

Three reasons to study program performance

- 1. To predict program behavior
- Will my program finish?
- When will my program finish?

2. To compare algorithms and implementations.

- Will this change make my program faster?
- How can I make my program faster?

3. To develop a basis for understanding the problem and for designing new algorithms

- · Enables new technology.
- Enables new research.

An *algorithm* is a method for solving a problem that is suitable for implementation as a computer program.

Algorithms

We study several algorithms later in this course.
Taking more CS courses?
You'll learn dozens of algorithms.

An algorithm design success story

N-body simulation

- Goal: Simulate gravitational interactions among N bodies.
- Brute-force algorithm requires N^2 steps.
- Issue (1970s): Too slow to address scientific problems of interest.
- Success story: Barnes-Hut algorithm uses NlogN steps and enables new research.

Andrew Appel PU '81

Another algorithm design success story

Fast Fourier transform

- Goal: Break down waveform of N samples into periodic components.
- Applications: digital signal processing, spectroscopy, ...
- Brute-force algorithm requires N^2 steps.
- Issue (1950s): Too slow to address commercial applications of interest.
- Success story: FFT algorithm requires NlogN steps and enables new technology.

Tukey

is the number x satisfying $2^x = N$.

Q. How many recursive calls for convert(N)?

Def. The binary logarithm of a number N (written lg N)

Quick aside: binary logarithms

Frequently encountered values

Ν	approximate value	lg <i>N</i>	log ₁₀ N
210	1 thousand	10	3.01
220	1 million	20	6.02
230	1 billion	30	9.03

- A. Largest integer less than $\lg N$ (written $\lfloor \lg N \rfloor$). \leftarrow Prove by induction. Details in "sorting and searching" lecture.
- Fact. The number of bits in the binary representation of N is $1 + \lfloor \lg N \rfloor$.
- Fact. Binary logarithms arise in the study of algorithms based on recursively solving problems half the size (divide-and-conquer algorithms), like convert, FFT and Barnes-Hut.

A first step in analyzing running time Find representative inputs • Option 1: Collect actual potential input data. • Option 2: Write a program to generate representative inputs. % java Generator 10 1000000 Input generator for ThreeSum -807569 public class Generator % java Generator 10 10 -425582 { // Generate N integers in [-M, M) -2 594752 public static void main(String[] args) 600579 -483784 int N = Integer.parseInt(args[0]); -861312 int M = Integer.parseInt(args[1]); -690436 -10 -732636 for (int i = 0; i < N; i++) 360294 StdOut.println(StdRandom.uniform(-M, M)); not much chance

of a 3-sum

Empirical analysis

Run experiments

- Start with a moderate size.
- Measure and record running time.
- Double size.
- · Repeat.
- · Tabulate and plot results.

Run experiments

```
% java Generator 1000 1000000 | java ThreeSum
59 (0 seconds)
% java Generator 2000 1000000 | java ThreeSum
522 (4 seconds)
% java Generator 4000 1000000 | java ThreeSum
3992 (31 seconds)
% java Generator 8000 1000000 | java ThreeSum
31903 (248 seconds)
```

Measure running time

Replace println() in ThreeSum with this code.

rrentTimeMillis()/1000.0;

double start = System.currentTimeMillis()/1000.0; int cnt = count(a); double now = System.currentTimeMillis()/1000.0; int time = Math.round(now - start); StdOut.println(cnt + " (" + time + " seconds)");

Tabulate and plot results

Aside: experimentation in CS

is virtually free, particularly by comparison with other sciences.

good chance of a 3-sum

Bottom line. No excuse for not running experiments to understand costs.

Data analysis

Curve fitting

- Plot on log-log scale.
- If points are on a straight line (often the case), a power law holds—a curve of the form aN^b fits.
- The exponent b is the slope of the line.
- Solve for a with the data.

N	T_N	lg <i>N</i>	lg T _N	$4.84 \times 10^{-10} \times N^3$
1000	0.5	10	-1	0.5
2000	4	11	2	4
4000	31	12	5	31
8000	248	13	8	248

log problem size (lg N)

15

Mathematical models for running time

Q. Can we write down an accurate formula for the running time of a computer program?

A. (Prevailing wisdom, 1960s) No, too complicated.

A. (D. E. Knuth, 1968-present) Yes!

- Determine the set of operations.
- Find the *cost* of each operation (depends on computer and system software).
- Find the *frequency of execution* of each operation (depends on algorithm and inputs).
- Total running time: sum of cost × frequency for all operations.

Don Knuth 1974 Turing Award

21

23

Warmup: 1-sum

```
public static int count(int[] a)
{
    int N = a.length;
    int cnt = 0;
    for (int i = 0; i < N; i++)
        if (a[i] == 0)
            cnt++;
    return cnt;
}</pre>
```

operation cost frequency function call/return 20 ns variable declaration 2 ns 2 assignment 1 *ns* 2 less than compare 1/2 ns N + 11/2 ns Ν equal to compare 1/2 ns array access increment 1/2 ns between N and 2N

> representative estimates (with some poetic license); knowing exact values may require study and experimentation.

Q. Formula for total running time?

A. cN + 26.5 nanoseconds, where c is between 2 and 2.5, depending on input.

depends on input.

Warmup: 2-sum

operation	cost	frequency
function call/return	20 ns	1
variable declaration	2 ns	N + 2
assignment	1 <i>ns</i>	N + 2
less than compare	1/2 ns	(N+1)(N+2)/2
equal to compare	1/2 ns	N (N - 1)/2
array access	1/2 ns	N (N - 1)
increment	1/2 ns	between $N(N-1)/2$ and $N(N-1)$

exact counts tedious to derive

i < j = $\binom{N}{2}$ = $\frac{N(N-1)}{2}$

Q. Formula for total running time?

A. $c_1N^2 + c_2N + c_3$ nanoseconds, where... [complicated definitions].

Simplifying the calculations

Tilde notation

- Use only the fastest-growing term.
- Ignore the slower-growing terms.

Rationale

 \bullet When N is large, ignored terms are negligible.

eliminate dependence on input

• When N is small, everything is negligible.

Def.
$$f(N) \sim g(N)$$
 means $f(N)/g(N) \rightarrow 1$ as $N \rightarrow \infty$
Example. $6N^2 + 20N + 5 \sim 6N^2$

$$\uparrow \\
6,000,000 \\
for $N = 1,000$, within .3%$$

Q. Formula for 2-sum running time when count is not large (typical case)?

A. $\sim 6N^2$ nanoseconds.

Mathematical model for 3-sum

operation	cost	frequency
function call/return	20 ns	1
variable declaration	2 ns	~N
assignment	1 <i>ns</i>	~ N
less than compare	1/2 ns	~N³/6
equal to compare	1/2 ns	~N³/6
array access	1/2 ns	~N3/2
increment	1/2 ns	~N³/6

#i < j < k =
$$\binom{N}{3} = \frac{N(N-1)(N-2)}{6} \sim \frac{N^3}{6}$$

Q. Formula for total running time when return value is not large (typical case)?

A. ~ $N^3/2$ nanoseconds.

✓ ← matches $4.84 \times 10^{-10} \times N^3$ empirical hypothesis

Context

25

Scientific method

- · Observe some feature of the natural world.
- · Hypothesize a model consistent with observations.
- Predict events using the hypothesis.
- · Verify the predictions by making further observations.
- Validate by refining until hypothesis and observations agree.

John Stuart N

Empirical analysis of programs

- "Feature of natural world" is time taken by a program on a computer.
- Fit a curve to experimental data to get a formula for running time as a function of *N*.
- · Useful for predicting, but not explaining.

Mathematical analysis of algorithms

- Analyze algorithm to develop a formula for running time as a function of N.
- · Useful for predicting and explaining.
- · Might involve advanced mathematics.
- · Applies to any computer.

Good news. Mathematical models are easier to formulate in CS than in other sciences.

2

COMPUTER SCIENCE SEDGEWICK/WAYNE

Programming in Java

http://introcs.cs.princeton.edu

8. Performance analysis

- The challenge
- Empirical analysis
- Mathematical models
- Meeting the challenge
- Familiar examples

COMPUTER SCIENCE SEDGEWICK/WAYNE

8. Performance analysis

- The challenge
- Empirical analysis
- Mathematical models
- Meeting the challenge
- Familiar examples

- Q. Is the running time of my program $\sim a N^b$ seconds?
- A. Yes, there's good chance of that. Might also have a $(\lg N)^c$ factor.

- Q. How do you know?
- A. Computer scientists have applied such models for decades to many, many specific algorithms and applications.
- A. Programs are built from simple constructs (examples to follow).
- A. Real-world data is also often simply structured.
- A. Deep connections exist between such models and a wide variety of discrete structures (including some programs).

Doubling method

Hypothesis. The running time of my program is $T_N \sim a N^b$.

Consequence. As N increases, $T_N/T_{N/2}$ approaches 2^b .

Doubling method

- Start with a moderate size.
- · Measure and record running time.
- · Double size.
- Repeat while you can afford it.
- Verify that ratios of running times approach 2b.
- Predict by extrapolation:

multiply by 2^b to estimate T_{2N} and repeat.

math model says running time should be aN3

Bottom line. It is often easy to meet the challenge of predicting performance.

 $2^3 = 8$

Caveats

It is sometimes not so easy to meet the challenge of predicting performance.

Order of growth

Def. If a function $f(N) \sim ag(N)$ we say that g(N) is the *order of growth* of the function.

Hypothesis. Order of growth is a property of the *algorithm*, not the computer or the system.

Experimental validation

When we move a program to a computer that is X times faster, we expect the program to be X times faster.

Explanation with mathematical model

Machine- and system-dependent features of the model are all small constants

Order of growth

Hypothesis. The order of growth of the running time of my program is $N^b(\lg N)^c$.

Evidence. Known to be true for many, many programs with simple and similar structure.

for (int j = i+1; j < N; j++)

Linear (N)

```
for (int i = 0; i < N; i++)
                                for (int i = 0; i < N; i++)
```

Logarithmic (lg N)

```
public static void f(int N)
  if (N == 0) return:
   ... f(N/2)...
```

Linearithmic (Nlg N)

Quadratic (N2)

```
public static void f(int N)
   if (N == 0) return;
   ... f(N/2)...
   ... f(N/2)...
```

Stay tuned for specific examples.

Cubic (N3)

```
for (int i = 0; i < N; i++)
   for (int j = i+1; j < N; j++)
     for (int k = j+1; k < N; k++)
```

Exponential (2N)

```
public static void f(int N)
  if (N == 0) return;
  ... f(N-1)...
   ... f(N-1)...
```

ignore for practical purposes (any significant growth is infeasible)

33

Order of growth classifications

order of gr	rowth	slope of line in	factor for doubling
description function		log-log plot (b)	method (2b)
constant	1	0	1
logarithmic	logN	0	1
linear	N	1	2
linearithmic	N logN	1	2
quadratic	N ²	2	4
cubic	N ³	3	8
		if i	nnut size dou

If math model gives order of growth, use doubling method to validate 2^b ratio.

If not, use doubling method and solve for $b = \lg(T_N/T_{N/2})$ to estimate order of growth to be N^b .

by this factor

An important implication

Moore's Law. Computer power increases by a factor of 2 every 2 years.

Q. My problem size also doubles every 2 years. How much do I need to spend to get my job done?

`a very common situation: weather prediction, transaction processing, cryptography...

Do the math

$$T_N = aN^3$$
 running time today
 $T_{2N} = (a/2)(2N)^3$ running time in 2 years
 $= 4aN^3$
 $= 4T_N$

	now	2 years from now	4 years from now	2M years from now
N	\$X	\$X	\$X	 \$X
N logN	\$X	\$X	\$X	 \$X
N ²	\$X	\$2X	\$4X	 \$2 ^M X
N ³	\$X	(\$4X)	\$16X	 \$4 ^M X

A. You can't afford to use a quadratic algorithm (or worse) to address increasing problem sizes.

Meeting the challenge

Doubling experiments provide good insight on program performance

- Best practice to plan realistic experiments for debugging, anyway.
- Having some idea about performance is better than having no idea.
- · Performance matters in many, many situations.

TEQ on performance

Q. Let T_N be the running time of program Mystery and consider these experiemnts:

```
public static Mystery
{
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

N	T_N (in seconds)	$T_N/T_{N/2}$
1000	5	
2000	20	4
4000	80	4
8000	320	4

Q. Predict the running time for N = 64,000.

Q. Estimate the order of growth.

TEQ on performance

Q. Let T_N be the running time of program Mystery and consider these experiemnts.

```
public static Mystery
{
    ...
    int N = Integer.parseInt(args[0]);
    ...
}
```

Q. Predict the running time for N = 64,000.

A. 20480 seconds.

Q. Estimate the order of growth.

A. N^2 , since $\lg 4 = 2$.

N	T_N (in seconds)	$T_N/T_{N/2}$
1000	5	
2000	20	4
4000	80	4
8000	320	4
16000	$320 \times 4 = 1280$	4
32000	$1280 \times 4 = 5120$	4
64000	$5120 \times 4 = 20480$	4

.

Another example: Coupon collector Q. How long to simulate collecting 1 million coupons? Ν $T_N/T_{N/2}$ T_N public class Collector 125000 7 public static void main(String[] args) { int N = Integer.parseInt(args[0]); int trials = Integer.parseInt(args[1]); int cardcnt = 0; boolean[] Found; double start = System.currentTimeMillis()/1000.0; 250000 14 2 500000 31 2.21 for (int i = 0; i < trials; i++) int valcnt = 0; found = new boolean[N]; while (valcnt < N)</pre> 1000000 $31 \times 2 = 63$ int val = (int) (Math.random() * N); math model says cardcnt++; if (!found[val]) { valcnt++; found[val] = true; } order of growth should be NlogN double now = System.currentTimeMillis()/1000.0; long time = Math.round(now - start); System.out.print(N + " " + (N*Math.log(N) + .57721*N) + " "); System.out.print(cardcnt/trials); StdOut.println(" (" + time + " seconds)"); % java Collector 125000 100 125000 1539159.8770355547 1518646 (7 seconds) % java Collector 250000 100 250000 3251606.5492110956 3173727 (14 seconds) % java Collector 500000 100 500000 6849786.688702164 6772679 (31 seconds) A. About 1 minute. — might run out of memory % java Collector 1000000 100 1000000 1.4392720557964273E7 14368813 (66 seconds) trying for 1 billion

Analyzing typical memory requirements

A bit is 0 or 1 and the basic unit of memory.

1 *megabyte* (MB) is 1 million bytes. 1 *gigabyte* (GB) is 1 billion bytes.

A byte is eight bits and the smallest addressable unit.

Primitive-type values

type	bytes	
boolean	1	□ ← Note: not 1 bit
char	1	
int	4	
float	4	
long	8	
double	8	

System-supported data structures

type	bytes
int[N]	4N + 16
double[N]	8 <i>N</i> + 16
int[N][N]	$4N^2 + 20N + 16 \sim 4N^2$
double[N][N]	$8N^2 + 20N + 16 \sim 8N^2$
String	2N + 40

Example. 2000-by-2000 double array uses ~32MB.

