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ABSTRACT
Web applications have now become so sophisticated that rendering
a typical page may require hundreds of intra-datacenter flows. At
the same time, web sites must meet strict page creation deadlines of
200-300ms to satisfy user demands for interactivity. Long-tailed
flow completion times make it challenging for web sites to meet
these constraints. They are forced to choose between rendering a
subset of the complex page, or delay its rendering, thus missing
deadlines and sacrificing either quality or responsiveness. Either
option leads to potential financial loss.

In this paper, we present a new cross-layer network stack aimed
at reducing the long tail of flow completion times. The approach
exploits cross-layer information to reduce packet drops, prioritize
latency-sensitive flows, and evenly distribute network load, effec-
tively reducing the long tail of flow completion times. We evaluate
our approach through NS-3 based simulation and Click-based im-
plementation demonstrating our ability to consistently reduce the
tail across a wide range of workloads. We often achieve reductions
of over 50% in 99.9th percentile flow completion times.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Protocols

Keywords
Datacenter network, Flow statistics, Multi-path

1. INTRODUCTION
Web sites have grown complex in their quest to provide increas-

ingly rich and dynamic content. A typical Facebook page consists
of a timeline-organized “wall” that is writeable by the user and her
friends, a real-time cascade of friend event notifications, a chat ap-
plication listing friends currently on-line, and of course, advertise-
ments selected by displayed content. Modern web pages such as
these are made up of many components, generated by independent
subsystems and “mixed” together to provide a rich presentation of
information.
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Building such systems is not easy. They exploit high-level paral-
lelism to assemble the independent page parts in a timely fashion,
and present these incrementally, subject to deadlines to provide an
interactive response. The final mixing system must wait for all sub-
systems to deliver some of their content, potentially sacrificing re-
sponsiveness if a small number of subsystems are delayed. Alter-
natively, it must present what it has at the deadline, sacrificing page
quality and wasting resources consumed in creating parts of a page
that a user never sees.

In this paper, we investigate how the network complicates such
application construction, because of the high variation in perfor-
mance of the network flows underlying their distributed workflows.
By improving the statistics of network flow completion, in par-
ticular by reducing the long flow completion tail, the application
gains better worst-case performance from the network. Applying
the end-to-end principle, while the mixer software must still deal
with subsystems that fail to respond by the deadline, an underlying
network that yields better flow statistics reduces the conservative-
ness of time-outs while reducing the frequency with which they are
triggered. The ultimate application-layer result is better quality and
responsiveness of the presented pages.

Deadlines are an essential constraint on how these systems are
constructed. Experiments at Amazon [26] demonstrated that fail-
ing to provide a highly interactive web site leads to significant
financial loss. Increasing page presentation times by as little as
100ms significantly reduces user satisfaction. To meet these de-
mands, web sites seek to meet deadlines of 200-300ms 99.9% of
the time [12, 33].

Highly variable flow completion times complicate the meeting
of interactivity deadlines. Application workflows that span the net-
work depend on the performance of the underlying network flows.
Packet arrival pacing is dictated by round-trip-times (RTTs) and
congestion can significantly affect performance. While datacenter
network RTTs can be as low as 250μs, in the presence of conges-
tion, these times can grow by two orders of magnitude, forming a
long tail distribution [12]. Average RTTs of hundreds of microsec-
onds can occasionally take tens of milliseconds, with implications
for how long a mixer application must wait before timing-out on
receiving results from its subsystems.

Flash congestion is the culprit and it cannot be managed through
conventional transport-layer means. Traffic bursts commonly cause
packet losses and retransmissions [12]. Uneven load balancing of-
ten causes a subset of flows to experience unnecessarily high con-
gestion [10]. The absence of traffic prioritization causes latency-
sensitive foreground flows to wait behind latency-insensitive back-
ground flows [33]. Each contributes to increasing the long tail of
flow completion, especially for the latency-sensitive short flows
critical for page creation. While partial solutions exist [10, 12, 29,
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33], no existing approach solves the whole problem. Fortunately,
datacenter networks already contain the key enabling technology
to reduce the long flow completion tail. They employ high-speed
links and a scaled-out network topology, providing multiple paths
between every source and destination [9, 23, 24].

Flash congestion can be reduced if it can be detected and if
network-layer alternatives can be exploited quickly enough. We
address this challenge by constructing a cross-layer network stack
that quickly detects congestion at lower network layers, to drive
upper layer routing decisions, to find alternative lower-congestion
paths to destinations.

In this paper, we present the implementation and experimental
evaluation of DeTail. DeTail is a cross-layer network stack design
to reduce long-tailed flow completions in datacenter networks. It
provides an effective network foundation for enabling mixer ap-
plications to assemble their complex content more completely and
within responsiveness time constraints. The key contributions of
this work are:

• Quantification of the impact of long-tailed flow completion
times on different datacenter workflows;

• Assessment of the causes of long-tailed flow completion times;

• A cross-layer network stack that addresses them;

• Implementation-validated simulations demonstrating DeTail’s
reduction of 99.9th percentile flow completion times by over
50% for many workloads without significantly increasing the
median

In the following section, we analyze how long-tailed flow com-
pletion times affect workflows’ interactive deadlines. In Section 3,
we describe the causes of long-tailed flow completion times and
the inadequacy of partial solutions. In Section 4, we introduce the
cross-layer network-based approach DeTail uses to overcome these
issues. In Section 5, we describe the NS-3-based simulation [6] and
Click-based implementation [27] with which we evaluate DeTail.
The evaluation of DeTail in Section 6 demonstrates reduced flow
completion times for a wide range of workloads. We discuss vari-
ous aspects of DeTail in Section 7. We describe how DeTail com-
pares with prior work in Section 8 and conclude in Section 9.

2. IMPACT OF THE LONG TAIL
In this section, we begin by analyzing datacenter network traffic

measurements, describing the phenomenon of the long tail. Next,
we present two workflows commonly used by page creation sub-
systems and quantify the impact of the long flow completion time
tail on their ability to provide rich, interactive content. We compare
this with the performance that could be achieved with shorter-tailed
distributions. We conclude this section with a discussion of how to
quantify the long tail.

2.1 Traffic Measurements
Recently, Microsoft researchers [12] published datacenter traf-

fic measurements for production networks performing services like
web search. These traces captured three traffic types: (i) soft real-
time queries, (ii) urgent short messages, and (iii) large deadline-
insensitive background updates. Figure 1 reproduces graphs from [12],
showing the distribution of measured round-trip-times (RTTs) from
worker nodes to aggregators. The former typically communicate
with mid-level aggregators (MLAs) located on the same rack. This
graph represents the distribution of intra-rack RTTs.

Figure 1 shows that while the measured intra-rack RTTs are typ-
ically low, congestion causes them to vary by two orders of mag-
nitude, forming a long-tail distribution. In this particular environ-
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Figure 1: CDF of RTTs from the worker to the aggregator. We compare
Microsoft’s measured distribution [12] with a synthetic normal one having
a 50% larger median.
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Figure 2: Probability that a workflow will have a certain number of workers
miss their 10ms deadline. All workers would meet their deadlines if RTTs
followed the normal distribution.

ment, intra-rack RTTs take as little as 61μs and have a median du-
ration of 334μs. But, in 10% of the cases, RTTs take over 1ms. In
fact, RTTs can be as high as 14ms. These RTTs are the measured
time between the transmission of a TCP packet and the receipt of
its acknowledgement. Since switch queue size distributions match
this behavior [11], the variation in RTTs is caused primarily by
congestion.

For comparison, Figure 1 includes a synthetic distribution of
RTTs following a normal distribution. While we set this distribu-
tion to have a median value that is 50% higher than that of the
measured one, it has a much shorter tail.

As a measured distribution of datacenter flow completion times
is unavailable, we conservatively assume each flow takes one RTT.

2.2 Impact on Workflows
Here we introduce the partition-aggregate and sequential work-

flows commonly used by page creation subsystems. For both work-
flows, we compare the impact of the long-tailed measured distribu-
tion with a shorter-tailed one. For this comparison, we focus on
99.9th percentile performance as this is the common metric used
for page creation [12, 33]. We see that a long-tailed distribution
performs significantly worse than a shorter-tailed distribution, even
when the latter has a higher median. We conclude this analysis with
the key takeaways.

2.2.1 Partition-Aggregate
Partition-aggregate workflows are used by subsystems such as

web search. Top-level aggregators (TLAs) receive requests. They
divide (partition) the computation required to perform the request
across multiple mid-level aggregators (MLAs), who further parti-
tion computation across worker nodes. Worker nodes perform the
computation in parallel and send their results back to their MLA.
Each MLA combines the results it receives and forwards them on
to the TLA.

To ensure that the response is provided in a timely manner, it
is common practice to give worker nodes as little as 10ms to per-
form their computation and deliver their result [12]. If a worker
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Figure 3: 99.9th percentile completion times of sequential workflows. Web
sites could use twice as many sequential requests per page under a shorter-
tailed distribution.

node does not meet its deadline, its results are typically discarded,
ultimately degrading the quality of the response.

To assess the impact of the measured RTT distribution (in Fig-
ure 1) on partition-aggregate workers meeting such deadlines, we
analyze two hypothetical workflows. One has 40 workers while the
other has 400. In Figure 2, we show the probability that a workflow
will have a certain number of workers miss their deadlines. We
assigned completion times to each worker by sampling from the
measured RTT distribution. Those with completion times greater
than 10ms were considered to have missed their deadlines. We per-
formed this calculation 10000 times. Under the measured distribu-
tion, at the 99.9th percentile, a 40-worker workflow has 4 workers
(10%) miss their deadlines, while a 400-worker workflow has 14
(3.50%) miss theirs. Had RTTs followed the normal distribution,
no workers would have missed their deadlines. This is despite the
distribution having a 50% higher median than the measured one.
This shows the hazard of designing for the median rather than long-
tail performance.

These results assume that worker nodes do not spend any time
computing the result they transmit. As the pressure for workers to
perform more computation increases, the fraction of workers miss-
ing their deadlines will increase as well.

2.2.2 Sequential
In sequential workflows, a single front-end server fetches data

from back-end servers (datastores) for every page creation. Future
requests depend on the results of previous ones.

To quantify the impact of the long tail, we generated sequential
workflows with varying numbers of data retrievals. We assumed
that each data retrieval would use one flow and obtained values for
retrievals by sampling from the appropriate distribution in Figure 1.
We took the completion time of sequential workflows to be the sum
of the randomly generated data retrieval times. We performed this
calculation 10000 times.

In Figure 3, we report 99.9th percentile completion times for
different RTT distributions. Under the measured RTT distribution,
to meet 200ms page creation deadlines, web sites must have less
than 150 sequential data retrievals per page creation. Had RTTs fol-
lowed the normal distribution, web sites could employ more than
350 sequential data retrievals per page. This is despite the distri-
bution having a 50% higher median than the measured one. Again,
designing for the median rather than long-tail performance is a mis-
take.

2.2.3 Takeaways
Long-tailed RTT distributions make it challenging for workflows

used by page creation subsystems to meet interactivity deadlines.
While events at the long tail occur rarely, workflows use so many
flows, that it is likely that several will experience long delays for ev-
ery page creation. Hitting the long tail is so significant that work-

flows actually perform better under distributions that have higher
medians but shorter tails.

The impact is likely to be even greater than that presented here.
Our analysis does not capture packet losses and retransmissions
that are likely to cause more flows to hit the long tail.

Facebook engineers tell us that the long tail of flow completions
forces their applications to choose between two poor options. They
can set tight data retrieval timeouts for retrying requests. While
this increases the likelihood that they will render complete pages,
long tail flows generate non-productive requests that increase server
load. Alternatively, they can use conservative timeouts that avoid
unnecessary requests, but limit complete web page rendering by
waiting too long for retrievals that never arrive. A network that re-
duces the flow completion time tail allows such applications to use
tighter timeouts to render more complete pages without increasing
server load.

2.3 Quantifying the Tail
Median flow completion time is an insufficient indicator of work-

flow performance. However, determining the right metric is chal-
lenging. Workflows only requiring 10 flows are much less likely to
be affected by 99.9th percentile flow completion times versus those
with 1000 flows. To capture the effect of the long tail on a range of
different workflow sizes, we report both 99th and 99.9th percentile
flow completion times.

3. CAUSES OF LONG TAILS
Section 2 showed how the long tail of flow completion times im-

pacts page creation workflows. As mentioned earlier, flash conges-
tion aggravates three problems that lead to long-tailed flow comple-
tion times: packet losses and retransmissions, absence of prioritiza-
tion, and uneven load balancing. Here we describe these problems
and how they affect the latency-sensitive short flows critical to page
creation. We then discuss why current solutions fall short.

3.1 Packet Losses and Retransmissions
[12,16,31] study the effect of packet losses and retransmissions

on network performance in datacenters. Packet losses often lead
to flow timeouts, particularly in short flows where window sizes
are not large enough to perform fast recovery. In datacenters, these
timeouts are typically set to 10ms [12, 31]. Since datacenter RTTs
are commonly of the order of 250μs, just one timeout guarantees
that the short flow will hit the long tail. It will complete too late,
making it unusable for page creation. Using shorter timeouts may
mitigate this problem, but it increases the likelihood of spurious
retransmissions that increase network and server load.

Additionally, partition-aggregate workflows increase the likeli-
hood of incast breakdown [12, 33]. Workers performing computa-
tion typically respond simultaneously to the same aggregator, send-
ing it short flows. This sometimes leads to correlated losses that
cause many flows to timeout and hit the long tail.

3.2 Absence of Prioritization
Datacenter networks represent a shared environment where many

flows have different sizes and timeliness requirements. The traces
from Section 2 show us that datacenters must support both latency-
sensitive and latency-insensitive flows, with sizes that typically range
from 2KB to 100MB [12].

During periods of flash congestion, short latency-sensitive flows
can become enqueued behind long latency-insensitive flows. This
increases the likelihood that latency-sensitive flows will hit the long
tail and miss their deadlines. Approaches that do not consider dif-
ferent flow requirements can harm latency-sensitive flows.
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(a) Regular Topology (b) Degraded Link

Figure 4: Simulated 99.9th percentile flow completion times of flow hash-
ing (FH) and packet scatter (PS)

3.3 Uneven Load Balancing
Modern datacenter networks have scaled out, creating many paths

between every source and destination [9, 23, 24]. Flow hashing is
typically used to spread load across these paths while maintaining
the single-path assumption commonly employed by transport pro-
tocols. Imperfect hashing, as well as varying flow sizes often lead
to uneven flow assignments. Some flows are unnecessarily assigned
to a more congested path, despite the availability of less congested
ones. This increases the likelihood that they will hit the long tail.

This phenomena has been observed before for large flow sizes
[10, 29]. Here we show that it is also a problem for the short flows
common in page creation. We present a simulation on a 128-server
FatTree topology with a moderate oversubscription factor of four
(two from top-of-rack to aggregate switches and two from aggre-
gate to core switches). For this experiment, we ran an all-to-all
workload consisting solely of high-priority, uniformly chosen 2KB,
8KB, and 32KB flows. These sizes span the range of latency-sensitive
flows common in datacenter networks [12].

In Figure 4(a), we compare the performance of flow hashing and
a simple multipath approach: packet scatter. Packet scatter ran-
domly picks the output port on which to send packets when mul-
tiple shortest paths are available. To factor out transport-layer ef-
fects, we used infinitely large switch buffers and also disabled rate-
limiting and packet retransmission mechanisms. We see that packet
scatter significantly outperforms traditional flow hashing, cutting
99.9th percentile flow completion times by half. As we have re-
moved transport-layer effects, these results show that single path
approaches reliant of flow hashing significantly under-perform mul-
tipath ones.

Multipath approaches that do not dynamically respond to con-
gestion, like packet scatter, may perform significantly worse than
flow hashing for topological asymmetries. Consider a common type
of failure, where a 1Gbps link between a core and aggregate switch
has been degraded and now operates at 100Mbps [29]. Figure 4(b)
shows that for the same workload, packet scatter can perform 12%
worse than flow hashing. As we will see in Section 6, flow hashing
itself performs poorly.

Topological asymmetries occur for a variety of reasons. Dat-
acenter network failures are common [18]. Asymmetries can be
caused by incremental deployments or network reconfigurations.
Both static approaches (packet scatter and flow hashing) are un-
aware of the different capabilities of different paths and cannot ad-
just to these environments. An adaptive multipath approach would
be able to manage such asymmetries.

3.4 Current Solutions Insufficient
DCTCP, D3, and HULL [12,13,33] are single path solutions re-

cently proposed to reduce the completion times of latency-sensitive
flows. Single-path fairness and congestion control protocols have
also been developed through the datacenter bridging effort [2]. These
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Figure 5: The DeTail network stack uses cross-layer information to address
sources of long tails in flow completion times.

reduce packet losses and prioritize latency-sensitive flows. But they
do not address the uneven load balancing caused by flow hashing,
and hence still suffer the performance loss illustrated in Figure 4(a).

Recently two solutions have been proposed to more evenly bal-
ance flows across multiple paths. Hedera [10] monitors link state
and periodically remaps flows to alleviate hotspots. Since Hedera
remaps flows every five seconds and focuses on flows taking more
than 10% of link capacity, it cannot improve performance for the
short flows common in page creation.

The other solution is MPTCP [29]. MPTCP launches multiple
TCP subflows and balances traffic across them based on conges-
tion. MPTCP uses standard TCP congestion detection mechanisms
that have been shown by DCTCP to be insufficient for preventing
packet drops and retransmissions [12]. Also, while MPTCP is ef-
fective for flow sizes larger than 70KB, it is worse than TCP for
flows with less than 10 packets [29]. As small flows typically com-
plete in just a few RTTs, host-based solutions do not have sufficient
time to react to congested links and rebalance their load. Current
multipath-aware solutions cannot support the short flows common
in page creation workflows.

Most of the solutions discussed here seek to minimize in-network
functionality. Instead they opt for host-based or controller-based
approaches. Quick response times are needed to support the short,
latency-sensitive flows common in page creation. In the following
section, we present our network-oriented, cross-layer approach to
meeting this goal.

4. DETAIL
In this section, we first provide an overview of DeTail’s func-

tionality and discuss how it addresses the causes of long-tailed flow
completion times. We then describe the mechanisms DeTail uses to
achieve this functionality and their parameterization.

4.1 Overview
DeTail is a cross-layer network-based approach for reducing the

long flow completion time tail. Figure 5 depicts the components of
the DeTail stack and the cross-layer information exchanged.

At the link layer, DeTail uses port buffer occupancies to con-
struct a lossless fabric [2]. By responding quickly, lossless fabrics
ensure that packets are never dropped due to flash congestion. They
are only dropped due to hardware errors and/or failures. Preventing
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congestion-related losses reduces the number of flows that experi-
ence long completion times.

At the network layer, DeTail performs per-packet adaptive load
balancing of packet routes. At every hop, switches use the con-
gestion information obtained from port buffer occupancies to dy-
namically pick a packet’s next hop. This approach evenly smooths
network load across available paths, reducing the likelihood of en-
countering a congested portion of the network. Since it is adaptive,
it performs well even given topologic asymmetries.

DeTail’s choices at the link and network layers have implications
for transport. Since packets are no longer lost due to congestion, our
transport protocol relies upon congestion notifications derived from
port buffer occupancies. Since routes are load balanced one packet
at a time, out-of-order packet delivery cannot be used as an early
indication of congestion to the transport layer.

Finally, DeTail allows applications to specify flow priorities. Ap-
plications typically know which flows are latency-sensitive fore-
ground flows and which are latency-insensitive background flows.
By allowing applications to set these priorities, and responding
to them at the link and network layers, DeTail ensures that high-
priority packets do not get stuck behind low-priority ones. This as-
sumes that applications are trusted, capable of specifying which
flows are high priority. We believe that this assumption is appropri-
ate for the kind of environment targeted by DeTail.

4.2 DeTail’s Details
Now we discuss the detailed mechanisms DeTail uses to real-

ize the functionality presented earlier. We begin by describing our
assumed switch architecture. Then we go up the stack, discussing
what DeTail does at every layer. We conclude by discussing the
benefits of our cross-layer stack.

4.2.1 Assumed Switch Architecture
In Figure 6, we depict a four-port representation of a Combined

Input/Output Queue (CIOQ) Switch. The CIOQ architecture is com-
monly used in today’s switches [1,28]. We discuss DeTail’s mecha-
nisms in the context of this architecture and postpone discussion of
others until Section 7. This architecture employs both ingress and
egress queues, which we denote as InQueue and EgQueue, respec-
tively. A crossbar moves packets between these queues.

When a packet arrives at an input port (e.g., RX Port 0), it is
passed to the forwarding engine (IP Lookup). The forwarding en-
gine determines on which output port (e.g., TX Port 2) the packet
should be sent. Once the output port has been determined, the packet
is stored in the ingress queue (i.e., InQueue 0) until the crossbar be-
comes available. When this happens, the packet is passed from the
ingress queue to the egress queue corresponding to the desired out-
put port (i.e., InQueue 0 to EgQueue 2). Finally, when the packet

reaches the head of the egress queue, it is transmitted on the corre-
sponding output port (i.e., TX Port 2).

To ensure that high-priority packets do not wait behind those
with low-priority, the switch’s ingress and egress queues perform
strict priority queueing. Switches are typically capable of perform-
ing strict priority queueing between eight different priorities [4].
We use strict prioritization at both ingress and egress queues.

DeTail requires that the switch provide per-priority ingress and
egress queue occupancies to higher layers in the stack. Each queue
maintains a drain bytes counter per priority. This is the number of
bytes of equal or higher priority in front of a newly arriving packet.
The switch maintains this value by incrementing/decrementing the
counters for each arriving/departing packet.

Having higher layers continuously poll the counter values of
each queue may be prohibitively expensive. To address this issue,
the switch associates a signal with each counter. Whenever the
value of the counter is below a pre-defined threshold, the switch
asserts the associated signal. These signals enable higher layers to
quickly select queues without having to obtain the counter values
from each. When multiple thresholds are used, a signal per thresh-
old is associated with each counter. We describe how these thresh-
olds are set in Section 4.3.2.

4.2.2 Link Layer
At the link layer, DeTail employs flow control to create a loss-

less fabric. While many variants of flow control exist [8], we chose
to use the one that recently became part of the Ethernet standard:
Priority Flow Control (PFC) [7]. PFC has already been adopted by
vendors and is available on newer Ethernet switches [4].

The switch monitors ingress queue occupancy to detect conges-
tion. When the drain byte counters of an ingress queue pass a thresh-
old, the switch reacts by sending a Pause message informing the
previous hop that it should stop transmitting packets with the spec-
ified priorities. When the drain byte counters reduce, it sends an
Unpause message to the previous hop asking it to resume transmis-
sion of packets with the selected priorities1.

During periods of persistent congestion, buffers at the previous
hop fill, forcing it to generate its own Pause message. In this way,
flow control messages can propagate back, quenching the source.

We chose to generate Pause/Unpause messages based on ingress
queue occupancies because packets stored in these queues are at-
tributed to the port on which they arrived. By sending Pause mes-
sages to the corresponding port when an ingress queue fills, DeTail
ensures that the correct source postpones transmission.

Our choice of using PFC is based on the fact that packets in loss-
less fabrics can experience head-of-line blocking. With traditional
flow control mechanisms, when the previous hop receives a Pause
message, it must stop transmitting all packets on the link, not just
those contributing to congestion. As a result, packets at the previ-
ous hop that are not contributing to congestion may be unneces-
sarily delayed. By allowing eight different priorities to be paused
individually, PFC reduces the likelihood that low-priority packets
will delay high priority ones. We describe how packet priorities are
set in Section 4.2.5.

4.2.3 Network Layer
At the network layer, DeTail makes congestion-based load bal-

ancing decisions. Since datacenter networks have many paths be-
tween the source and destination, multiple shortest path options ex-
ist. When a packet arrives at a switch, it is forwarded on to the
shortest path that is least congested.

1PFC messages specify the duration for which packet transmis-
sions should be delayed. We use them here in an on/off fashion.
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DeTail monitors the egress queue occupancies described in Sec-
tion 4.2.1 to make congestion-based decisions. Unlike traditional
Ethernet, egress queue occupancies provide an indication of the
congestion being experienced downstream. As congestion increases,
flow control messages are propagated towards the source, causing
the queues at each of the switches in the path to fill. By reacting to
local egress queue occupancies we make globally-aware hop-by-
hop decisions without additional control messages.

We would like to react by picking an acceptable port with the
smallest drain byte counter at its egress queue for every packet.
However, with the large number of ports in today’s switches, the
computational cost of doing so is prohibitively high. We leverage
the threshold-based signals described in Section 4.2.1. By concate-
nating all the signals for a given priority, we obtain a bitmap of the
favored ports, which are lightly loaded.

DeTail relies on forwarding engines to obtain the set of available
shortest paths to a destination. We assume that associated with each
forwarding entry is a bitmap of acceptable ports that lead to shortest
paths for matching packets2.

As shown in Figure 7, when a packet arrives, DeTail sends its
destination IP address to the forwarding engine to determine which
entry it belongs to and obtains the associated bitmap of acceptable
ports (A). It then performs a bitwise AND (&) of this bitmap and
the bitmap of favored ports (F) matching the packet’s priority, to
obtain the set of lightly loaded ports that the packet can use. DeTail
randomly chooses from one of these ports and forwards the packet3.

During periods of high congestion, the set of favored ports may
be empty. In this case, DeTail performs the same operation with a
second, larger threshold. If that does not yield results either, DeTail
randomly picks a port from the bitmap. We describe how to set
these thresholds in Section 4.3.2.

4.2.4 Transport Layer
A transport-layer protocol must address two issues to run on our

load-balanced, lossless fabric. It must be resistant to packet reorder-
ing and it cannot depend on packet loss for congestion notification.

Our lossless fabric simplifies developing a transport protocol that
is robust to out-of-order packet delivery. The lossless fabric ensures
that packets will only be lost due to relatively infrequent hardware
errors/failures. As packet drops are now much less frequent, it is not
necessary that the transport protocol respond agilely to them. We
simply need to disable the monitoring and reaction to out-of-order
packet delivery. For TCP NewReno, we do this by disabling fast

2Bitmaps can be obtained with the TCAM and RAM approach as
described in [9].
3Round-robin selection can be used if random selection is costly

recovery and fast retransmit. While this leads to increased buffering
at the end host, this is an acceptable tradeoff given the large amount
of memory available on modern servers.

Obtaining congestion information from a lossless fabric is more
difficult. Traditionally, transport protocols monitor packet drops to
determine congestion information. As packet drops no longer hap-
pen due to congestion, we need another approach. To enable TCP
NewReno to operate effectively with DeTail, we monitor the drain
byte counters at all output queues. Low priority packets enqueued
when the appropriate counter is above a threshold have their ECN
flag set. This forces the low priority, deadline-insensitive TCP flow
contributing to congestion to reduce its rate.

These types of modifications often raise concerns about perfor-
mance and fairness across different transports. As the vast major-
ity of datacenter flows are TCP [12] and operators can specify the
transports used, we do not perform a cross-transport study here.

4.2.5 Application Layer
DeTail depends upon applications to properly specify flow prior-

ities based on how latency-sensitive they are. Applications express
these priorities to DeTail through the sockets interface. They set
each flow (and hence the packets belonging to it) to have one of
eight different priorities. As the priorities are relative, applications
need not use all of them. In our evaluation, we only use two.

Applications must also react to extreme congestion events where
the source has been quenched for a long time (Section 4.2.2). They
need to determine how to reduce network load while minimally
impacting the user.

4.2.6 Benefits of the Stack
DeTail’s layers are designed to complement each other, over-

coming limitations while preserving their advantages.
As mentioned earlier, link-layer flow control can cause head-

of-line blocking. In addition to using priority, we mitigate this by
employing adaptive load balancing and ECN. Adaptive load bal-
ancing allows alternate paths to be used when one is blocked and
ECN handles the persistent congestion that aggravates head-of-line
blocking.

DeTail’s per-packet adaptive load balancing greatly benefits from
the decisions made at the link and transport layers. Recall that us-
ing flow control at the link layer provides the adaptive load bal-
ancer with global congestion information, allowing it to make bet-
ter decisions. And the transport layer’s ability to handle out-of-
order packet delivery allows the adaptive load balancer more flexi-
bility in making decisions.

4.3 Choice of Settings
Now that we have described the mechanisms employed by De-

Tail, we discuss how to choose their parameters. We also assess
how end-host parameters should be chosen when running DeTail.

4.3.1 Link Layer Flow Control
A key parameter is the threshold for triggering PFC messages.

Pausing a link early allows congestion information to be propagated
more quickly, making DeTail’s adaptive load balancing more agile.
At the same time, it increases the number of control messages. As
PFC messages take time to be sent and responded to, setting the
Unpause threshold too low can lead to buffer underflow, reducing
link utilization.

To strike a balance between these competing concerns, we must
first calculate the time to generate PFC messages. We use the same
approach described in [7] to obtain this value.
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For 1GigE, it may take up to 36.456μs for a PFC message to
take effect4. 4557B (bytes) may arrive after a switch generates a
PFC message. As we pause every priority individually, this can hap-
pen for all eight priorities. We must leave 4557B × 8 = 36456B
of buffer space for receiving packets after PFC generation. Assum-
ing 128KB buffers, this implies a maximum Pause threshold of
(131072B − 36456B)/8 = 11827 Drain Bytes per priority. Set-
ting the threshold any higher can lead to packet loss.

Calculating the Unpause threshold is challenging because the
specifics of congestion cause queues to drain at different rates. Our
calculations simply assume a drain rate of 1Gbps, requiring an Un-
pause threshold of at least 4557B to ensure the ingress queues do
not overflow. However, ingress queues may drain faster or slower
than 1Gbps. If they drain slower, additional control messages may
have to be sent, re-pausing the priority. If they drain faster, our
egress queues reduce the likelihood of link underutilization.

These calculations establish the minimum and maximum thresh-
old values to prevent packet loss and buffer underflow. Between
the desire for agility and reduced control message overhead, we set
the Unpause threshold to the minimum value of 4557 Drain Bytes
and the Pause threshold to 8192 Drain Bytes (halfway between the
minimum and the maximum). When fewer priorities are used, the
Pause threshold can be raised without suffering packet loss. Given
the desire for agile response to congestion, we leave it unmodified.

The tradeoffs discussed here depend on link speeds and buffer
sizes. Analysis of how these tradeoffs change is left for future work.

4.3.2 Adaptive Load Balancing
When performing threshold-based adaptive-load balancing, we

must determine how many thresholds to have for a given prior-
ity (i.e., most favored, favored, and least favored ports) as well as
what these thresholds should be. Clearly, increasing the number of
thresholds increases complexity, so the benefits of each additional
threshold must outweigh the complexity cost.

Through a simulation-based exploration of the design space with
the other parameters as described above, we determined that having
two thresholds of 16KB and 64KB yields favorable results.

4.3.3 Explicit Congestion Notification
The threshold for setting ECN flags represents a tradeoff. Set-

ting it too low reduces the likelihood of head-of-line blocking but
increases the chance that low-priority flows will back off too much,
underutilizing the link. Setting it too high has the opposite effect.
Through experiments, we determined that a threshold of 64KB drain
bytes appropriately makes this tradeoff.

4.3.4 End-Host Timers
Setting the timeout duration (i.e., RTOmin in TCP) of end host

timers too low may lead to spurious retransmissions that waste net-
work resources. Setting them too high leads to long response times
when packets are dropped.

Traditionally, transport-layer protocols recover from packet drops
caused by congestion and hardware failures. Congestion occurs fre-
quently, so responding quickly to packet drops is important for
achieving high throughput. However, DeTail ensures that packet
drops only occur due to relatively infrequent hardware errors/failures.
Therefore, it is more important for the timeout duration to be larger
to avoid spurious retransmissions.

4We do not consider jumbo frames. Also, PFC is only defined for
10GigE. We use 1GigE for manageable simulation times. We base
PFC response times on the time specified for Pause Frames. This is
appropriate since 10GigE links are given the same amount of time
to respond to PFC messages are they are to Pause Frames.

To determine a robust timeout duration for DeTail, we simulated
all-to-all incast 25 times with varying numbers of servers (con-
nected to a single switch) and different values of RTOmin. During
every incast event, one server receives a total of 1MB from the re-
maining servers. We saw that values of 10ms and higher effectively
avoid spurious retransmissions.

Unlike this simulation, datacenter topologies typically have mul-
tiple hops. Hence, we use 200ms as RTOmin for DeTail in our
evaluations to accommodate the higher RTTs.

5. EXPERIMENTAL SETUP
Here we describe the NS-3 based simulator [6] and Click-based

implementation [27] we use to evaluate DeTail.

5.1 NS-3 Simulation
Our NS-3 based simulation closely follows the switch design de-

picted in Figure 6. Datacenter switches typically have 128-256KB
buffers per port [12]. To meet this constraint, we chose per-port
ingress and egress queues of 128KB.

Network simulators typically assume that nodes are infinitely
fast at processing packets, this is inadequate for evaluating DeTail.
We extended NS-3 to include real-world processing delays. Switch
delays of 25μs are common in datacenter networks [12]. We rely
upon published specifications to break-down this delay as follows,
providing explanations where possible:

• 12.24μs transmission delay of a full-size 1530B Ethernet
frame on a 1GigE link.

• 3.06μs crossbar delay when using a speedup of 4. Cross-
bar speedups of 4 are commonly used to reduce head of line
blocking [28].

• 0.476μs propagation delay on a copper link [7].

• 5μs transceiver delay (both ends of the link) [7].

• 4.224μs forwarding engine delay (the remainder of the 25μs
budget).

We incorporate the transceiver delay into the propagation delay.
The other delays are implemented individually, including the re-
sponse time to PFC messages.

Packet-level simulators are known to have scalability issues, in
terms of topology size and simulation duration [29]. We evaluated
the feasibility of also developing a flow-level simulator, but con-
cluded that it would be unable to shed light on the packet-level
dynamics that are the focus of this paper.

NS-3’s TCP model lacks support for ECN. Hence, our simula-
tions do not evaluate explicit congestion notification (as discussed
in Section 4.2.4). As we will show, even without ECN-based throt-
tling of low priority flows our simulations demonstrate impressive
results.

5.2 Click-based Implementation
To validate our approach, we implemented DeTail in Click [27].

Overall, our implementation mirrors the design decisions specified
in Section 4 and portrayed in Figure 6. Here we describe the salient
differences and analyze the impact they have on our parameters.

5.2.1 Design Differences
Unlike hardware switches, software routers typically do not em-

ulate a CIOQ switch architecture. Instead, the forwarding engine
places packets directly into the output queue. This output-queued
approach is poorly suited to DeTail because we rely on ingress
queues to determine when to send PFC messages.
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To address this difference, we modified Click to have both ingress
and egress queues. When packets arrive, the forwarding engine
simply annotates them with the desired output port and places them
in the ingress queue corresponding to the port on which they ar-
rived. Crossbar elements then pull packets from the ingress queue
to the appropriate egress queue. Finally, when the output port be-
comes free, it pulls packets from its egress queue.

Software routers also typically do not have direct control over
the underlying hardware. For example, when Click sends a packet,
it is actually enqueued in the driver’s ring buffer. The packet is then
DMAed to the NIC where it waits in another buffer until it is trans-
mitted. In Linux, the driver’s ring buffer alone can contain hundreds
of packets. It is difficult for the software router to asses how con-
gested the output link is when performing load balancing. Also,
hundreds of packets may be transmitted between the time when the
software router receives a PFC message and it takes effect.

To address this issue, we add rate limiters in Click before every
output port. They clock out packets based on the link’s bandwidth.
This reduces packet buildup in the driver’s and NIC’s buffers, in-
stead keeping those packets in Click’s queues for a longer duration.

5.2.2 Parameter Modifications
The limitations of our software router impact our parameter choices.

As it lacks hardware support for PFC messages, it takes more time
both generate and respond to them.

Also, our rate limiter allows batching up to 6KB of data to ensure
efficient DMA use. This may cause PFC messages to be enqueued
for longer before they are placed on the wire and additional data
may be transmitted before a PFC message takes effect. This also
hurts high-priority packets. High priority packets will suffer addi-
tional delays if they arrive just after a batch of low priority packets
has been passed to the driver.

To address these limitations, we increased our Pause / Unpause
thresholds. However, instead of increasing ingress queue sizes, we
opted to ensure that only two priorities were used at a time. This
approach allows us to provide a better assessment of the advantages
of DeTail in datacenter networks.

6. EXPERIMENTAL RESULTS
In this section, we evaluate DeTail through extensive simula-

tion and implementation, demonstrating its ability to reduce the
flow completion time tail for a wide range of workloads. We be-
gin with an overview describing our traffic workloads and touch on
key results. Next, we compare simulation and implementation re-
sults, validating our simulator. Later, we subject DeTail to a wide
range of workloads under a larger topology than permitted by the
implementation and investigate its scaled-up performance.

6.1 Overview
To evaluate DeTail’s ability to reduce the flow completion time

tail, we compare the following approaches:

Flow Hashing (FH): Switches employ flow-level hashing. This is
the status quo and is our baseline for comparing the perfor-
mance of DeTail.

Lossless Packet Scatter (LPS): Switches employ packet scatter (as
already explained in Section 3) along with Priority Flow Con-
trol (PFC). While not industry standard, LPS is a naive mul-
tipath approach that can be deployed in current datacenters.
The performance difference between LPS and DeTail high-
lights the advantages of Adaptive Load Balancing (ALB).

DeTail: As already explained in previous sections, switches em-
ploy PFC and ALB.

All three cases use strict priority queueing and use TCP NewReno
as the transport layer protocol. For FH, we use a TCP RTOmin of
10ms, as suggested by prior work [12, 31]. Since LPS and DeTail
use PFC to avoid packet losses, we use the standard value of 200ms
(as discussed in Section 4.3.4). Also, we use reorder buffers at the
end-hosts to deal with out-of-order packet delivery.

We evaluate DeTail against LPS only in Section 6.4. For all other
workloads, LPS shows similar improvements as DeTail and has
been omitted for space constraints.

Traffic Model: Our traffic model consists primarily of high-priority
data retrievals. For each retrieval, a server sends a 10-byte request
to another server and obtains a variable sized response (i.e., data)
from it. The size of the data (henceforth referred to as retrieval data
size) is randomly chosen to be 2KB, 8KB, or 32KB, with equal
probability. We chose discrete data sizes for more effective analysis
of 99th and 99.9th percentile performance. The rate of generation
of these data retrievals (henceforth called retrieval rate) and the se-
lection of servers for the retrievals are defined by the traffic work-
load. In most cases, we assumed the inter-arrival times of retrievals
to be exponentially distributed (that is, a Poisson process). We also
evaluated against more bursty traffic models having lognormal dis-
tributions with varying sigma (σ) values. Where specified, we also
run low-priority, long background data transfers.

Key results: Throughout our evaluation, we focus on 99th and
99.9th percentile completion times of data retrievals to assess De-
Tail’s effectiveness. We use the percentage reduction in the com-
pletion times provided by DeTail over Flow Hashing as the metric
of improvement. Our key results are:

• DeTail completely avoids congestion-related losses, reduc-
ing 99.9th percentile completion times of data retrievals in
all-to-all workloads by up to 84% over Flow Hashing.

• DeTail effectively moves packets away from congestion hotspots
that may arise due to disconnected links, reducing 99.9th

percentile completion times by up to 89% over Flow Hash-
ing. LPS does not do as well and actually performs worse
than FH for degraded links.

• Reductions in individual data retrievals translate into improve-
ments for sequential and partition-aggregate workflows, re-
ducing their 99.9th percentile completion times by 54% and
78%, respectively.

6.2 Simulator Verification
To validate our simulator, we ran our Click-based implementa-

tion on Deter [14]. We constructed a 36-node, 16-server FatTree
topology. Over-subscription is common in datacenter networks [3].
To model the effect of a moderate over-subscription factor of four,
we rate-limited the ToR-to-aggregate links to 500Mbps and the
aggregate-to-core links to 250Mbps.

We designated half of the servers to be front-end (web-facing)
servers and half to be back-end servers. Each front-end server con-
tinuously selects a back-end server and issues a high-priority data
retrieval to it. The data retrievals are according to a Poisson process
and their rate is varied from 100 to 1500 retrievals/second.

We simulated the same workload and topology, with parame-
ters matched with that of the implementation. Figure 8 compares
the simulation results with the implementation measurements. For
rates ranging from 500 to 1500 retrievals/sec, the percentage re-
duction in completion time predicted by the simulator is closely
matched by implementation measurements, with the difference in
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(a) 2KB (b) 8KB

Figure 8: Comparison of simulation and implementation results - Re-
duction by DeTail over FH in 99th and 99.9th percentile completion times
of 2KB and 8KB data retrievals

(a) Complete distribution (b) 90th-100th percentile

Figure 9: CDF of completion times of 8KB data retrievals under all-to-all
workload of 2000 retrievals/second

the percentage being within 8% (results for 32KB data retrievals
and LPS are similar and have been omitted for space constraints).
Note that this difference increases for lower rates. We hypothesize
that this is due to end-host processing delays that are present only
in the implementation (i.e., not captured by simulation) dominating
completion times during light traffic loads.

We similarly verified our simulator for lognormal distributions
of data retrievals having a σ = 1. The simulation and implementa-
tion results continue to match, with the difference in the percentage
growing slightly to 12%.This demonstrates that our simulator is a
good predictor of performance that one may expect in a real imple-
mentation. Next, we use this simulator to evaluate larger topologies
and a wider range of workloads.

6.3 Microbenchmarks
We evaluate the performance of DeTail on a larger FatTree topol-

ogy with 128 servers. The servers are distributed into four pods
having four ToR switches and four aggregate switches each. The
four pods are connected to eight core switches. This gives an over-
subscription factor of four in the network (two from top-of-rack to
aggregate switches and two from aggregate to core switches). We
evaluate two traffic patterns:

• All-to-all: Each server randomly selects another server and
retrieves data from it. All 128 servers engage in issuing and
serving data retrievals.

• Front-end / Back-end: Each server in first three pods (i.e,
front-end server) retrieves data from a randomly selected server
in the fourth pod (i.e., back-end server).

The data retrievals follow a Poisson process unless mentioned oth-
erwise. In addition, each server is engaged in, on average, one 1MB

(a) 2KB (b) 8KB (c) 32KB

Figure 10: All-to-all Workload - Reduction by DeTail over FH in 99th and
99.9th percentile completion times of 2KB, 8KB and 32KB retrievals

σ 0.5 1 2
size (KB) 2 8 32 2 8 32 2 8 32
500 (r/s) 40% 20% 26% 38% 26% 26% 31% 30% 31%
1000 (r/s) 43% 30% 35% 46% 35% 37% 36% 23% 33%
2000 (r/s) 67% 62% 65% 68% 66% 67% 84% 76% 73%

Table 1: All-to-all Workload with Lognormal Distributions - Reduction
in 99.9th percentile completion time of retrievals under lognormal arrivals

low-priority background flow. Using a wide range of workloads, we
illustrate how ALB and PFC employed in DeTail reduce the tail of
completion times as compared to FH.

All-to-all Workload: Each server generates retrievals at rates rang-
ing from 500 to 2000 retrievals/second, which corresponds to load
factors5 of approximately 0.17 to 0.67. Figure 9 illustrates the ef-
fectiveness of DeTail in reducing the tail, by presenting the cumu-
lative distribution of completion times of 8KB data retrievals un-
der a rate of 2000 retrievals/second. While the 99th and 99.9th

percentile completion times under FH were 6.3ms and 7.3ms,
respectively, DeTail reduced them to 2.1ms and 2.3ms; a reduc-
tion of about 67% in both cases. Even the median completion time
improved by about 40%, from 2.2ms to 1.3ms. Furthermore, the
worst case completion time was 28ms under FH compared to 2.6ms,
which demonstrates the phenomenon discussed in Section 2. Flow
completion times can increase by an order of magnitude due to con-
gestion and mechanisms employed by DeTail are essential for en-
suring tighter bounds on network performance.

Figure 10 presents the reductions in completion times for three
data sizes at three retrieval rates. DeTail provided up to 70% reduc-
tion at the 99th percentile (71% at 99.9th percentile) completion
times. Specifically, the 99.9th percentile completion times for all
sizes were within 3.6ms compared to 11.9ms under FH. Within
each data size, higher rates have greater improvement. The higher
traffic load at these rates exacerbates the uneven load balancing
caused by FH, which ALB addresses.

We also evaluate DeTail under more bursty traffic using lognor-
mally distributed inter-arrival times. While keeping the same mean
query rate (i.e., same load factors) as before, we vary the distribu-
tion’s parameter σ from 0.5 to 2. Higher values of σ lead to more
bursty traffic. Table 1 shows that DeTail achieves between 20% and
84% reductions at the 99.9th percentile. Note that even at low load
(500 r/s), for highly bursty (σ = 2) traffic DeTail achieves reduc-
tions greater than 30%.

Front-end / Back-end Workload: Each front-end server (i.e., servers
in the first three pods) retrieves data from randomly selected back-
end servers (i.e., servers in the fourth pod) at rates ranging from
125 to 500 retrievals/second, which correspond to load factors of
approximately 0.17 to 0.67 on the aggregate-to-core links of the

5load factor is the approximate utilization of the aggregate-to-core
links by high-priority traffic only
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(a) 2KB (b) 8KB (c) 32KB

Figure 11: Front-end / Back-end Workload - Reduction by DeTail over
FH in 99th and 99.9th percentile completion times of 2KB, 8KB and
32KB data retrievals

(a) 2KB (b) 8KB (c) 32KB

Figure 12: Disconnected Link - Reduction by LPS and DeTail over FH in
99.9th percentile completion times of 2KB, 8KB and 32KB retrievals

fourth pod. Figure 11 shows that DeTail achieves 30% to 65% re-
duction in the completion times of data retrievals at the 99.9th per-
centile. This illustrates that DeTail can perform well even under the
persistent hotspot caused by this workload.

Long Background Flows: DeTail’s approach to improving data
retrievals (i.e., high-priority, short flows) does not sacrifice back-
ground flow performance. Due to NS-3’s lack of ECN support, we
evaluate the performance of background flows using the 16-server
implementation presented earlier. We use the same half front-end
servers and half-backend servers setup, and apply a retrieval rate
300 retrievals/second. Additionally, front-end servers are also con-
tinuously engaged in low-priority background flows with randomly
selected back-end servers. The background flows are long; each
flow is randomly chosen to be one of 1MB, 16MB or 64MB with
equal probability. Figure 14 shows that DeTail provides a 38% to
60% reduction over FH in the average completion time and a 58%
to 71% reduction in the 99th percentile. Thus, DeTail significantly
improves the performance of long flows. A detailed evaluation of
DeTail’s impact on long flows is left for future work.

6.4 Topological Asymmetries
As discussed in Section 3.3, a multipath approach must be robust

enough to handle topological asymmetries due to network compo-
nent failures or reconfigurations. We consider two types of asym-
metries: disconnected links and degraded links. These asymmetries
lead to load imbalance, even with packet scatter. In this section,
we show how ALB can adapt to the varying traffic demands and
overcome the limitations of packet-level scattering. Besides FH, we
evaluate DeTail against LPS to highlight the strength of ALB over
packet scatter (used in LPS). We assume that the routing protocol
used in the network has detected the asymmetry and converged to
provide stable multiple routes.

Disconnected Link: We evaluated the all-to-all workload with Pois-
son data retrievals on the same topology described in the previous
subsection, but with the assumption of one disconnected aggregate-

(a) 2KB (b) 8KB (c) 32KB

Figure 13: Degraded Link - Reduction by LPS and DeTail over FH in
99.9th percentile completion times of 2KB, 8KB and 32KB data retrievals

to-core link. Figure 12 presents the reduction in 99.9th percentile
completion times for both LPS and DeTail (we do not present 99th

percentile for space constraints). DeTail provided 10% to 89% re-
duction, almost an order of magnitude improvement (18ms un-
der DeTail compared to 159ms under FH for 8KB retrievals at
2000 retrievals/second). LPS’s inability to match DeTail’s improve-
ment at higher retrieval rates highlights the effectiveness of ALB at
evenly distributing load despite asymmetries in available paths.

Degraded Link: Instead of disconnecting, links can occasionally
be downgraded from 1Gbps to 100Mbps. Figure 13 presents the
results for the same workload with a degraded core-to-agg link.
DeTail provided more than 91% reduction compared to FH. This
dramatic improvement is due to ALB’s inherent capability to route
around congestion hotspots (i.e., switches connected to the degraded
link) by redirecting traffic to alternate paths. While the 99.9th per-
centile completion time for 8KB at 2000 retrievals/second (refer
to Figure 13(b)) under FH and LPS was more than 755ms, it was
37ms under DeTail. In certain cases, LPS actually performs worse
than FH (i.e., for 2KB, 500 retrievals/second).

In both fault types, the improvement in the tail comes at the cost
of increased median completion times. As we have argued earlier,
this trade off between median and 99.9th percentile performance is
appropriate for consistently meeting deadlines.

6.5 Web Workloads
Next, we evaluate how the improvements in individual data re-

trievals translate to improvements in the sequential and partition-
aggregate workflows used in page creation. Here we randomly as-
sign half the servers to be front-end servers and half to be back-end
servers. The front-end servers initiate the workflows to retrieve data
from randomly chosen back-end servers. We present the reduction
in the 99.9th percentile completion times of these workflows.

Sequential Workflows: Each sequential workflow initiated by a
front-end server consists of 10 data retrievals of size 2KB, 4KB,
8KB, 16KB, and 32KB (randomly chosen with equal probability).
As described in the Section 2, these retrievals need to be performed
one after another. Workflows arrive according to a Poisson process
at an average rate of 350 workflows/second. Figure 15 shows that
DeTail provides 71% to 76% reduction in the 99.9th percentile
completion times of individual data retrievals. In total, there is a
54% improvement in the 99.9th percentile completion time of the
sequential workflows – from 38ms to 18ms.

Partition-Aggregate Workflows: In each partition-aggregate work-
flow, a front-end server retrieves data in parallel from 10, 20, or
40 (randomly chosen with equal probability) back-end servers. As
characterized in [12], the size of individual data retrievals is set
to 2KB. These workflows arrive according to a Poisson process
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Figure 14: Long Flows
- Reduction by DeTail in
completion times of long,
low-priority flows

Figure 15: Sequential Workflows - Reduction by DeTail
over FH in 99.9th percentile completion times of sequen-
tial workflows and their individual data retrievals

Figure 16: Partition-Aggregate Workflows - Reduction by
DeTail over FH in 99.9th percentile completion times of
partition-aggregate workflows and their individual retrievals

at an average rate of 600 workflows/second. Figure 16 shows that
Detail provides 78% to 88% reduction in 99.9th percentile com-
pletion times of the workflows. Specifically, the 99.9th percentile
completion time of workflows with 40 servers was 17ms under De-
Tail, compared to 143ms under FH. This dramatic improvement is
achieved by preventing the timeouts that were experienced by over
3% of the individual data retrievals under FH.

These results demonstrate that DeTail effectively manages net-
work congestion, providing significant improvements in the perfor-
mance of distributed page creation workflows.

7. DISCUSSION
We first describe how DeTail can be applied to other switch

architectures. Next we present initial ideas about a DeTail-aware
transport protocol.

7.1 Alternate Switch Architectures
Modern datacenters increasingly employ shared-memory top-of-

rack switches [12]. In these switches, arriving packets are added to
the output queue when the forwarding decision is made. They do
not wait in input queues until the crossbar becomes available. This
makes it difficult to determine which links contribute to congestion.

We address this by associating a bitmap with every input port.
When an arriving packet is enqueued on a congested output queue,
the bit corresponding to that port is set. When the output queue
empties, the corresponding bits in the input ports are cleared. As in-
put ports with any bits set in their bitmaps are contributing to con-
gestion, this determines when we send Pause/Unpause messages.
To handle multiple priorities, we use a per-port bitmap for each.

We have output queues only report congestion for a priority if
its drain bytes have exceeded the thresholds specified earlier and
if total queue occupancy is greater than 128KB. This reduces the
likelihood of underflow in the same way that the 128KB output
queues do in the CIOQ architecture (see Section 4).

To evaluate this approach, we re-ran the Poisson all-to-all mi-
crobenchmark presented in Section 6. As before, we assume our
switches have 256KB per-port. Shared-memory architectures dy-
namically set queue occupancy thresholds. We simulated a simple
model that optimizes per-port fairness. When a switch’s memory is
exhausted, it drops packets from the queue with the highest occu-
pancy. Arriving packets may only be dropped if they are destined
for the most occupied queue. Priority is used to decide which of
an output queue’s packets to drop. We believe this is an idealized
model of the performance a shared-memory switch with the same
optimization strategy can achieve.

In Table 2, we present the reduction in 99.9th percentile data
retrieval times. Due to space constraints, we do not present 99th

percentile results. With up to 66% reduction in completion time,

500 1000 2000
size (KB) 2 8 32 2 8 32 2 8 32
reduction 17% 10% 14% 38% 34% 35% 66% 64% 66%

Table 2: Shared Memory - Reduction by DeTail in 99.9th percentile com-
pletion times for all-to-all workloads of exponentially distributed retrievals

these results show that DeTail’s approach is beneficial for shared
memory switches as well. We leave a thorough evaluation of De-
Tail’s performance with shared-memory switches for future work.

7.2 DeTail-aware transport
The transport layer protocol presented in this paper is a retrofit

of TCP NewReno. Delay-based protocols, such as TCP Vegas [15],
may be better suited in these environments. Instead of waiting for
packet drops that do not occur, they monitor increases in delay.
Increased delay is precisely the behavior our lossless interconnect
exhibits as congestion rises. We plan to investigate this approach
further in the future.

8. RELATED WORK
In this section, we discuss prior work and how it relates to De-

Tail in three areas: Internet protocols, datacenters, and HPC inter-
connects, discussing each in turn.

8.1 Internet Protocols
The Internet was initially designed as a series of independent lay-

ers [17] with a focus on placing functionality at the end-hosts [30].
This approach explicitly sacrificed performance for generality. Im-
provements to this design, in terms of TCP modifications such as
NewReno, Vegas, and SACK [15, 20, 25] and in terms of buffer
management such as RED and Fair Queuing [19, 21] were pro-
posed. All of these approaches focused on improving the notifi-
cation and response of end-hosts. Consequently, they operate at
coarse-grained timescales inappropriate for our workload.

DeTail differs from this work by taking a more agile in-network
approach that breaks the single path assumption to reduce the flow
completion time tail.

8.2 Datacenter Networks
Relevant datacenter work has focused on two areas: topologies

and traffic management protocols. Topologies such as FatTrees,
VL2, BCube, and DCell [9, 22–24] sought to increase bisection
bandwidth. Doing so necessitated increasing the number of paths
between the source and destination because increasing link speeds
was seen as impossible or prohibitively expensive.

Prior work has also focused on traffic management protocols for
datacenters. DCTCP and HULL proposed mechanisms to improve
flow completion time by reducing buffer occupancies [12, 13]. D3

sought to allocate flow resources based on application-specified

149



deadlines [33]. And, the recent industrial effort known as Data-
center Bridging extends Ethernet to support traffic from other pro-
tocols that have different link layer assumptions [2]. All of these
approaches focus on single-path mechanisms that are bound by the
performance of flow hashing.

Datacenter protocols focused on spreading load across multi-
ple paths have been proposed. Hedera performs periodic flow re-
mapping of elephant flows [10]. MPTCP takes a step further, mak-
ing TCP aware of multiple paths [29]. While these approaches pro-
vide multipath support, they operate at timescales that are too coarse-
grained to improve the short flow completion time tail.

8.3 HPC Interconnects
DeTail borrows some ideas from HPC interconnects. Credit-based

flow control has been extensively studied and is often deployed to
create lossless fabrics [8]. Adaptive load balancing algorithms such
as UGAL and PAR have also been proposed [8]. To the best of our
knowledge, these mechanisms have not been evaluated for web-
facing datacenter networks focused on reducing the flow comple-
tion tail.

A commodity HPC interconnect, Infiniband, has made its way
into datacenter networks [5]. While Infiniband provides a priority-
aware lossless interconnect, it does not perform Adaptive Load Bal-
ancing (ALB). Without ALB, hotspots can occur, leading a subset
of flows to hit the long tail. Host-based approaches to performing
load-balancing, such as [32] have been proposed. But these ap-
proaches are limited because they are not sufficiently agile.

9. CONCLUSION
In this paper, we presented DeTail, an approach for reducing

the tail of completion times of the short, latency-sensitive flows
critical for page creation. DeTail employs cross-layer, in-network
mechanisms to reduce packet losses and retransmissions, prioritize
latency-sensitive flows, and evenly balance traffic across multiple
paths. By making its flow completion statistics robust to conges-
tion, DeTail can reduce 99.9th percentile flow completion times by
over 50% for many workloads.

DeTail’s approach will likely achieve significant improvements
in the tail of flow completion times for the foreseeable future. In-
creases in network bandwidth are unlikely to be sufficient. Buffers
will drain faster, but they will also fill up more quickly, ultimately
causing the packet losses and retransmissions that lead to long tails.
Prioritization will continue to be important as background flows
will likely remain the dominant fraction of traffic. And load imbal-
ances due to topological asymmetries will continue to create hot-
spots. By addressing these issues, DeTail enables web sites to de-
liver richer content while still meeting interactivity deadlines.
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