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Abstract

Traditional measures of network goodness—goodput,

quality of service, fairness—are expressed in terms of

bandwidth. Network latency has rarely been a primary

concern because delivering the highest level of band-

width essentially entails driving up latency—at the mean

and, especially, at the tail. Recently, however, there has

been renewed interest in latency as a primary metric

for mainstream applications. In this paper, we present

the HULL (High-bandwidth Ultra-Low Latency) archi-

tecture to balance two seemingly contradictory goals:

near baseline fabric latency and high bandwidth utiliza-

tion. HULL leaves ‘bandwidth headroom’ using Phan-

tom Queues that deliver congestion signals before net-

work links are fully utilized and queues form at switches.

By capping utilization at less than link capacity, we leave

room for latency sensitive traffic to avoid buffering and

the associated large delays. At the same time, we use

DCTCP, a recently proposed congestion control algo-

rithm, to adaptively respond to congestion and to miti-

gate the bandwidth penalties which arise from operating

in a bufferless fashion. HULL further employs packet

pacing to counter burstiness caused by Interrupt Coa-

lescing and Large Send Offloading. Our implementation

and simulation results show that by sacrificing a small

amount (e.g., 10%) of bandwidth, HULL can dramati-

cally reduce average and tail latencies in the data center.

1 Introduction

For decades, the primary focus of the data network-

ing community has been on improving overall network

goodput. The initial shift from circuit switching to packet

switching was driven by the bandwidth and hardware

inefficiencies of reserving network resources for bursty

communication traffic. The Transmission Control Pro-

tocol (TCP) [26] was born of the need to avoid band-

width/congestion collapse in the network and, subse-

quently, to ensure bandwidth fairness [14, 39, 45] among

the flows sharing a network. Discussion to add quality-

of-service capability to the Internet resulted in propos-

als such as RSVP [55], IntServ [10] and DiffServ [35],

which again focussed on bandwidth provisioning.

This focus on bandwidth efficiency has been well jus-

tified as most Internet applications typically fall into

two categories. Throughput-oriented applications, such

as file transfer or email, are not sensitive to the deliv-

ery times of individual packets. Even the overall com-

pletion times of individual operations can vary by mul-

tiple integer factors in the interests of increasing overall

network throughput. On the other hand, latency-sensitive

applications—such as web browsing and remote login—

are sensitive to per-packet delivery times. However, these

applications have a human in the loop and completion

time variations on the order of hundreds of millisec-

onds or even seconds have been thought to be accept-

able, especially in the interests of maintaining high aver-

age bandwidth utilization. Hence, we are left with a land-

scape where the network is not optimized for latency or

the predictable delivery of individual packets.

We are motivated by two recent trends that make it fea-

sible and desirable to make low latency communication a

primary metric for evaluating next-generation networks.

Data centers. A substantial amount of computing, stor-

age, and communication is shifting to data centers.

Within the confines of a single building—characterized

by low propagation delays, relatively homogeneous

equipment, and a single administrative entity able to

modify software protocols and even influence hard-

ware features—delivering predictable low latency ap-

pears more tractable than solving the problem in the In-

ternet at large.

Ultra-low latency applications. Several applications and

platforms have recently arisen that necessitate very

low latency RPCs; for example, high-frequency trad-

ing (see [30]), high-performance computing, and RAM-

Cloud [37, 38]. These applications are characterized by a

request–response loop involving machines, not humans,

and operations involving multiple parallel requests/RPCs



to thousands of servers. Since an operation completes

when all of its requests are satisfied, the tail latency of

the individual requests are required to be in microsec-

onds rather than in milliseconds to maintain quality of

service and throughput targets. As platforms like RAM-

Cloud are integrated into mainstream applications such

as social networking, search and e-commerce, they must

share the network with throughput-oriented traffic which

consistently moves terabytes of data.

There are several points on the path from source to

destination at which packets currently experience de-

lay: end-host stacks, NICs (network interface cards),

and switches. Techniques like kernel bypass and zero

copy [44, 12] are significantly reducing the latency at

the end-host and in the NICs; for example, 10Gbps NICs

are currently available that achieve less than 1.5µs per-

packet latency at the end-host [41].

In this paper, we consider the latency in the net-

work switching nodes. We propose HULL (for High-

bandwidth Ultra-Low Latency), an architecture for si-

multaneously delivering predictable ultra-low latency

and high bandwidth utilization in a shared data cen-

ter fabric. The key challenge is that high bandwidth

typically requires significant in-network buffering while

predictable, ultra-low latency requires essentially no in-

network buffering. Considering that modern data center

fabrics can forward full-sized packets in microseconds

(1.2µs for 1500 bytes at 10Gbps) and that switching la-

tency at 10Gbps is currently 300–500ns [19, 23], a one-

way delivery time of 10µs (over 5 hops) is achievable

across a large-scale data center, if queueing delays can

be reduced to zero. However, given that at least 2MB

of on-chip buffering is available in commodity 10Gbps

switches [19] and that TCP operating on tail-drop queues

attempts to fully utilize available buffers to maximize

bandwidth, one-way latencies of up to a few milliseconds

are quite possible—and have been observed in produc-

tion data centers.1 This is a factor of 1,000 increase from

the baseline. Since the performance of parallel, latency-

sensitive applications are bound by tail latency, these

applications must be provisioned for millisecond delays

when, in fact, microsecond delays are achievable.

Our observation is that it is possible to reduce or elim-

inate network buffering by marking congestion based

not on queue occupancy (or saturation) but rather based

on the utilization of a link approaching its capacity. In

essence, we cap the amount of bandwidth available on a

link in exchange for significant reduction in latency.

Our motivation is to trade the resource that is relatively

plentiful in modern data centers, i.e., bandwidth, for the

resource that is both expensive to deploy and results in

1For example, queuing delays in a production cluster for a large-

scale web application have been reported to range from ∼350µs at the

median to over 14ms at the 99th percentile (see Figure 9 in [3]).

substantial latency increase—buffer space. Data center

switches usually employ on-chip (SRAM) buffering to

keep latency and pin counts low. However, in this mode,

even a modest amount of buffering takes about 30% of

the die area (directly impacting cost) and is responsible

for 30% of the power dissipation. While larger in size,

off-chip buffers are both more latency intensive and incur

a significantly higher pin count. The references [5, 25]

describe the cost of packet buffers in high bandwidth

switching/routing platforms in more detail. The above

considerations indicate that higher bandwidth switches

with more ports could be deployed earlier if fewer chip

transistors were committed to buffers.

The implementation of HULL centers around Phan-

tom Queues, a switch mechanism closely related to

existing virtual queue-based active queue management

schemes [21, 31]. Phantom queues simulate the occu-

pancy of a queue sitting on a link that drains at less than

the actual link’s rate. Standard ECN [40] marking based

on the occupancy of these phantom queues is then used to

signal end hosts employing DCTCP [3] congestion con-

trol to reduce transmission rate.

Through our evaluation we find that a key require-

ment to make this approach feasible is to employ hard-

ware packet pacing (a feature increasingly available

in NICs) to smooth the transmission rate that results

from widespread network features such as Large Send

Offloading (LSO) and Interrupt Coalescing. We intro-

duce innovative methods for estimating the congestion-

friendly transmission rate of the pacer and for adap-

tively detecting the flows which require pacing. With-

out pacing, phantom queues would be fooled into regu-

larly marking congestion based on spurious signals caus-

ing degradation in throughput, just as spikes in queuing

caused by such bursting would hurt latency.

Taken together, we find that these techniques can re-

duce both average and 99th percentile packet latency by

more than a factor of 10 compared to DCTCP and a fac-

tor of 40 compared to TCP. For example, in one configu-

ration, the average latency drops from 78µs for DCTCP

(329µs for TCP) to 7µs and the 99th percentile drops

from 556µs for DCTCP (3961µs for TCP) to 48µs, with

a configurable reduction in bandwidth for throughput-

oriented applications. A factor of 10 reduction in latency

has the potential to substantially increase the amount

of work applications such as web search perform—e.g.,

process 10 times more data with predictable completion

times—for end-user requests, though we leave such ex-

ploration of end-application benefits for future work.

2 Challenges and design

The goal of the HULL architecture is to simultaneously

deliver near baseline fabric latency and high through-

put. In this section we discuss the challenges involved in
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achieving this goal. These challenges pertain to correctly

detecting, signaling and reacting to impending conges-

tion. We show how these challenges guide our design

decisions in HULL and motivate its three main compo-

nents: Phantom queues, DCTCP congestion control, and

packet pacing.

2.1 Phantom queues: Detecting and signal-

ing congestion

The traditional congestion signal in TCP is the drop

of packets. TCP increases its congestion window (and

transmission rate) until available buffers overflow and

packets are dropped. As previously discussed, given the

low inherent propagation and switching times in the data

center, this tail-drop behavior incurs an unacceptably

large queuing latency.

Active queue management (AQM) schemes [18, 24, 6]

aim to proactively signal congestion before buffers over-

flow. Most of these mechanisms try to regulate the queue

around some target occupancy. While these methods can

be quite effective in reducing queuing latency, they can-

not eliminate it altogether. This is because they must ob-

serve a non-zero queue to begin signaling congestion,

and sources react to these congestion signals after one

RTT of lag, during which time the queue would have

built up even further.

This leads to the following observation: Achieving

predictable and low fabric latency essentially requires

congestion signaling before any queueing occurs. That

is, achieving the lowest level of queueing latency im-

poses a fundamental tradeoff with bandwidth—creating

a ‘bandwidth headroom’. Our experiments (§6) show

that bandwidth headroom dramatically reduces average

and tail queuing latencies. In particular, the reductions at

the high percentiles are significant compared to queue-

based AQM schemes.

We propose the Phantom Queue (PQ) as a mechanism

for creating bandwidth headroom. A phantom queue is a

simulated queue, associated with each switch egress port,

that sets ECN [40] marks based on link utilization rather

than queue occupancy. The PQ simulates queue buildup

for a virtual egress link of a configurable speed, slower

than the actual physical link (e.g., running at γ = 95% of

the line rate). The PQ is not really a queue since it does

not store packets. It is simply a counter that is updated

while packets exit the link at line rate to determine the

queuing that would have been present on the slower vir-

tual link. It then marks ECN for packets that pass through

it when the counter (simulated queue) is above a fixed

threshold.

The PQ explicitly attempts to set aggregate transmis-

sion rates for congestion-controlled flows to be strictly

less than the physical link capacity, thereby keeping

switch buffers largely unoccupied. This bandwidth head-

room allows latency sensitive flows to fly through the

network at baseline transmission plus propagation rates.

Remark 1. The idea of using a simulated queue for sig-

naling congestion has been used in Virtual Queue (VQ)

AQM schemes [21, 31]. A key distinction is that while

a VQ is typically placed in parallel to a real queue in

the switch, we propose placing the PQ in series with the

switch egress port. This change has an important con-

sequence: the PQ can operate independently of the in-

ternal architecture of the switch (output-queued, shared

memory, combined input-output queued) and its buffer

management policies, and, therefore, work with any

switch. In fact, we implement the PQ external to physi-

cal switches as a hardware ‘bump on the wire’ prototyped

on the NetFPGA [33] platform (see §5.1). In general, of

course, VQs and PQs can and have been [34] integrated

into switching hardware.

2.2 DCTCP: Adaptive reaction to ECN

Standard TCP reacts to ECN marks by cutting the con-

gestion window in half. Without adequate buffering to

keep the bottleneck link busy, this conservative back off

can result in a severe loss of throughput. For instance,

with zero buffering, TCP’s rate fluctuates between 50%

and 100% of link capacity, achieving an average through-

put of only 75% [51]. Therefore, since the PQ aggres-

sively marks packets to keep the buffer occupancy at

zero, TCP’s back off can be especially detrimental.

To mitigate this problem, we use DCTCP [3], a re-

cent proposal to enhance TCP’s reaction to ECN marks.

DCTCP employs a fixed marking threshold at the switch

queue and attempts to extract information regarding the

extent of network congestion from the sequence of con-

gestion signals in the ACK train from the receiver. A

DCTCP source calculates the fraction of packets con-

taining ECN marks within a given window of ACKs,

and reduces its window size in proportion to the frac-

tion of marked packets. Essentially, congestion signals

need not result in multiple flows simultaneously backing

off drastically and losing throughput. Instead (and ide-

ally), senders can adjust transmission rates to maintain a

base, low level of queueing near the marking threshold.

In theory, DCTCP can maintain more than 94% through-

put even with zero queueing [4]. We refer to [3] for a full

description of the algorithm.

2.3 Packet pacing

Bursty transmission occurs for multiple reasons, rang-

ing from TCP artifacts like ACK compression and slow

start [27, 56], to various offload features in NICs like

Interrupt Coalescing and Large Send Offloading (LSO)

designed to reduce CPU utilization [8]. With LSO for

instance, hosts transfer large buffers of data to the NIC,

leaving specialized hardware to segment the buffer into
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Figure 1: The HULL architecture consists of Phantom queues

at switch egress ports and DCTCP congestion control and

packet pacers at end-hosts.

individual packets, which then burst out at line rate. As

our experiments show (§4.1), Interrupt Coalescing and

LSO are required to maintain acceptable CPU overhead

at 10Gbps speeds.

Traffic bursts cause temporary increases in queue oc-

cupancies. This may not be a big problem if enough

buffer space is available to avoid packet drops and if

variable latency is not a concern. However, since the PQ

aggressively attempts to keep buffers empty (to prevent

variable latency), such bursts trigger spurious congestion

signals, leading to reduced throughput.

A natural technique for combating the negative effects

of bursty transmission sources on network queueing is

packet pacing. While earlier work (§7) introduce pacing

at various points in the protocol stack, we find that, to

be effective, pacing must take place in hardware after

the last source of bursty transmission: NIC-based LSO.

Ideally, a simple additional mechanism at the NIC itself

would pace data transmission. The pacer would likely

be implemented as a simple leaky bucket with a con-

figurable exit rate. We describe a hardware design and

implementation for pacing in §4.2.

It is paradoxical that the pacer must queue packets at

the edge (end-hosts) so that queueing inside the network

is reduced. Such edge queueing can actually increase

end-to-end latency, offsetting any benefits of reduced in-

network queueing. We resolve this paradox by noting

that only packets that belong to large flows and hence

are not sensitive to per-packet delivery times should be

paced. Small latency-sensitive flows should not be paced,

allowing them to exploit the lowest available fabric la-

tency. We employ a simple adaptive end-host mecha-

nism to determine whether a flow should be subject to

pacing. This is inspired by classic work on the UNIX

multi-level feedback queue that attempts to classify in-

teractive versus bulk jobs in the operating system [46].

Newly created flows are classified as latency sensitive

and initially not subjected to pacing. However, once a

flow sees a sufficient number of ECN marks, it is classi-

fied as throughput-oriented and paced.

Throughput Mean Latency 99th Prctile Latency

TCP 982Mbps 1100.6µs 4308.8µs

DCTCP-30K 975Mbps 153.9µs 305.8µs

Table 1: Baseline throughput and latency for two long-lived

flows with TCP and DCTCP-30K (30KB marking threshold).

2.4 The HULL Architecture

The complete High-bandwidth Ultra Low Latency

(HULL) architecture is shown in Figure 1. Large flows

at the host stack, which runs DCTCP congestion con-

trol, send large bursts to the NIC for segmentation via

LSO. The Pacer captures the packets of the large flows

after segmentation, and spaces them out at the correct

transmission rate. The PQ uses ECN marking based on

a simulated queue to create bandwidth headroom, limit-

ing the link utilization to some factor, γ < 1, of the line

rate. This ensures that switch queues run (nearly) empty,

which enables low latency for small flows.

3 Bandwidth Headroom

This section explores the consequences of creating band-

width headroom. We illustrate the role of the congestion

control protocol in determining the amount of bandwidth

headroom by comparing TCP and DCTCP. We then dis-

cuss how bandwidth headroom impacts the completion

time of large flows.

3.1 Importance of stable rate control

All congestion control algorithms cause fluctuations in

rate as they probe for bandwidth and react to delayed

congestion signals from the network. The degree of these

fluctuations is usually termed ‘stability’ and is an im-

portant property of the congestion control feedback sys-

tem [47, 24]. Typically, some amount of buffering is re-

quired to absorb rate variations and avoid throughput

loss. Essentially, buffering keeps the bottleneck link busy

while sources that have cut their sending rates recover.

This is especially problematic in low statistical multi-

plexing environments, where only a few high speed flows

must sustain throughput [5].

Therefore, special care must be taken with the conges-

tion control algorithm if we aim to reduce buffer occu-

pancies to zero. We illustrate this using a simple exper-

iment. We connect three servers to a single switch and

initiate two long-lived flows from two of the servers to

the third (details regarding our experimental setup can

be found in §5). We measure the aggregate through-

put and the latency due to queueing at the switch. As

a baseline reference, the throughput and latency for stan-

dard TCP (with tail-drop), and DCTCP, with the recom-

mended marking threshold of 30KB [3], are given in Ta-

ble 1. As expected, DCTCP shows an order of magni-

tude improvement in latency over TCP, because it reacts

to queue buildup beyond the marking threshold.
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We conduct a series of experiments where we sweep

the drain rate of a PQ attached to the congested port.

The marking threshold at the PQ is set to 6KB and we

also enable our hardware pacing module. The results are

shown in Figure 2. Compared to the baseline, a signifi-

cant latency reduction occurs for both TCP-ECN (TCP

with ECN enabled) and DCTCP, when bandwidth head-

room is created by the PQ. Also, for both schemes, the

throughput is lower than intended by the PQ drain rate.

This is because of the rate variations imposed by the

congestion control dynamics. However, TCP-ECN loses

considerably more throughput than DCTCP at all PQ

drain rates. The gap between TCP-ECN’s throughput

and the PQ drain rate is ∼17–26% of the line rate, while

it is ∼6–8% for DCTCP, matching theory quite well [4].

3.2 Slowdown due to bandwidth headroom

Bandwidth headroom created by the PQ will inevitably

slow down the large flows, which are bandwidth-

intensive. An important question is: How badly will the

large flows be affected?

We answer this question using a simple queuing anal-

ysis of the ‘slowdown’, defined as the ratio of the com-

pletion times of a flow with and without the PQ. We find

that, somewhat counter-intuitively, the slowdown is not

simply determined by the amount of bandwidth sacri-

ficed; it also depends on the traffic load.

Consider the well-known model of a M/G/1-Processor

Sharing queue for TCP bandwidth sharing [20, 42].

Flows arrive according to a Poisson process of some

rate, λ , and have sizes drawn from a general distribu-

tion, S. The flows share a link of capacity C in a fair

manner; i.e., if there are n flows in the system, each

gets a bandwidth of C/n. We assume the total load

ρ , λE(S)/C < 1, so that the system is stable. A stan-

dard result for the M/G/1-PS queue states that in this set-

ting, the average completion time for a flow of size x is

given by:

FCT100% =
x

C(1−ρ)
, (1)

where the ‘100%’ indicates that this is the FCT without

bandwidth headroom. Now, suppose we only allow the

flows to use γC of the capacity. Noting that the load on

this slower link is ρ̃ = ρ/γ , and invoking (1) again, we

find that the average completion time is:

FCTγ =
x

γC(1−ρ/γ)
=

x

C(γ−ρ)
. (2)

Hence, dividing (2) by (1), the slowdown caused by the

bandwidth headroom is given by:

SD ,
FCTγ

FCT100%

=
1−ρ

γ−ρ
. (3)

The interesting fact is that the slowdown gets worse as

the load increases. This is because giving bandwidth
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Figure 2: Throughput (left) and average switch latency (right)

for TCP-ECN and DCTCP with a PQ, as drain rate varies. The

vertical bars in the right plot indicate the 99th percentile.

away also increases the effective load (ρ̂ > ρ). For exam-

ple, using (3), the slowdown with 20% bandwidth head-

room (γ = 0.8), at load ρ = 0.2,0.4,0.6 will be 1.33, 1.5,

2, (equivalently: 33%, 50%, 100%) respectively.

Our experiments in §6.2 confirm the validity of this

model (see Figure 10). This highlights the importance of

not giving away too much bandwidth. Fortunately, as we

show, even a small amount of bandwidth headroom (e.g.,

10%) provides a dramatic reduction in latency.

Remark 2. The M/G/1-PS model provides a good ap-

proximation for large flows for which TCP has time to

converge to the fair bandwidth allocation [20]. It is not,

however, a good model for small flows as it does not cap-

ture latency. In fact, since the completion time for small

flows is mainly determined by the latency, they are not

adversely affected by bandwidth headroom (§6).

4 Pacing

4.1 The need for pacing

Modern NICs implement various offload mechanisms

to reduce CPU overhead for network communication.

These offloads typically result in highly bursty traffic [8].

For example, Interrupt Coalescing is a standard feature

which allows the NIC to delay interrupting the CPU and

wait for large batches of packets to be processed in one

SoftIrq. This disrupts the normal TCP ACK-clocking and

leads to many MTUs worth of data being released by

TCP in a burst. A further optimization, Large Send Of-

floading (LSO), allows TCP to send large buffers (cur-

rently up to 64KB), delegating the segmentation into

MTU-sized packets to the NIC. These packets then burst

out of the NIC at line rate.

As later experiments show, this burstiness can be detri-

mental to network performance. However, using hard-

ware offloading to reduce the CPU overhead of the

network stack is unavoidable as link speeds increase

to 10Gbps and beyond.

We illustrate the need for pacing using a simple ex-

periment. We directly connect two servers with 10Gbps

NICs (see §5.2 for testbed details), and enable LSO and

Interrupt Coalescing with a MTU of 1500 bytes. We gen-

erate a single TCP flow between the two servers, and

cap the window size of the flow such that the through-

put is ∼1Gbps on average. Figure 3 shows the data and
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Figure 3: Burstiness with 10Gbps NICs.

Intr. Coalescing CPU Util. (%) Thrput (Gbps) Ack Ratio (KB)

adaptive 37.2 9.5 41.3

rx-frames=128 30.7 9.5 64.0

rx-frames=32 53.2 9.5 16.5

rx-frames=8 75 9.5 12.2

rx-frames=2 98.7 9.3 11.4

rx-frames=0 99 7.7 67.4

Table 2: The effect of Interrupt Coalescing. Note that ‘adaptive’

is the default setting for Interrupt Coalescing.

ACK sequence numbers within a 5ms window (time

and sequence numbers are relative to the origin) com-

pared to the ‘ideal slope’ for perfectly paced transmission

at 1Gbps. The sequence numbers show a step-like behav-

ior that demonstrates the extent of burstiness. Each step,

occurring roughly every 0.5ms, corresponds to a back-

to-back burst of data packets totaling 65KB. Analyzing

the packet trace using tcpdump [49], we find that the

bursty behavior reflects the batching of ACKs at the re-

ceiver: Every 0.5ms, 6 ACKs acknowledging 65KB in

total are received within a 24–50µs interval. Whereas,

ideally, for a flow at 1Gbps, the ACKs for 65KB should

be evenly spread over 520µs.

The batching results from Interrupt Coalescing at the

receiver NIC. To study this further, we repeat the experi-

ment with no cap on the window size and different levels

of Interrupt Coalescing. We control the extent of Inter-

rupt Coalescing by varying the value of rx-frames,

a NIC parameter that controls the number of frames be-

tween interrupts. Table 2 summarizes the results. We ob-

serve a tradeoff between the CPU overhead at the re-

ceiver and the average ACK ratio (the number of data

bytes acknowledged by one ACK), which is a good proxy

for burstiness. Setting rx-frames at or below 8 heavily

burdens the receiver CPU, but improves the ACK ratio.

With Interrupt Coalescing disabled (rx-frames = 0),

the receiver CPU is saturated and cannot keep up with

the load. This further increases the ACK ratio and also

causes a 1.8Gbps loss in throughput.

Remark 3. Enabling LSO is also necessary to achieve

the 10Gbps line rate. Without LSO, the sender’s CPU is

saturated and there is close to 3Gbps loss of throughput.

4.2 Hardware Pacer module

The Pacer module inserts suitable spacing between the

packets of flows transmitted by the server. We envision
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Figure 4: Block diagram of Pacer module.

the Pacer module operating at the NIC. Pacing in hard-

ware has a number of advantages over software pacing. A

hardware pacer can easily support the sub-microsecond

scheduling granularity required to pace at 10Gbps rates

and beyond. Moreover, unlike pacing in the host stack

that typically requires disabling segmentation offload, a

hardware module in the NIC is oblivious to server LSO

settings since it operates on the outgoing packet stream

after segmentation takes place.

Figure 4 shows the block diagram of the Pacer mod-

ule. The Flow Association Table is consulted to check

whether an outgoing packet requires pacing (see below).

If so, the packet is placed into a token bucket rate lim-

iter with a configurable transmission rate. Otherwise, it

bypasses the token bucket and is sent immediately.

The key challenges to pacing, especially in a hardware

module, are: (i) determining the appropriate pacing rate,

and (ii) deciding the flows that require pacing.

Dynamic pacing rate estimation. The NIC is unaware

of the actual sending rate (Cwnd/RTT) of TCP sources.

Therefore, we use a simple algorithm to estimate the

congestion-friendly transmission rate. We assume that

over a sufficiently large measurement interval (e.g., a few

RTTs) each host’s aggregate transmission rate will match

the rate imposed by higher-level congestion control pro-

tocols such as TCP (or DCTCP). The pacer dynamically

measures this rate and appropriately matches the rate of

the token bucket. More precisely, every Tr seconds, the

Pacer counts the number of bytes it receives from the

host, denoted by Mr. It then modifies the rate of the to-

ken bucket according to:

Rtb← (1−η)×Rtb+η×
Mr

Tr

+β ×Qtb. (4)

The parameters η and β are positive constants and Qtb is

the current backlog of the token bucket in bytes. Rtb is in

bytes per second.

Equation (4) is a first order low-pass filter on the rate

samples Mr/Tr. The term β ×Qtb is necessary to prevent

the Pacer backlog from becoming too large.2 This is cru-

cial to avoid a large buffer for the token bucket, which

adds to the cost of the Pacer, and may also induce signif-

icant latency to the paced flows (we explore the latency

of the Pacer further in §4.4).

2In fact, if the aggregate rate of paced flows is fixed at R∗ = Mr/Tr,

the only fixed point of equation (4) is Rtb = R∗, and Qtb = 0.
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Figure 5: Throughput and switch latency as PQ drain rate

varies, with and without pacing.
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Figure 6: The average switch latency and end-to-end RTT

(measured by ping) for paced flows, as β in Eq. (4) is varied.

Which flows need pacing? As previously discussed,

only packets belonging to large flows (that are not

latency-sensitive) should be paced. Moreover, only those

flows that are causing congestion require pacing. We

employ a simple adaptive mechanism to automatically

detect such flows. Newly created flows are initially not

paced. For each ACK with the ECN-Echo bit set, the cor-

responding flow is associated with the pacer with some

probability, pa (e.g., 1/8 in our implementation). This

probabilistic sampling ensures that small flows are un-

likely to be paced. The association times out after some

time, Ti, so that idle flows will eventually be reclassified

as latency sensitive.

Remark 4. We have described the pacer module with a

single token bucket rate-limiter for simplicity. However,

the same design can be used with multiple rate-limiters,

allowing more accuracy when pacing multiple flows.

4.3 Effectiveness of the Pacer

We demonstrate the effectiveness of pacing by running

an experiment with 2 long-lived DCTCP flows (simi-

lar to §3.1), with and without pacing. As before, we

sweep the drain rate of the PQ. We also vary the marking

threshold at the PQ from 1KB to 30KB. The results are

shown in Figure 5. We observe that pacing improves both

throughput and latency. The throughput varies nearly lin-

early with the PQ drain rate when the Pacer is enabled.

Without pacing, however, we observe reduced through-

put with low marking thresholds. This is because of spu-

rious congestion signals caused by bursty traffic. Also,

with pacing, the average and 99th percentile latency

plummet with bandwidth headroom, quickly reaching

their floor values of 5µs and 21µs respectively. In con-

trast, the latency decreases much more gradually without

pacing, particularly at the 99th percentile.

4.4 The tradeoff between Pacer delay and

effectiveness

Pacing, by definition, implies delaying the transmission

of packets. We find that there is a tradeoff between the

delay at the Pacer and how effectively it can pace. This

tradeoff is controlled by the parameter β in Equation (4).

Higher values of β cause a more aggressive increase in

the transmission rate to keep the token bucket backlog,

Qtb, small. However, this also means that the Pacer cre-

ates more bursty output when a burst of traffic hits the

token bucket; basically, the Pacer does ‘less pacing’.

The following experiment shows the tradeoff. We start

two long-lived DCTCP flows transmiting to a single re-

ceiver. The Pacer is enabled and we sweep β over the

range β = 20 to β = 214 (the rest of the parameters

are set as in Table 3). The PQ on the receiver link is con-

figured to drain at 950Mbps and has a marking threshold

of 1KB. We measure both the latency across the switch

and the end-to-end RTT for the flows being paced, which

is measured using ping from the senders to the receiver.

Figure 6 shows the results. The Pacer is more effective

in reducing switch latency with smaller value of β , but

also induces more delay. We observe a sharp increase

in Pacer delay for values of β smaller than 24 without

much gain in switch latency, suggesting the sweet spot

for β . Nonetheless, the Pacer does add a few hundreds

of microseconds of delay to the paced flows. This under-

scores the importance of selectively choosing the flows

to pace. Only large flows which are throughput-oriented

and are not impacted by the increase in delay should be

paced. In fact, the throughput (not shown due to lack

of space) is also higher with better pacing: Decreasing

from∼870Mbps at β = 20 to∼770Mbps at β = 214 (and

slightly lower without pacing).

5 Experimental Setup

5.1 Implementation

We use the NetFPGA [33] platform to implement the

Pacer and PQ modules. NetFPGA is a PCI card with
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four Gigabit Ethernet ports and a Xilinx Virtex-II Pro

125MHz FPGA that has 4MB of SRAM. Each NetF-

PGA supports two Pacers and two PQs. The complete

implementation consumes 160 block RAMs (out of 232,

or 68% of the total NetFPGA capacity), and occupies

20,364 slices (86% of the total NetFPGA capacity).

The Pacer module has a single token bucket rate-

limiter with a 128KB FIFO queue. The Pacer’s transmis-

sion rate is controlled as described in §4.2 at a granular-

ity of 0.5Mbps. Tokens of variable size (1-2000 bytes,

proportional to the Pacer rate) are added every 16µs and

the maximum allowed outstanding tokens (bucket depth)

is 3KB. The Flow Association Table can hold 64 en-

tries, identifying flows that require pacing. The Pacer en-

queues the packets of these flows in the rate-limiter and

forwards the rest in pass-through mode.

The PQ module implements the virtual queue length

counter. It is incremented upon receiving a packet and

decremented according to the PQ drain rate every 800ns.

If the counter exceeds the configured marking thresh-

old, the ECN/CE (Congestion Experienced) bit in the IP

header of the incoming packet is set and the checksum

value is recalculated. The PQ is completely pass-through

and does not queue packets.

We have also introduced modifications to the TCP

stack in Linux 2.6.26 for DCTCP, following the algo-

rithm in [3]. Our code is available online at [13].

5.2 Testbed

Our testbed consists of 10 servers and 6 NetFPGAs con-

nected to a Broadcom Triumph2 switch as shown in Fig-

ure 7. The Triumph2 is an ECN-capable switch with 48

nonblocking 1Gbps ports and 4MB of buffer memory

shared across all ports. Each server has 4-core Intel Xeon

E5620 2.4GHz CPUs with Hyper-Threading and at least

16GB of RAM. The servers use Intel’s 82574L 1GbE

Ethernet Controller. Two of the servers, S9 and S10, also

have Mellanox ConnectX-2 ENt 10Gbase-T NICs, which

were used for the 10Gbps experiments in §4.1.

Each of the NetFPGAs NF1-NF5 implements two Pac-

ers and two PQs: One for each of the two servers and

the two switch ports connected to it. All server-to-switch

traffic goes through the Pacer module and all switch-to-

server traffic goes through the PQ module.

For the majority of the experiments in this paper, we

use machine S5 as the receiver, and (a subset of) the rest

of the machines as senders which cause congestion at the

switch port connected to S5 (via NF3).

Measuring Switch Latency. We have also developed a

Latency Measurement Module (LMM) in NetFPGA for

sub-microsecond resolution measurement of the latency

across the congested switch port. The LMM (NF6 in Fig-

ure 7) works as follows: Server S1 generates a 1500 byte

ping packet to S5 every 1ms.3 The ping packets are in-

tercepted and timestamped by the LMM before entering

the switch. As a ping packet leaves the switch, it is again

intercepted and the previous time-stamp is extracted and

subtracted from the current time to calculate the latency.

6 Results

This section presents our experimental and simulation

results evaluating HULL. We use micro-benchmarks

to compare the latency and throughput performance

of HULL with various schemes including TCP with

drop-tail, default DCTCP, DCTCP with reduced mark-

ing threshold, and TCP with an ideal two-priority

QoS scheme (TCP-QoS), where small (latency-sensitive)

flows are given strict priority over large flows. We also

check scalability of HULL using large-scale ns-2 [36]

simulations. We briefly summarize our main findings:

(i) In micro benchmarks with both static and dynamic

traffic, we find that HULL significantly reduces aver-

age and tail latencies compared to TCP and DCTCP.

For example, with dynamic traffic (§6.2) HULL pro-

vides a more than 40x reduction in average latency com-

pared to TCP (more than 10x compared to DCTCP), with

bigger reductions at the high percentiles. Compared to

an optimized DCTCP with low marking threshold and

pacing, HULL achieves a 46–58% lower average la-

tency, and a 69–78% lower 99th percentile latency. The

bandwidth traded for this latency reduction increases the

completion-time of large flows by 17–55%, depending

on the load, in good agreement with the theoretical pre-

diction in §3.2.

(ii) HULL achieves comparable latency to TCP-QoS

with two priorities, but lower throughput since QoS does

not leave bandwidth headroom. Also, unlike TCP-QoS

which loses a lot of throughput if buffers are shallow

(more than 58% in one experiment), HULL is much less

sensitive to the size of switch buffers, as it (mostly) keeps

them unoccupied.

(iii) Our large-scale ns-2 simulations confirm that HULL

scales to large multi-switch topologies.

Parameter choices. Table 3 gives the baseline parame-

ters used in the testbed experiments (the ns-2 parameters

are given in §6.3). The parameters are determined exper-

imentally. Due to space constraints, we omit the details

3Note that this adds 12Mbps (1.2%) of throughput overhead.
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Phantom Queue Drain Rate = 950Mbps, Marking Thresh. = 1KB

Pacer
Tr = 64µs, η = 0.125, β = 16,

pa = 0.125, Ti = 10ms

Table 3: Baseline parameter settings in experiments.

and summarize our main findings.

The PQ parameters are chosen based on experiments

with long-lived flows, like that in Figure 5. As can be

seen in this figure, the PQ with 950Mbps drain rate and

1KB marking threshold (with pacing) achieves almost

the latency floor. An interesting fact is that smaller mark-

ing thresholds are required to maintain low latency as the

PQ drain rate (γC) increases. This can be seen most vis-

ibly in Figure 5(a) for the 99th percentile latency. The

reason is that since the input rate into the PQ is limited to

the line rate (because it’s in series), it takes longer for it to

build up as the drain rate increases. Therefore, the mark-

ing threshold must also be reduced with increasing drain

rate to ensure that the PQ reacts to congestion quickly.

Regarding the Pacer parameters, we find that the speed

of the Pacer rate adaptation—determined by Tr/η—

needs to be on the order of a few RTTs. This ensures that

the aggregate host transmission rate is tracked closely

by the Pacer and provides a good estimate of the rate

imposed by the higher-layer DCTCP congestion control.

The parameter β is chosen as described in §4.4. The pa-

rameters pa and Ti are chosen so that small flows (e.g.,

smaller than 10KB) are unlikely to be paced. Overall, we

do not find the Pacer to be sensitive to these parameters.

6.1 Static Flow Experiments

We begin with an experiment that evaluates throughput

and latency in the presence of long-lived flows. We call

this the static setting since the number of flows is con-

stant during the experiment and the flows always have

data to send. Each flow is from a different server sending

to the receiver S5 (see Figure 7). We sweep the number

of flows from 2 to 8. (Note that at least 2 servers must

send concurrently to cause congestion at the switch.)

Schemes. We compare four schemes: (i) standard TCP

(with drop-tail), (ii) DCTCP with 30KB marking thresh-

old, (iii) DCTCP with 6KB marking threshold and pac-

ing enabled, and (iv) DCTCP with a PQ (950Mbps

with 1KB marking threshold). For schemes (ii) and (iii),

ECN marking is enabled at the switch and is based on

the physical queue occupancy, while for (iv), marking is

only done by the PQ.

Note: The recommended marking threshold for DCTCP

at 1Gbps is 30KB [3]. We also lower the marking thresh-

old to 6KB to evaluate how much latency can be im-

proved with pure queue-based congestion signaling. Ex-

periments show that with this low marking threshold,

pacing is required to avoid excessive loss in through-

put (§6.2.1). Reducing the marking threshold below 6KB
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Figure 8: Switch latency (left) and throughput (right) as the

number of long-lived flows varies. The latency plot uses a log-

arithmic scale and the vertical bars indicate the 99th percentile.

severely degrades throughput, even with pacing.

Analysis. The results are shown in Figure 8. We ob-

serve more than an order of magnitude (about 20x) re-

duction in average latency with DCTCP compared to

TCP. Reducing the marking threshold to 6KB gives a

further 6x reduction, bringing the average latency down

from ∼200µs to ∼30µs. When there are a few static

flows (e.g., less than 4), the PQ reduces the average

latency by another factor 2–3 compared to DCTCP

with 6KB marking threshold. Moreover, it also signif-

icantly lowers the jitter, achieving a 99th percentile of

∼30µs compared to ∼100µs for DCTCP-6K-Pacer, and

more than 300µs for standard DCTCP. The PQ’s lower

latency is because of the bandwidth headroom it creates:

The throughput for the PQ is about 870Mbps. The 8%

loss compared to the PQ’s 950Mbps drain rate is due to

the rate fluctuations of DCTCP, as explained in §3.1.

Behavior with increasing flows. Figure 8 shows that

bandwidth headroom becomes gradually less effective

with increasing the number of flows. This is because of

the way TCP (and DCTCP) sources increase their win-

dow size to probe for additional bandwidth. As is well-

known, during Congestion Avoidance, a TCP source in-

creases its window size by one packet every round-

trip time. This is equivalent to an increase in sending

rate of 1/RTT (in pkts/sec) each round-trip-time. Now,

with N flows all increasing their rates at this slope, more

bandwidth headroom is required to prevent the aggregate

rate from exceeding the link capacity and causing queu-

ing. More precisely, because of the one RTT of delay in

receiving ECN marks from the PQ, the sources’ aggre-

gate rate overshoots the PQ’s target drain rate by N/RTT

(in pkts/sec). Hence, we require:

(1− γ)C >
N

RTT
=⇒ 1− γ >

N

C×RTT
, (5)

where C×RTT is the bandwidth-delay product in units of

packets. Equation (5) indicates that the bandwidth head-

room required (as a percentage of capacity) to prevent

queuing increases with more flows and decreases with

larger bandwidth-delay product.
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Switch Latency (µs) 1KB FCT (µs) 10MB FCT (ms)

Avg 90th 99th Avg 90th 99th Avg 90th 99th

20% Load

TCP-DropTail 111.5 450.3 1224.8 1047 1136 10533 110.2 162.3 349.6

DCTCP-30K 38.4 176.4 295.2 475 638 2838 106.8 155.2 301.7

DCTCP-6K-Pacer 6.6 13.0 59.7 389 531 888 111.8 168.5 320.0

DCTCP-PQ950-Pacer 2.8 7.6 18.6 380 529 756 125.4 188.3 359.9

40% Load

TCP-DropTail 329.3 892.7 3960.8 1537 3387 5475 151.3 275.3 575.0

DCTCP-30K 78.3 225.0 556.0 495 720 1794 155.1 281.5 503.3

DCTCP-6K-Pacer 15.1 35.5 213.4 403 560 933 168.7 309.3 567.5

DCTCP-PQ950-Pacer 7.0 13.5 48.2 382 536 808 198.8 370.5 654.7

60% Load

TCP-DropTail 720.5 2796.1 4656.1 2103 4423 5425 250.0 514.6 1007.4

DCTCP-30K 119.1 247.2 604.9 511 740 1268 267.6 538.4 907.3

DCTCP-6K-Pacer 24.8 52.9 311.7 403 563 923 320.9 632.6 1245.6

DCTCP-PQ950-Pacer 13.5 29.3 99.2 386 530 782 389.4 801.3 1309.9

Table 4: Baseline dynamic flow experiment. The average, 90th percentile, and 99th percentile switch latency and flow completion

times are shown. The results are the average of 10 trials. In each case, the best scheme is shown in red.
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Figure 9: The impact of increasing number of flows on switch

latency with PQ, for MTU = 1500 bytes and MTU = 300 bytes.

An important consequence of Equation (5) is that for

a fixed RTT, less bandwidth headroom is needed as the

link capacity increases (e.g., from 1Gbps to 10Gbps).

We demonstrate this using a simple experiment in Fig-

ure 9. In the absence of an experimental setup faster

than 1Gbps, we emulate what happens at higher link

speeds by decreasing the MTU (packet size) to 300 bytes.

Since the default MTU is 1500 bytes, this increases the

bandwidth-delay product by a factor of 5 in units of pack-

ets, effectively emulating a 5Gbps link. As can be seen in

the figure, the latency with the PQ is much lower with the

smaller packet size at all number of flows. This confirms

that the sensitivity to the number of flows decreases with

increasing link speed. Essentially, the same amount of

bandwidth headroom is more effective for faster links.

Remark 5. We found that when the MTU is reduced

to 300 bytes, the receiver NIC cannot keep up with

the higher packets/sec and starts dropping packets. To

avoid this artifact, we had to reduce the PQ drain rate

to 800Mbps for the tests in Figure 9.

6.2 Dynamic Flow Experiments

In this section we present the results of a micro-

benchmark which creates a dynamic workload. We de-

velop a simple client/server application to generate traf-

fic based on patterns seen in storage systems like mem-

cached [54]. The client application, running on server S5

(Figure 7) opens 16 permanent TCP connections with

each of the other 9 servers. During the test, the client re-

peatedly chooses a random connection among the pool of

connections and makes a request for a file on that connec-

tion. The server application responds with the requested

file. The requests are generated as a Poisson process in

an open loop fashion [43]; that is, new requests are trig-

gered independently of prior outstanding requests. The

request rate is chosen such that the average RX through-

put at the client is at a desired level of load. For exam-

ple, if the average file size is 100KB, and the desired load

is 40% (400Mbps), the client makes 500 requests per sec-

ond on average. We conduct experiments at low (20%),

medium (40%), and high (60%) levels of load. During

the experiments, we measure the switch latency (using

the NetFPGA Latency Measurement Module), as well as

the application level flow completion times (FCT).

6.2.1 Baseline

For the baseline experiment, we use a workload where

80% of all client requests are for a 1KB file and 20%

are for a 10MB file. Of course, this is not meant to be

a realistic workload. Rather, it allows a clear compari-

son of how different schemes impact the small (latency-

sensitive) and large (bandwidth-sensitive) flows.

Note: The 1KB flows are just a single packet and can

complete in one RTT. Such single packet flows are very

common in data center networks; for example, measure-

ments in a production data center of a large cloud service

provider have revealed that more than 50% of flows are

smaller than 1KB [22].

Table 4 gives the results for the same four schemes that

were used in the static flow experiments (§6.1).

Analysis: Switch latency. The switch latency is very

high with TCP compared to the other three schemes since

it completely fills available buffers. With DCTCP, the la-

tency is 3–6 times lower on average. Reducing the mark-

ing threshold to 6KB gives another factor of 5 reduc-

tion in average latency. However, some baseline level of

queueing delay and significant jitter remains, with hun-

dreds of microseconds of latency at the 99th percentile.
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Figure 10: Slowdown for 10MB flows: Theory vs Experiment.

As explained in §2.1, this is because queue-based con-

gestion signaling (even with pacing) is too late to re-

act; by the time congestion is detected, a queue has al-

ready built up and is increasing. The lowest latency is

achieved by the PQ which creates bandwidth headroom.

Compared to DCTCP-6K-Pacer, the PQ reduces the av-

erage latency by 46–58% and the 99th percentile by 69–

78%. The latency with the PQ is especially impressive

considering just a single 1500 byte packet adds 12µs of

queueing latency at 1Gbps.

Analysis: 1KB FCT & End-host latency. The 1KB

FCT is rather high for all schemes. It is evident from the

switch latency measurements that the high 1KB FCTs are

due to the delays incurred by packets at the end-hosts (in

the software stack, PCIe bus, and network adapters). The

host-side latency is particularly large when the servers

are actively transmitting/receiving data at high load. As

a reference, the minimum 1KB FCT is about 160µs.

Interestingly, the latency at the end-host (and the 1KB

FCT) improves with more aggressive signaling of con-

gestion in the network, especially, compared to TCP-

DropTail. This suggests that the un-checked increase in

window size with TCP-DropTail (and to a lesser extent

with DCTCP-30K) causes queuing at both the network

and the end-hosts. Essentially, flows with large windows

deposit large chunks of data into NIC buffers, which adds

delay for the small flows.

The main takeaway is that bandwidth headroom sig-

nificantly reduces the average and tail switch latency un-

der load, even compared to optimized queue-based AQM

with a low marking threshold and pacing. However, to

take full advantage of this reduction, the latency of the

software stack and network adapters must also improve.

Analysis: Slowdown for 10MB flows. The bandwidth

given away by the PQ increases the flow completion of

the 10MB flows, which are throughput-limited. As pre-

dicted by the theoretical model in §3.2, the slowdown is

worse at higher load. Compared to the lowest achieved

value (shown in red in Table 4), with the PQ, the aver-

age 10MB FCT is 17% longer at 20% load, 31% longer

at 40% load, and 55% longer at 60% load. Figure 10

compares the slowdown predicted by theory with that

observed in experiments. The comparison includes the

results for PQ with 950Mbps drain rate, given in Table 4,
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Figure 11: Average switch latency (left) and 10MB FCT (right),

with and without pacing.

as well as PQ with 900Mbps and 800Mbps for which the

detailed numbers are omitted in the interest of space.

The theoretical slowdown is computed using Equa-

tion (3). To invoke the equation, we use ρ = 0.2,0.4,
and 0.6 corresponding to the load. We also account for

the additional throughput loss due to DCTCP rate fluctu-

ations (§3.1), by subtracting 8% from the PQ drain rate

to get γ . That is, we use γ = 0.72,0.82, and 0.87 cor-

responding to the drain rates 800, 900, and 950Mbps.

Overall, the theory and experiments match very well.

Pacing vs No Pacing. Figure 11 compares the average

switch latency and 10MB FCT, with and without pacing.

The comparison is shown for DCTCP with the marking

threshold at the switch set to 6KB, and for DCTCP with

the PQ draining at 950Mbps. In all cases, pacing low-

ers both the switch latency and the FCT of large flows,

improving latency and throughput.

Remark 6. Most data center networks operate at loads

less than 30% [9], so a load of 60% with Poisson/bursty

traffic is highly unlikely—the performance degradation

would be too severe. The results at 20% and 40% load

are more indicative of actual performance.

6.2.2 Comparison with two-priority QoS scheme

Ethernet and IP provide multiple Quality of Service

(QoS) priorities. One method for meeting the objective of

ultra-low latency and high bandwidth is to use two pri-

orities: an absolute priority for the flows which require

very low latency and a lower priority for the bandwidth-

intensive elastic flows. While this method has the po-

tential to provide ideal performance, it may be imprac-

tical (and is not commonly deployed) because applica-

tions do not segregate latency-sensitive short flows and

bandwidth-intensive large flows dynamically. Indeed, ap-

plication developers do not typically consider priority

classes for network transfers. It is more common to as-

sign an entire application to a priority and use priorities

to segregate applications.

Despite this, we now compare HULL with TCP using

an ideal two-priority QoS scheme for benchmarking pur-

poses. We repeat the baseline experiment from the pre-

vious section, but for QoS, we modify our application to

classify the 1KB flows as ‘high-priority’ using the Type
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Switch Latency (µs) 1KB FCT (µs) 10MB FCT (ms)

Avg 90th 99th Avg 90th 99th Avg 90th 99th

Large Buffer
TCP-QoS 6.4 17.2 20.2 565 570 2308 152.6 275.4 585.1

DCTCP-PQ950-Pacer 6.9 13.5 47.8 381 538 810 199.0 370.2 658.9

Small Buffer
TCP-QoS 5.3 15.5 19.7 371 519 729 362.3 811.9 1924.3

DCTCP-PQ950-Pacer 5.0 13.2 35.1 378 521 759 199.4 367.0 654.9

Table 5: HULL vs QoS with two priorities. The switch buffer is configured to use either Dynamic buffer allocation (Large Buffer)

or a fixed buffer of 10pkts = 15KB (Small Buffer). In all tests, the total load is 40%. In the case of QoS, the switch latency is that

of the high priority queue. The results are the average of 10 trials.

of Service (TOS) field in the IP header. The switch uses

a separate queue for these flows which is given strict pri-

ority over the other, ‘best-effort’, traffic.

Scenarios. We consider two settings for the switch buffer

size: (i) Dynamic buffer allocation (the default settings in

the switch), and (ii) a fixed buffer of 10 packets (15KB)

per priority. Note that in the latter setting TCP-QoS

gets 30KB in total, whereas HULL gets just 15KB since

it always uses only one priority. The second setting is

used to evaluate how switches with very shallow buffers

impact performance, since dynamic buffer allocation al-

lows a congested port to grab up to ∼700KB of the to-

tal 4MB of buffer in the switch).

Analysis: HULL vs QoS. Table 5 gives the results. We

make three main observations:

(i) HULL and QoS achieve roughly the same average

switch latency. HULL is slightly better at the 90th per-

centile, but worse at the 99th percentile.

(ii) When the switch buffer is large, TCP-QoS achieves a

better FCT for the 10MB flows than HULL as it does not

sacrifice any throughput. However, with small buffers,

there is about a 2.4x increase in the FCT with TCP-QoS

(equivalent to a 58% reduction in throughput). HULL

achieves basically the same throughput in both cases be-

cause it does not need the buffers in the first place.

(iii) In the large buffer setting, the 1KB flows complete

significantly faster with HULL—more than 33% faster

on average and 65% faster at the 99th percentile. This

is because the best-effort flows (which have large win-

dow sizes) interfere with high-priority flows at the end-

hosts, similar to what was observed for TCP-DropTail

in the baseline experiment (Table 4). This shows that all

points of contention (including the end-hosts, PCIe bus,

and NICs) must respect priorities for QoS to be effective.

Overall, this experiment shows that HULL achieves

nearly as low a latency as the ideal QoS scheme, but

gets lower throughput. Also, unlike QoS, HULL can cope

with switches with very shallow buffers because it avoids

queue buildup altogether.

6.3 Large-scale ns-2 Simulation

Due to the small size of our testbed, we cannot verify in

hardware that HULL scales to the multi-switch topolo-

gies common in data centers. Therefore, we complement

our hardware evaluation with large-scale ns-2 simula-

tions targeting a multi-switch topology and workload.

Topology. We simulate a three-layered fat-tree topology

based on scalable data center architectures recently pro-

posed [2, 22]. The network consists of 56 8-port switches

that connect 192 servers organized in 8 pods. There

is a 3:1 over-subscription at the top-of-the-rack (TOR)

level. The switches have 250 packets worth of buffering.

All links are 10Gbps and have 200ns of delay, with 1µs

of additional delay at the end-hosts. This, along with the

fact that ns-2 simulates store-and-forward switches, im-

plies that the end-to-end round-trip latency for a 1500

byte packet and a 40 byte ACK across the entire network

(6 hops) is 11.8µs.

Routing. We use standard Equal-Cost Multi-Path

(ECMP) [7] routing. Basically, ECMP hashes each flow

to one of the shortest paths between the source and desti-

nation nodes. All packets of the flow take the same path.

This avoids the case where packet reordering is misinter-

preted as a sign of congestion by TCP (or DCTCP).

Workload. The workload is generated similarly to our

dynamic flow experiments in hardware. We open perma-

nent connections between each pair of servers. Flows ar-

rive according to a Poisson process and are sent from a

random source to a random destination server. The flow

sizes are drawn from a Pareto distribution with shape pa-

rameter 1.05 and mean 100KB. This distribution creates

a heavy-tailed workload where the majority of flows are

small, but the majority of traffic is from large flows, as is

commonly observed in real networks: 95% of the flows

are less than 100KB and contribute a little over 25% of

all data bytes; while 0.03% of the flows that are larger

than 10MB contribute over 40% of all bytes.

Simulation settings. We compare standard TCP,

DCTCP, and DCTCP with a PQ draining at 9.5Gbps

(HULL). The Pacer is also enabled for HULL, with pa-

rameters: Tr = 7.2µs, η = 0.125, β = 375, pa = 0.125,

and Ti = 1ms. The changes to the parameters compared

to the ones we used for the hardware Pacer (Table 3)

are because of the difference in link speed (10Gbps vs

1Gbps) and the much lower RTT in the simulations. We

set the flow arrival rate so the load at the server-to-TOR

links is 15% (We have also run many simulations with

other levels of load, with qualitatively similar results).
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Figure 12: Average and high percentile FCT for small flows.
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Figure 13: Average FCT for large flows.

All simulations last for at least 5 million flows.

Note: Because the topology has 3:1 over-subscription at

the TOR, the load is approximately 3 times higher at the

TOR-to-Agg and Agg-to-Core links. A precise calcula-

tion shows that the load is 43.8% at the TOR-to-Agg

links, and 39.6% at the Agg-to-Core links.

Analysis: Small flows. Figure 12 shows the average,

99th percentile, and 99.9th percentile of the FCT for

small flows. The statistics are shown separately for flows

smaller than 10KB, and flows with size between 10KB

and 100KB. We observe a significant improvement in

the FCT of these flows with HULL; especially for flows

smaller than 10KB, there is more than 50% reduction

in the average FCT compared to DCTCP, and more

than 80% reduction at the 99th and 99.9th percentiles.

It is important to note that the 20µs average FCT for

flows smaller than 10KB achieved by HULL is near ideal

given that the simulation uses store-and-forward switch-

ing. In fact, the average size for flows smaller than 10KB

is 6.8KB. Because of store-and-forward, the FCT for a

flow of this size is at least ∼16.2µs. This implies that

with HULL, across the 5 switches end-to-end between

source and destination, there are, in total, only 3 packets

being queued on average (each adding 1.2µs of delay).

Analysis: Large flows. Figure 13 shows the average

FCT for flows between 100KB and 10MB in size, and

for those that are larger than 10MB. As expected, these

flows are slower with HULL: up to 24% slower for flows

larger than 10MB, which is approximately the slowdown

predicted by theory (§3.2) at this fairly high level of load.

Overall, the ns-2 simulations confirm that bandwidth

headroom created by HULL is effective in large multi-

switch networks and can significantly reduce latency and

jitter for small flows.

7 Related Work

AQM: AQM has been an active area of research ever

since RED [18] was proposed. Subsequent work [32,

17, 24] refined the concept and introduced enhance-

ments for stability and fairness. While these schemes

reduce queueing delay relative to tail-drop queues, they

still induce too large a queueing latency from the ultra-

low latency perspective of this paper because they are,

fundamentally, queue-based congestion signaling mech-

anisms. Virtual-queue based algorithms [21, 31] consider

signaling congestion based on link utilization. The Phan-

tom Queue is inspired by this work with the difference

that PQs are not adjacent to physical switch queues.

Instead, they operate on network links (in series with

switch ports). This makes the PQ completely agnostic

to the internal switch architecture and allows it to be de-

ployed with any switch as a ‘bump-on-the-wire’.

Transport Layer: Layer 3 research relevant to our ultra-

low latency objective includes protocols and algorithms

which introduce various changes to TCP or are TCP

substitutes. Explicit feedback schemes like XCP [29]

and RCP [16] can perform quite well at keeping low

queueing but require major features that do not exist in

switches or protocols today. Within the TCP family, vari-

ants like Vegas [11], CTCP [48] and FAST [53] attempt

to control congestion by reacting to increasing RTTs due

to queuing delay. By design, such algorithms require the

queue to build up to a certain level and, therefore, do not

provide ultra-low latency.

Pacing: TCP pacing was suggested for alleviating

burstiness due to ACK compression [56]. Support for

pacing has not been unanimous. For instance, Aggar-

wal et al. [1] show that paced flows are negatively im-

pacted when competing with non-paced flows because

their packets are deliberately delayed. With increasing

line rates and the adoption of TCP segmentation offload-

ing, the impact of burstiness has been getting worse [8]

and the need for pacing is becoming more evident. One

way pacing has been implemented is using software

timers to determine when a packet should be transmit-

ted [28, 52, 15]. However, when the ticks of the pacer

are very frequent as happens at high line rates, such

software-based schemes often lack access to accurate

timers or heavily burden the CPU with significant in-

terrupt processing. Further, a software pacer prior to the

NIC cannot offset the effects of offloading functions like

LSO which occur in the NIC.

8 Final Remarks

In this paper we presented a framework to deliver

baseline fabric latency for latency-sensitive applications

while simultaneously supporting high fabric goodput for

bandwidth-sensitive applications. Through a combina-
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tion of Phantom Queues to run the network with near

zero queueing, adaptive response to ECN marks using

DCTCP, and packet pacing to smooth bursts induced by

hardware offload mechanisms like LSO, we showed a

factor of up to 10-40 reduction in average and tail latency

with a configurable sacrifice of overall fabric throughput.

Our work makes another case for a time when aggre-

gate bandwidth may no longer be the ultimate evaluation

criterion for large-scale fabrics, but a tool in support of

other high-level goals such as predictable low latency.

There are two aspects which warrant further investi-

gation. First, it is useful to evaluate HULL on a larger

multi-switch testbed and with more diverse workloads.

Second, it is important to quantify the buffering require-

ments for incast-like communication patterns [50] with

our approach.
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