
COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

3. Conditionals & Loops

Section 1.3

Context: basic building blocks for programming

2

any program you might want to write

objects

functions and modules

graphics, sound, and image I/O

arrays

conditionals and loops

Math text I/O

assignment statementsprimitive data types

Previous lecture:
equivalent to a calculator

This lecture:
to infinity and beyond!

conditionals and loops

3

Conditionals and Loops

Control flow

• The sequence of statements that are actually executed in a program.

• Conditionals and loops enable us to choreograph control flow.

statement 1

straight-line control flow

[previous lecture]

statement 2

statement 3

statement 4

boolean 1

control flow with conditionals and a loop

[this lecture]

statement 1

statement 2boolean 2

statement 3

false

true

false

true

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

5

The if statement

Execute certain statements depending on the values of certain variables.

• Evaluate a boolean expression.

• If true, execute a statement.

• The else option: If false, execute a different statement.

Example: if (x < 0) x = -x;

x < 0 ?

x = -x;

true false

Computes the absolute value of x

Example: if (x > y) max = x;
 else max = y;

x > y ?

max = x;

true false

Computes the maximum of x and y

max = y;

6

Example of if statement use: simulate a coin flip

public class Flip
{
 public static void main(String[] args)
 {
 if (Math.random() < 0.5)
 System.out.println("Heads");
 else System.out.println("Tails");
 }
}

% java Flip
Heads

% java Flip
Heads

% java Flip
Tails

% java Flip
Heads

7

Example of if statement use

public class TwoSort
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 if (b < a)
 {
 int t = a;
 a = b;
 b = t;
 }
 StdOut.println(a);
 StdOut.println(b);
 }
}

Q. What does this program do?

% java TwoSort 1234 99
99
1234

% java TwoSort 99 1234
99
1234

A. Reads two integers from the command line, then prints them out in numerical order.

: 2-sort

alternatives for if and else
can be a sequence of

statements, enclosed in braces

8

TEQ on if statements

public class ThreeSort
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int c = Integer.parseInt(args[2]);

 StdOut.println(a);
 StdOut.println(b);
 StdOut.println(c);
 }
}

Q. Add code to this program that puts a, b, and c in numerical order.

% java ThreeSort 1234 99 1
1
99
1234

% java ThreeSort 99 1 1234
1
99
1234

Example of if statement use: error checks

9

public class IntOps
{
 public static void main(String[] args)
 {
 int a = Integer.parseInt(args[0]);
 int b = Integer.parseInt(args[1]);
 int sum = a + b;
 int prod = a * b;
 System.out.println(a + " + " + b + " = " + sum);
 System.out.println(a + " * " + b + " = " + prod);
 if (b == 0) System.out.println("Division by zero");
 else System.out.println(a + " / " + b + " = " + a / b);
 if (b == 0) System.out.println("Division by zero");
 else System.out.println(a + " % " + b + " = " + a % b);
 }
}

% java IntOps 5 2
5 + 2 = 7
5 * 2 = 10
5 / 2 = 2
5 % 2 = 1

% java IntOps 5 0
5 + 0 = 5
5 * 0 = 0
Division by zero
Division by zero

Good programming practice. Use conditionals to check for and avoid runtime errors.

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

12

The while loop

Execute certain statements repeatedly until certain conditions are met.

• Evaluate a boolean expression.

• If true, execute a sequence of statements.

• Repeat.

false
Example:
 int i = 0;
 int v = 1;
 while (i <= n)
 {
 System.out.println(v);
 i = i + 1;
 v = 2 * v;
 }

Prints the powers of two from 20 to 2n .
[stay tuned for a trace]

i <= n ?

i = 0;

true

v = 1;

System.out.println(v)

i = i + 1;

v = 2 * v;

Example of while loop use: print powers of two

13

i v i <= n

0 1 true

1 2 true

2 4 true

3 8 true

4 16 true

5 32 true

6 64 true

7 128 false
% java PowersOfTwo 6
1
2
4
8
16
32
64

public class PowersOfTwo

{

 public static void main(String[] args)

 {

 int n = Integer.parseInt(args[0]);

 int i = 0;

 int v = 1;

 while (i <= n)

 {

 System.out.println(v);

 i = i + 1;

 v = 2 * v;

 }

 }

}

Prints the powers of two from 20 to 2n .

TEQ on while loops

Q. Anything wrong with the following code?

14

public class TEQ03
{
 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 int i = 0;
 int v = 1;
 while (i <= n)
 System.out.println(v);
 i = i + 1;
 v = 2 * v;
 }
}

Example of while loop use: implement Math.sqrt()

Goal. Implement square root function.

15

i ti 2/ti average

0 2.0 1.0 1.5

1 1.5 1.3333333 1.4166667

2 1.4166667 1.4117647 1.4142157

3 1.4142157 1.4142114 1.4142136

4 1.4142136 1.4142136

Copyright 2004, Sidney Harris
 http://www.sciencecartoonsplus.com

computing the square root of 2 to seven places

Newton-Raphson method to compute √c

• Initialize t0 = c.

• Repeat until ti = c/ti (up to desired precision):
 Set ti+1 to be the average of ti and c / ti.

if t = c/t then t2 = c

% java Sqrt 60481729
7777.0
% java Sqrt 2
1.4142136

Example of while loop use: implement Math.sqrt()

16

Newton-Raphson method to compute √c

• Initialize t0 = c.

• Repeat until ti = c/ti (up to desired precision):
 Set ti+1 to be the average of ti and c / ti.

public class Sqrt
{
 public static void main(String[] args)
 {
 double EPS = 1E-15;
 double c = Double.parseDouble(args[0]);
 double t = c;
 while (Math.abs(t - c/t) > t*EPS)
 { t = (c/t + t) / 2.0; }
 System.out.println(t);
 }
}

% java Sqrt 60481729
7777.0

% java Sqrt 2.0
1.414213562373095

Isaac Newton
1642-1727

Scientists studied
computation well before
the onset of the computer.

error tolerance (15 places)

17

Newton-Raphson method

Explanation (some math omitted)

• Goal: find root of function f (x).

• Start with estimate t0.

• Draw line tangent to curve at x = ti .

• Set ti+1 to be x-coordinate where line hits x-axis.

• Repeat until desired precision.

use f (x) = x2 − c for √c

y = f (x)

ti ti+1ti+2

root: f (x) = 0

ti+3

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

20

The for loop

An alternative repetition structure.

• Evaluate an initialization statement.

• Evaluate a boolean expression.

• If true, execute a sequence of statements,
then execute an increment statement.
• Repeat.

Example:
 int v = 1;
 for (int i = 0; i <= n; i++)
 {
 System.out.println(i + " " + v);
 v = 2*v;
 }

Prints the powers of two from 20 to 2n

Every for loop has an equivalent while loop:
 int v = 1;
 int i = 0;
 while (i <= n;)
 {
 System.out.println(i + " " + v);
 v = 2*v;
 i++;
 }

Why? Can provide code that is more compact and understandable.

initialization statement

boolean expression

increment statement

Examples of for loop use

21

int sum = 0;
for (int i = 1; i <= N; i++)
 sum += i;
System.out.println(sum);

Compute sum (1 + 2 + 3 + . . . + N)

sum i

1 1

3 2

6 3

10 4

trace at end of loop for N = 4

long product = 1;
for (int i = 1; i <= N; i++)
 product *= i;
System.out.println(product);

Compute N! (1 * 2 * 3 * . . . * N)

for (int k = 0; k <= N; k++)
 System.out.println(k + " " + 2*Math.PI*k/N);

Print a table of function values

product i

1 1

2 2

6 3

24 4

trace at end of loop for N = 23
int v = 1;
while (v <= N/2)
 v = 2*v;
System.out.println(v);

Print largest power of 2 less than or equal to N

v

2

4

8

16

k

0 0.0

1 1.57079632...

2 3.14159265...

3 4.71238898...

4 6.28318530...

��R
5

22

Example of for loop use: subdivisions of a ruler

Create subdivisions of a ruler to 1/N inches.

• Initialize ruler to one space.

• For each value i from 1 to N:
sandwich i between two copies of ruler.

public class Ruler
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 String ruler = " ";
 for (int i = 1; i <= N; i++)
 ruler = ruler + i + ruler;
 System.out.println(ruler);
 }
}

2100 − 1 integers in output (!)

% java Ruler 100
Exception in thread "main"
java.lang.OutOfMemoryError

java Ruler 4
1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

i ruler
1 " 1 "
2 " 1 2 1 "
3 " 1 2 1 3 1 2 1 "
4 " 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1 "

End-of-loop trace

Note: Small progam can produce huge amount of output.

Copyright 2004, FoxTrot by Bill Amend
www.ucomics.com/foxtrot/2003/10/03

TEQ on for loops (easy if you read exercise 1.3.13)

Q. What does the following program print?

24

public class Mystery
{
 public static void main(String[] args)
 {
 int f = 0, g = 1;
 for (int i = 0; i <= 10; i++)
 {
 System.out.println(f);
 f = f + g;
 g = f - g;
 }
 }
}

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

27

Nesting conditionals and loops

Nesting

• Any “statement” within a conditional or loop
may itself be a conditional or a loop statement.

• Enables complex control flows.

• Adds to challenge of debugging.

if-else statement
within a while loop
within a for loop

[Stay tuned for an explanation of this code.]

for (int i = 0; i < trials; i++)
{
 int t = stake;
 while (t > 0 && t < goal)
 if (Math.random() < 0.5) t++;
 else t--;
 if (t == goal) wins++;
}

Example:

28

if (income < 47450) rate = 0.22;
else
 {
 if (income < 114650) rate = 0.25;
 else
 {
 if (income < 174700) rate = 0.28;
 else
 {
 if (income < 311950) rate = 0.33;
 else rate = 0.35;
 }
 }
 }

Example of nesting conditionals: Tax rate calculation

if statement
within an if statement
within an if statement

if statement
within an if statement

if statement
within an if statement
within an if statement
within an if statement

Goal. Given income, calculate proper tax rate.

income rate

0 – $47,450 22%

$47,450 – $114,650 25%

$114,650 – $174,700 28%

$174,700 – $311,950 33%

$311,950 – 35%

TEQ on nested if statements

Q. Anything wrong with the following code?

29

public class TEQif
{
 public static void main(String[] args)
 {
 double income = Double.parseDouble(args[0]);
 double rate = 0.35;
 if (income < 47450) rate = 0.22;
 if (income < 114650) rate = 0.25;
 if (income < 174700) rate = 0.28;
 if (income < 311950) rate = 0.33;
 System.out.println(rate);
 }
}

30

Gambler's ruin problem

A gambler starts with $stake and places $1 fair bets.

• Outcome 1 (loss): Gambler goes broke with $0.

• Outcome 2 (win): Gambler reaches $goal.

One approach: Monte Carlo simulation.

• Use a simulated coin flip instead of a bet.

• Repeat and compute statistics.

Q. What are the chances of winning?
Q. How many bets will it take until win or loss?

31

public class Gambler
{
 public static void main(String[] args)
 {
 int stake = Integer.parseInt(args[0]);
 int goal = Integer.parseInt(args[1]);
 int trials = Integer.parseInt(args[2]);

 int wins = 0;
 for (int i = 0; i < trials; i++)
 {
 int t = stake;
 while (t > 0 && t < goal)
 {
 if (Math.random() < 0.5) t++;
 else t--;
 }
 if (t == goal) wins++;
 }
 StdOut.println(wins + " wins of " + trials);
 }
}

Example of nesting conditionals and loops: Simulate gamber's ruin

Gambler's ruin simulation

• Get command-line parms.

• Run all the experiments.

• Run one experiment.

• Make one bet.

• If goal met, count the win.

• Print #wins and # trials.

for loop

while loop
within a for loop

if statement
within a while loop
within a for loop

% java Gambler 5 25 1000
203 wins of 1000

32

Digression: simulation and analysis

Facts (known via mathematical analysis for centuries)

• Probability of winning = stake ÷ goal.

• Expected number of bets = stake × desired gain.

% java Gambler 5 25 1000
191 wins of 1000

% java Gambler 5 25 1000
203 wins of 1000

% java Gambler 500 2500 1000
197 wins of 1000

Christiaan Huygens
1629-1695

Early scientists were
fascinated by the study
of games of chance.

500/2500 = 20%

500*(2500 - 500) = 1,000,000

Example

• 20% chance of turning $500 into $2500.

• Expect to make 1 million $1 bets.

Remarks

• Computer simulation can help validate mathematical analysis.

• For this problem, mathematical analysis is simpler (if you know the math).

• For more complicated variants, computer simulation may be the best plan of attack.

stake goal trials

uses about 1 billion coin flips

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

Debugging
is 99% of program development in any programming language, even for experts.

35

Impossible ideal: "Please compile, execute, and debug my progam."

Bottom line: Programming is primarily a process of finding and fixing mistakes.

“ As soon as we started programming, we found out to our surprise that it wasn't as easy to get
 programs right as we had thought. I can remember the exact instant when I realized that a large
 part of my life from then on was going to be spent in !nding mistakes in my own programs. ”

− Maurice Wilkes

You will make many mistakes as
you write programs. It's normal.

Bug: A mistake in a program.

Why is this impossible? Stay tuned.

EDIT

COMPILE RUN

Debugging: The process of eliminating bugs.

Debugging
is challenging because conditionals and loops dramatically increase the number of possible outcomes.

36

Most programs contain numerous conditionals and loops, with nesting.

program structure no loops N conditionals 1 loop

number of possible execution
sequences 1 2N no limit

Good news. Conditionals and loops provide structure that helps us understand our programs.

“ The quality of programmers is a decreasing
function of the number of goto statements
in the programs they produce. ”

− Edsgar Dijkstra

Old and low-level languages have a goto
statement that provides arbitrary structure.
Eliminating gotos was controversial until
Edsgar Dijkstra published the famous note
"Goto considered harmful " in 1968.

Debugging a program: a running example

Problem: Factor a large integer N.
Application: Cryptography.

37

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0])
 for (i = 0; i < N; i++)
 {
 while (N % i == 0)
 System.out.print(i + " ")
 N = N / i
 }
 }
}

Method

• Consider each integer i less than N

• While i divides N evenly
 Print i (it is a factor of N).
 Replace N with N/i .

Rationale:
 1. Any factor of N/i is a factor of N.
 2. i may be a factor of N/i.

Suprising fact: Security of internet commerce
depends on difficulty of factoring large integers.

3,757,208 = 2 × 2 × 2 × 7 × 13 × 13 × 397

98 = 2 × 7× 7

17 = 17

11,111,111,111,111,111 = 2,071,723 × 5,363,222,357

This program has bugs!

Debugging a program: syntax errors

Is your program a legal Java program?

• Java compiler can help you find out.

• Use javac to find the first error.

• Repeat.

• Result: An executable Factors.class file

38

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0])
 for (i = 0; i < N; i++)
 {
 while (N % i == 0)
 System.out.print(i + " ")
 N = N / i
 }
 }
}

% javac Factors.java
Factors.java:5: ';' expected
 long N = Long.parseLong(args[0])
 ^
...

;

;
; need terminating

semicolons

int

need to declare
type of i

% javac Factors.java
Factors.java:6: cannot find symbol
symbol : variable i
location: class FactorsX
 for (i = 0; i < N; i++)
 ^
...

Trying to tell a computer what to do

This legal program still has bugs!% javac Factors.java
%

Debugging a program: runtime and semantic errors

Does your legal Java program do what you want it to do?

• You need to run it to find out.

• Use java runtime to find the first error.

• Fix and repeat.

39

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0]);
 for (int i = 0; i < N; i++)
 {
 while (N % i == 0)
 System.out.print(i + " ");
 N = N / i;
 }
 }
}

% javac Factors.java
% java Factors
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0
 at Factors.main(Factors.java:5)

{
}

need braces

2

need to start at 2
since 0 and 1
are not factors

% java Factors 98
2
2

% java Factors 98
2 7 7% 98 = 2 × 7× 7 ✓

oops, need argument

you will see this message!

This working program still has bugs!

% java Factors 98
Exception in thread "main"
java.lang.ArithmeticException: / by zero
 at Factors.main(Factors.java:8)

Debugging a program: testing

Does your legal Java program always do what you want it to do?

• You need to test on many types of inputs it to find out.

• Add trace code to find the first error.

• Fix the error.

• Repeat.

40

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i < N; i++)
 {
 while (N % i == 0)
 { System.out.print(i + " ");
 N = N / i; }

 }
 }
}

% java Factors 98
2 7 7%

% java Factors 5

% java Factors 6
2

??? no output

??? where’s the 3?

System.out.println("TRACE " + i + " " + N);

% javac Factors.java
% java Factors 5
TRACE 2 5
TRACE 3 5
TRACE 4 5
% java Factors 6
2
TRACE 2 3

need newline

AHA! Need to print out N
(if it is not 1).

Debugging a program: testing

Does your legal Java program always do what you want it to do?

• You need to test on many types of inputs it to find out.

• Add trace code to find the first error.

• Fix the error.

• Repeat.

41

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i < N; i++)
 {
 while (N % i == 0)
 { System.out.print(i + " ");
 N = N / i; }
 }
 if (N > 1) System.out.println(N);
 else System.out.println();
 }
}

% java Factors 5
TRACE 2 5
TRACE 3 5
TRACE 4 5
% javac Factors.java
% java Factors 5
5
% java Factors 6
2 3
% java Factors 98
2 7 7
% java Factors 3757208
2 2 2 7 13 13 397

???
%$%@$#!!

forgot to recompile

Note: This working program
still has a bug (stay tuned).

Debugging a program: performance

42

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i < N ; i++)
 {
 while (N % i == 0)
 { System.out.print(i + " ");
 N = N / i; }
 }
 if (N > 1) System.out.println(N);
 else System.out.println();
 }
}

Method

• Consider each integer i less than N

• While i divides N evenly
 print i (it is a factor of N)
 replace N with N/i .

Is your working Java program fast enough to solve your problem?

• You need to test it on increasing problem sizes to find out.

• May need to change the algorithm to fix it.

• Repeat.

% java Factors 11111111
11 73 101 137
% java Factors 11111111111
21649 513239
% java Factors 11111111111111
11 239 4649 909091
% java Factors 11111111111111111
2071723

might work,
but way too slow immediate5363222357

= N/i
implement
the change

change the algorithm: no need to check when
i·i >N since all smaller factors already checked

≤ N/i

Debugging a program: performance analysis

43

public class Factors
{
 public static void main(String[] args)
 {
 long N = Long.parseLong(args[0]);
 for (int i = 2; i <= N/i; i++)
 {
 while (N % i == 0)
 { System.out.print(i + " ");
 N = N / i; }
 }
 if (N > 1) System.out.println(N);
 else System.out.println();
 }
}

Q. How large an integer can I factor?

% java Factors 9201111169755555703
9201111169755555703

digits in largest
factor i < N i <= N/i

3 instant instant

6 instant instant

9 77 seconds instant

12 21 hours† instant

15 2.4 years† 2.7 seconds

18 2.4 millenia† 92 seconds

Lesson. Performance matters!

Note. Internet commerce is still secure: it depends on the difficulty of factoring 200-digit integers.

experts are still trying to develop
better algorithms for this problem

† estimated, using analytic number theory

44

Debugging your program: summary

Program development is a four-step process, with feedback.

EDIT your program.

COMPILE your program to create an executable file.

syntax error

TEST your program on realistic and real input data.

performance error

SUBMIT your program for independent testing and approval.

Telling a computer what to do
when you know what you're doing

RUN your program to test that it works as you imagined.

semantic error

runtime error

http://introcs.cs.princeton.edu

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

3. Conditionals & Loops

•Conditionals: the if statement
•Loops: the while statement
•An alternative: the for loop
•Nesting
•Debugging

COMPUTER SC I ENCE
S E D G E W I C K / W A Y N E

http://introcs.cs.princeton.edu

3. Conditionals & Loops

Section 1.3

