data types

conditionals and loops

uses opcodes E and F

[see booksite]

TOY reference card

48

opcode operation format pseudo-code

0 HALT 1 HALT

1 add 1 R[d] ← R[s] + R[t]

2 subtract 1 R[d] ← R[s] - R[t]

3 and 1 R[d] ← R[s] & R[t]

4 xor 1 R[d] ← R[s] ^ R[t]

5 shift left 1 R[d] ← R[s] << R[t]

6 shift right 1 R[d] ← R[s] >> R[t]

7 load addr 2 R[d] ← ADDR

8 load 2 R[d] ← mem[ADDR]

9 store 2 mem[ADDR] ← R[d]

A load indirect 1 R[d] ← mem[R[t]]

B store indirect 1 mem[R[t]] ← R[d]

C branch zero 2 if (R[d] == 0) PC ← ADDR

D branch positive 2 if (R[d] > 0) PC ← ADDR

E jump register 2 PC ← R[d]

F jump and link 2 R[d] ← PC; PC ← ADDR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcodeopcodeopcodeopcode destination ddestination ddestination ddestination d source ssource ssource ssource s source tsource tsource tsource t

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

opcodeopcodeopcodeopcode destination ddestination ddestination ddestination d address ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDRaddress ADDR

Format 1

Format 2

ZERO R0 is always 0.

STANDARD INPUT Load from FF.

STANDARD OUTPUT Store to FF.

TEQ 1 on TOY

Q. What is the interpretation of

49

1A75 as a TOY instruction?

1A75 as a 2s complement integer value?

0FFF as a TOY instruction?

0FFF as a 2s complement integer value?

8888 as a TOY instruction?

8888 as a 2s complement integer value? (Answer in base 16).

TEQ 2 on TOY

Q. How does one flip all the bits in a TOY register ?

50

TEQ 3 on TOY

Q. What does the following TOY program leave in R2 ?

51

RC ← 1010

R1 ← 1
R2 ← 1
R2 ← R2 + R2
RC ← RC - 1
if (RC > 0) PC ← 13
HALT

10 7 C 0 A

11 7 1 0 1

12 7 2 0 1

13 1 2 2 2

14 2 C C 1

15 D C 1 3

16 0 0 0 0

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

11. A Computing Machine

•Overview
•Data types
•Instructions
•Operating the machine
•Machine language programming

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

11. A Computing
Machine

Section 4.1

