
Appeared in 7th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’10)

Experiences with CoralCDN: A Five-Year Operational View

Michael J. Freedman
Princeton University

Abstract
CoralCDN is a self-organizing web content distribution
network (CDN). Publishing through CoralCDN is as sim-
ple as making a small change to a URL’s hostname; a
decentralized DNS layer transparently directs browsers to
nearby participating cache nodes, which in turn cooperate
to minimize load on the origin webserver. CoralCDN has
been publicly available on PlanetLab since March 2004,
accounting for the majority of its bandwidth and serving
requests for several million users (client IPs) per day. This
paper describes CoralCDN’s usage scenarios and a num-
ber of experiences drawn from its multi-year deployment.
These lessons range from the specific to the general, touch-
ing on the Web (APIs, naming, and security), CDNs (ro-
bustness and resource management), and virtualized host-
ing (visibility and control). We identify design aspects and
changes that helped CoralCDN succeed, yet also those that
proved wrong for its current environment.

1 Introduction
The goal of CoralCDN was to make desired web content
available to everybody, regardless of the publisher’s own
resources or dedicated hosting services. To do so, Coral-
CDN provides an open, self-organizing web content distri-
bution network (CDN) that any publisher is free to use,
without any prior registration, authorization, or special
configuration. Publishing through CoralCDN is as simple
as appending a suffix to a URL’s hostname, e.g., http:/
/example.com.nyud.net/. This URL modification
may be done by clients, origin servers, or third parties that
link to these domains. Clients accessing such Coralized
URLs are transparently directed by CoralCDN’s network
of DNS servers to nearby participating proxies. These
proxies, in turn, coordinate to serve content and thus min-
imize load on origin servers.

CoralCDN was designed to automatically and scalably
handle sudden spikes in traffic for new content [14]. It
can efficiently discover cached content anywhere in its net-
work, and it dynamically replicates content in proportion
to its popularity. Both techniques help minimize origin re-
quests and satisfy changing traffic demands.

While originally designed for decentralized and unman-
aged settings, CoralCDN was deployed on the PlanetLab
research network [27] in March 2004, given PlanetLab’s

convenience and availability. CoralCDN has since re-
mained publicly available for more than five years at hun-
dreds of PlanetLab sites world-wide. Accounting for a ma-
jority of public PlanetLab traffic and users, CoralCDN typ-
ically serves several terabytes of data per day, in response
to tens of millions of HTTP requests from around two mil-
lion users (unique client IP addresses).

Over the course of its deployment, we have come to
acknowledge several realities. On a positive note, Coral-
CDN’s notably simple interface led to widespread and in-
novative uses. Sites began using CoralCDN as an elas-
tic infrastructure, dynamically redirecting traffic to Coral-
CDN at times of high resource contention and pulling back
as traffic levels abated. On the flip side, fundamental parts
of CoralCDN’s design were ill-suited for its deployment
and the majority of its use. If one were to consider the var-
ious reasons for its use—for resurrecting long-unavailable
sites, supporting random surfing, distributing popular con-
tent, and mitigating flash crowds—CoralCDN’s design is
insufficient for the first, unnecessary for the second, and
overkill for the third, at least given its current deployment.
But diverse and unanticipated use is unavoidable for an
open system, yet openness is a necessary design choice for
handling the final flash-crowd scenario.

This paper provides a retrospective of our experience
building and operating CoralCDN over the past five years.
Our purpose is threefold. First, after summarizing Coral-
CDN’s published design [14] in Section §2, we present
data collected over the system’s production deployment
and consider its implications. Second, we discuss various
deployment challenges we encountered and describe our
preferred solutions. Some of these changes we have im-
plemented and incorporated into CoralCDN; others require
adoption by third-parties. Third, given these insights, we
revisit the problem of building a secure, open, and scalable
content distribution network. More specifically, this paper
addresses the following topics:

• The success of CoralCDN’s design given observed us-
age patterns (§3). Our verdict is mixed: A large ma-
jority of its traffic does not require any cooperative
caching at all, yet its handling of flash crowds relies
on such cooperation.

• Web security implications of CoralCDN’s open API
(§4). Through its open API, sites began leveraging
CoralCDN as an elastic resource for content distri-

1

bution. Yet this very openness exposed a number of
web security challenges. Many can be attributed to
a lack of explicitness for specifying appropriate pro-
tection domains, and they arise due to violations of
traditional security principles (such as least privilege,
complete mediation, and fail-safe defaults [33]).

• Resource management in CDNs (§5). CoralCDN
commonly faced the challenge of interacting with
oversubscribed and ill-behaved resources, both re-
mote origin servers and its own deployment platform.
Various aspects of its design react conservatively to
change and perform admission control for resources.

• Desired properties for deployment platforms (§6).
Application deployments could benefit from greater
visibility into and control over lower layers of their
platforms. Some challenges are again confounded
when information and policies cannot be expressed
explicitly between layers.

• Directions for building large-scale, cooperative
CDNs (§7). While using decentralized algo-
rithms, CoralCDN currently operates on a centrally-
administered, smaller-scale testbed of trusted servers.
We revisit the challenge of escaping this setting.

Rather than focus on CoralCDN’s self-organizing algo-
rithms, the majority of this paper analyzes CoralCDN as an
example of an open web service on a virtualized platform.
As such, the experiences we detail may have implications
to a wider audience, including those developing distributed
hash tables (DHTs) for key-value storage, CDNs or web
services for elastic provisioning, virtualized network fa-
cilities for programmable networks, or cloud computing
platforms for virtualized hosting. While many of the ob-
servations we report are neither new nor surprising in hind-
sight, many relate to mistakes, oversights, or limitations of
CoralCDN’s original design that only became apparent to
us from its deployment.

We next review CoralCDN’s architecture and protocols;
a more complete description can be found in [14]. All sys-
tem details presented after §2 were developed subsequent
to that publication. We discuss related work throughout
the paper as we touch on different aspects of CoralCDN.

2 Original CoralCDN Design
The Coral Content Distribution Network is composed of
three main parts: (1) a network of cooperative HTTP prox-
ies that handle client requests from users, (2) a network
of DNS nameservers for nyud.net that map clients to
nearby CoralCDN HTTP proxies, and (3) the underlying
Coral indexing infrastructure and clustering machinery on
which the first two applications are built. This paper con-
sistently refers to the system’s indexing layer as Coral, and
the entire content distribution system as CoralCDN.

Client
Resolver

2
1

2
5

CoralCDN
DNS Server

CoralCDN
HTTP Proxy CoralCDN

DNS Server
CoralCDN
HTTP Proxy

Coral index node Coral index node
3 6

CoralCDN
HTTP Proxy

CoralCDN
DNS Server

CoralCDN
CoralCDN

3
4

6

Coral index node

Coral index node

HTTP Proxy

Figure 1: The steps involved in serving a Coralized URL.

2.1 System overview
At a high level, the following steps occur when a client
issues a request to CoralCDN, as shown in Figure 1.

1. Resolving DNS. A client resolves a “Coralized”
domain name (e.g., of the form example.com.
nyud.net) using CoralCDN nameservers. A Coral-
CDN nameserver probes the client to determine its
round-trip-time and uses this information to deter-
mine appropriate nameservers and proxies to return.

2. Processing HTTP client requests. The client sends
an HTTP request for a Coralized URL to one of the
returned proxies. If the proxy is caching the web ob-
ject locally, it returns the object and the client is fin-
ished. Otherwise, the proxy attempts to find the ob-
ject on another CoralCDN proxy.

3. Discovering cooperative-cached content. The proxy
looks up the object’s URL in the Coral indexing layer.

4. Retrieving content. If Coral returns the address of a
node caching the object, the proxy fetches the object
from this node. Otherwise, the proxy downloads the
object from the origin server example.com.

5. Serving content to clients. The proxy stores the web
object to disk and returns it to the client browser.

6. Announcing cached content. The proxy stores a ref-
erence to itself in Coral, recording the fact that is now
caching the URL.

This section reviews the design of the Coral indexing layer
and the CDN’s proxies, as proposed in [14].

2.2 Coral indexing layer
The Coral indexing layer is closely related to the structure
and organization of distributed hash tables like Chord [34]
and Kademlia [23], with the latter serving as the basis for
its underlying algorithm. The system maps opaque keys
onto nodes by hashing their value onto a flat, semantic-free
identifier (ID) space; nodes are assigned identifiers in the
same ID space. It allows scalable key lookup (in O(log(n))
overlay hops for n-node systems), reorganizes itself upon
network membership changes, and provides robust behav-
ior against failure.

2

Compared to “traditional” DHTs, Coral introduced a
few novel techniques that were well-suited for its partic-
ular application [13]. Its key-value indexing layer was
designed with weaker consistency requirements in mind,
and its lookup structure self-organized into a locality-
optimized hierarchy of clusters of peers. After all, a client
need not discover all proxies caching a particular file, it
only needs to find several such proxies, preferably ones
nearby. Like most DHTs, Coral exposes put and get oper-
ations, to announce one’s address as caching a web object,
and to discover other proxies caching the object associated
with a particular URL, respectively. Inserted addresses are
soft-state mappings with a time-to-live (TTL) value.

Coral’s put and get operations are designed to spread
load, both within the DHT and across CoralCDN proxies.
To get the proxy addresses associated with a key k, a node
traverses the ID space with iterative RPCs, and it stops
upon finding any remote peer storing values for k. This
peer need not be the one closest to k (in terms of DHT
identifier space distance). To put a key/value pair, Coral
routes to nodes successively closer to k and stops when
finding either (1) the nodes closest to k or (2) one that is
experiencing high request rates for k and already is caching
several corresponding values (with longer-lived TTLs). It
stores the pair at the node closest to k that it managed to
reach. These processes prevent tree saturation in the DHT.

To improve locality, these routing operations are not
initially performed across the entire global overlay. In-
stead, each Coral node belongs to several distinct routing
structures called clusters. Each cluster is characterized by
a maximum desired network round-trip-time (RTT). The
system is parameterized by a fixed hierarchy of clusters
with different expected RTT thresholds. Coral’s deploy-
ment uses a three-level hierarchy, with level-0 denoting the
global cluster and level-2 the most local one. Coral em-
ploys distributed algorithms to form localized, stable clus-
ters, which we briefly return to in §5.3.

Every node belongs to one cluster at each level, as in
Figure 2. Coral queries nodes in fast clusters before those
in slower clusters. This both reduces lookup latency and
increases the chance of returning values stored at nearby
nodes, which correspond to addresses of nearby proxies.

2.3 The CoralCDN HTTP proxy
CoralCDN seeks to aggressively minimize load on origin
servers. This section summarizes how its proxies use Coral
for inter-proxy cooperation and adaptation to flash crowds.

2.3.1 Locality-optimized inter-proxy transfers

Each CoralCDN proxy keeps a local cache from which it
can immediately fulfill client requests. When a client re-
quests a non-resident URL, CoralCDN proxies attempt to
fetch web content from each other, using the Coral index-
ing layer for discovery. A proxy only contacts a URL’s

1 2 31 2 3

4

000… 111…Distance to key

None

< 80 ms

< 30 ms

Thresholds

1
2

3

4

Figure 2: Coral’s three-level hierarchical overlay structure. A node
first queries others in its level-2 cluster (the dotted rings), where
pointers reference other caching proxies within the same cluster. If a
node finds a mapping in its local cluster (after step 2), its get finishes.
Otherwise, it continues among its level-1 cluster (the solid rings), and
finally, if needed, to any node within the global level-0 system.

origin server after the Coral indexing layer provides no re-
ferrals or none of its referrals return the data.

CoralCDN’s inter-proxy transfers are optimized for lo-
cality, both from their use of parallel connections to other
proxies and by the order in which neighboring proxies are
contacted. The properties of Coral’s hierarchical index-
ing ensures that the list of proxies returned by get will be
sorted based on their cluster distance to the request initia-
tor. Thus, proxies will attempt to contact level-2 neighbors
before level-1 and level-0 proxies, respectively.

2.3.2 Rapid adaptation to flash crowds

Unlike many web proxies, CoralCDN is explicitly de-
signed for flash-crowd scenarios. If a flash crowd suddenly
arrives for a web object, proxies self-organize into a form
of multicast tree for retrieving the object. Data streams
from the proxies that started to fetch the object from the
origin server to those arriving later. This limits concurrent
object requests to the origin server upon a flash crowd.

CoralCDN provides such behavior by cut-through rout-
ing and optimistic references. First, CoralCDN’s use of
cut-through routing at each proxy helps reduce transmis-
sion time for larger files. That is, a proxy will upload por-
tions of a object as soon as they are downloaded, not wait-
ing until it receives the entire object. Second, proxies opti-
mistically announce themselves as sources of content. As
soon as a CoralCDN proxy begins receiving the first bytes
of a web object—either from the origin or another proxy—
it inserts a reference to itself into Coral with a short TTL
(30 seconds). It continually renews this short-lived refer-
ence until either it completes the download (at which time
it inserts a longer-lived reference1) or the download fails.

1The deployed system uses 2-hour TTLs for successful results (status
codes of 200, 301, 302, etc.), and 15-minute TTLs for 403, 404, and other
unsuccessful, non-transient results.

3

 0.1

 1

 10

 100

Jan’05 Jan’06 Jan’07 Jan’08 Jan’09 Jan’10

R
eq

ue
st

s
pe

r
D

ay
 (

M
ill

io
ns

) From Clients
To Upstream Proxy/Origin

Figure 3: Total HTTP requests per day during CoralCDN’s deploy-
ment. Grayed regions correspond to missing or incomplete data.

 0

 0.5

 1

 1.5

 2

 2005 2007 2009

#I
P

s
pe

r
D

ay
 (

M
ill

io
ns

)

 0

 500

 1000

 1500

 2000

 2500

 3000

 2005 2007 2009

D
at

a
S

en
t p

er
 D

ay
 (

G
B

)

Figure 4: CoralCDN usage: number of unique clients (left) and
upload volume (right) for each day during August 9–18.

2.4 Implementation and deployment
CoralCDN is composed of three stand-alone applications.
The Coral daemon provides the distributed indexing layer,
accessed over UNIX domain sockets from a simple client
library linked into applications such as CoralCDN’s HTTP
proxy and DNS server. All three are written from scratch.
Coral network communication uses Sun RPC over UDP,
while CoralCDN proxies transfer content via standard
HTTP connections. At initial publication [14], the Coral
daemon was about 14,000 lines of C++, the DNS server
2,000 LOC, and the proxy 4,000 LOC. CoralCDN’s im-
plementation has since grown to around 50,000 LOC. The
changes we later discuss help account for this increase.

CoralCDN typically runs on 300–400 PlanetLab servers
(about 70–100 of which run its DNS server), spread over
100-200 sites worldwide. It avoids Internet2-only and
commercial sites, the latter due to policy decisions that re-
strict their use for open services. CoralCDN uses no spe-
cial knowledge of these machines’ locations or connectiv-
ity (e.g., GPS coordinates, routing information, etc.). Even
though CoralCDN runs on a centrally-managed testbed,
its mechanisms remain decentralized and self-organizing.
The only use of centralization is for managing software
and configuration updates and for controlling run status.

3 Analyzing CoralCDN’s Usage
This section presents some HTTP-level data from Coral-
CDN’s deployment and considers its implications.

3.1 System traces and traffic patterns
To understand some of the HTTP traffic patterns that
CoralCDN sees, we analyzed several datasets in increasing

Unique Unique % URLs Reqs to most
Year domains URLs with 1 req popular URL
2005 7881 577K 54% 697K
2007 21555 588K 59% 410K
2009 20680 1787K 77% 1578K

Figure 5: CoralCDN traffic statistics for an arbitrary day (Aug 9).

depth. Figure 3 plots the total number of HTTP requests
that the system received each day from mid-2004 through
early 2010, showing both the number of HTTP requests
from clients, as well as the number of requests issued to
upstream CoralCDN peers or origin sites. The traces show
common request rates for much of CoralCDN’s deploy-
ment between 5 and 20 million HTTP requests per day,
with more recent rates of 40–50 million daily requests.2

We examined three time periods from these logs in more
depth, each consisting of HTTP traffic over the same nine-
day period (August 9–18) in 2005, 2007, and 2009. Coral-
CDN received 15–25M requests during each day of these
periods. Figure 4 plots the total number of unique client IP
addresses from which these requests originated (left) and
the aggregate amount of bandwidth uploaded (right). The
traces showed 1–2 million clients per day, resulting in a
few terabytes of content transferred. We will primarily use
the 2009 trace, consisting of 209M requests, in later anal-
ysis. Figure 5 provides more information about the traffic
patterns, focusing on the first day of each trace.

Figure 6 plots the distribution of requests per unique
URL. We see that the number of requests per URL follows
a Zipf-like distribution, as common among web caching
and proxy networks [5]. Certain URLs are very popular—
the so-called “head” of the distribution—such as the most
popular one in the Aug-9-2009 trace, which received al-
most 1.6M requests itself. A large number of URLs—the
distribution’s “heavy tail”—receive only a single request.

The datasets also show stability in the most popular
URLs and domains over time. In all three datasets, the
most popular URL retained that ranking across all nine
days. In fact, this URL in the 2007 and 2009 traces be-
longed to the same domain: a site that uses CoralCDN to
distribute rule-set updates for the popular Firefox AdBlock
browser extension. Exploring this further, Figure 7 uses
the 2009 trace to plot the request rate per day for the most
popular domains (taking the union of each day’s most pop-
ular five domains resulted in nine unique domains). We see
that six of the nine domains had stable traffic patterns—
they were long-term CoralCDN “customers”—while three
varied between two and six orders of magnitude per day.
The traffic patterns that we see in these two figures have
design implications, which we discuss next.

2The peak of 120M requests on August 21, 2008 corresponds to a
short-lived experiment of an academic research project using CoralCDN
as a key-value store [15].

4

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000 100000 1e+06

R
eq

ue
st

s
pe

r
U

R
L

Unique URLs by Popularity

Aug-9-2005
Aug-9-2007
Aug-9-2009

Figure 6: Total requests per unique URL.

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 1 2 3 4 5 6 7 8 9

R
eq

ue
st

s
pe

r
do

m
ai

n

Time (Days)

Figure 7: Requests per top-5 domain over time (Aug 9-18, 2009).

3.2 Implications of usage scenarios
For CoralCDN to help under-provisioned websites survive
unexpected traffic spikes, it does not require any prior reg-
istration or authorization. Yet while such openness is nec-
essary to enable even unmanaged websites to survive flash
crowds, it comes at a cost: CoralCDN is used in a variety
of ways that differ from this more narrow goal. This sec-
tion considers how well CoralCDN’s design is suited for
its four main usage scenarios:

1. Resurrecting old content: Anecdotally, some clients
attempt to use CoralCDN for long-term durability.
One can download browser plugins that link to both
CoralCDN and archive.org as potential sources
of content when origin servers are unavailable.

2. Accessing unpopular content: CoralCDN’s request
distribution shows a heavy tail of unpopular URLs.
Servers may Coralize URLs that few visit. And some
clients use CoralCDN as a more traditional proxy,
for (presumed) anonymity, censorship or filtering cir-
cumvention [32], or automated crawling.

3. Serving long-term popular content: Most requests
are for a small set of popular objects. These objects,
already widely cached across the network, belong to
the stable set of customer domains that effectively use
CoralCDN as a free, long-term CDN provider.

4. Surviving flash crowds to content: Finally, Coral-
CDN is used for its stated goal of enabling underpro-
visioned websites to withstand transient load spikes.
Popular portals regularly link to Coralized URLs, and
users post links in comments. Some sites even adopt
dynamic and programmatic mechanisms to redirect
requests to CoralCDN, based on observed load and
request referrers. We discuss this further in §4.1.

Unfortunately, CoralCDN’s design is not well-suited for
the first three use cases.

Top URLs Total Size (MB) % of Total Reqs
0.01% 14 49.1%

0.1% 157 71.8%
1% 3744 84.8%

10% 28734 92.2%

Figure 8: CoralCDN’s working set size for its most popular URLs
on Aug 9, 2009: A small percentage of URLs account for a large
fraction of requests, yet they require relatively little storage to cache.

Insufficient for resurrecting old content. CoralCDN is
not designed for archival storage. Proxies do not proac-
tively replicate content for durability, and unpopular con-
tent is evicted from proxy caches over time. Further, if
content has an expiry time (default is 12 hours), a proxy
will serve expired content for at most 24 hours after the
origin fails. Still, some clients attempt to use Coral-
CDN for this purpose. This underscores a design trade-
off: In stressing support for flash crowds rather than long-
term durability, CoralCDN devotes its resources to provide
availability for content being actively requested. On the
other hand, by serving expired content for a limited dura-
tion, CoralCDN can mask the temporary unavailability of
an origin, at least for content already cached in its network.

Unnecessary for unpopular content. While proxies
can discover even rare cached content, CoralCDN does not
provide any benefit by serving such unpopular content: It
does not reduce servers’ load meaningfully, and it often
results in higher client latency. As such, clients that use
CoralCDN to avoid local filtering, circumvent geographic
restrictions, or provide (minimal) anonymity may be better
served by standard open proxies (that vanilla browsers can
be configured to use) or through specialized tools such as
Tor [12]. Yet, this type of usage persists—the long tail of
Figure 6—and CoralCDN might then be better served with
a different design for such traffic, i.e., one that doesn’t re-
quire a multi-hop, wide-area DHT lookup to complete be-
fore fetching content from the origin. For example, for its
modest deployment on PlanetLab, each Coral node could
maintain connectivity to all others and simply use consis-
tent hashing for a global, one-hop DHT [17, 37]. Alter-
natively, Coral could only maintain connections with re-
gional peers and eschew global lookups, a design which
we evaluate further in §7.

Overkill for stably popular content, so far. For most
of CoralCDN’s traffic, cooperation is not needed: Figure 6
shows that a small number of URLs accounts for a large
fraction of requests. We now measure their working set
size in Figure 8, in order to determine how much storage is
required to handle this traffic. We find that the most popu-
lar 0.01% of URLs account for more than 49% of the total
requests to CoralCDN, yet require only 14 MB of storage.
Each proxy has a 3.0 GB disk cache, managed using an
LRU eviction policy. This is sufficient for serving nearly
85% of all requests from local cache.

5

70.4% hit in local cache
12.6% returned 4xx or 5xx error code

9.9% fetched from origin site
7.1% fetched from other CoralCDN proxy
|→ 1.7% from level-0 cluster (global)
|→ 1.9% from level-1 cluster (regional)
|→ 3.6% from level-2 cluster (local)

Figure 9: CoralCDN access ratios for content during Aug 9, 2009.

These workload distributions support one aspect of
CoralCDN’s design: Content should be locally cached
by the “forward” CoralCDN proxy directly serving end-
clients, given that small to moderate size caches in these
proxies can serve a very large fraction of requests. This
differs from the traditional DHT approach of just storing
data on a small number of globally-selected proxies, so-
called “server surrogates” [8, 37].

If CoralCDN’s working set can be fully cached by each
node, we should understand how much cooperation is ac-
tually needed. Figure 9 summarizes the extent to which
proxies cooperate when handling requests. 70% of re-
quests to proxies are satisfied locally, while only 7% result
in cooperative transfers. (The high rate of error messages
is due to admission control as a means of bandwidth man-
agement, which we discuss in §5.2.) In short, at least for its
current workload and environment, only a small fraction of
CoralCDN’s traffic uses its cooperation mechanisms.

A related result about the limits of cooperative caching
had been observed earlier [38], but from the perspective of
limited improvements in client-side hit rates. This is a sig-
nificantly different goal from reducing server-side request
rates, however: Non-cooperating groups of nodes would
each individually request content from the origin.

This design trade-off comes down to the question of
how much traffic is too much for origin servers. For
moderately-provisioned origins, such as the customers of
commercial CDNs, a caching system might only rely on
local or regional cooperation. In fact, Akamai’s network
is designed precisely so: Nodes within each of its ap-
proximately 1000 clusters cooperate, but each cluster typi-
cally fetches content independently from origin sites [22].
To replicate such scenarios, Coral’s clustering algorithms
could be used to self-organize a network into local or re-
gional clusters. It could thus avoid the manual configura-
tion of Harvest [7] or colocated deployments of Akamai.

On the other hand, while cooperation is not needed for
most traffic, CoralCDN’s ability to react quickly to flash
crowds—to offload traffic from a failing or oversubscribed
origin—is precisely the scenario for which it was designed
(and commercial CDNs are not). We consider these next.

Useful for mitigating flash crowds. CoralCDN’s traces
regularly show spikes in requests to different URLs. We
find, however, that these flash crowds grow in popularity
on the order of minutes, not seconds. There is a sufficiently

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

-30 0 30 60 90 120 150 180

R
eq

ue
st

s
pe

r
m

in
ut

e

Time (minutes)

10-May-05
09:15 EST 11:56

slashdot.org referer

Figure 10: Flash crowd to a Coralized URL linked to by Slashdot.

 0

 100

 200

 300

 400

 500

 600

 0 24 48 72 96 120 144 168
R

eq
ue

st
s

pe
r

m
in

ut
e

Time (Hours)

moonbuggy.org
redditmirror.cc

 1

 10

 100

 1000

moonbuggy reddit

Figure 11: Mini-flash crowds during August 2009 trace. Each dat-
apoint represents a one-minute duration; embedded subfigures show
request rates for the tens of minutes around the onset of flash crowds.

long leading edge before traffic rises by several orders of
magnitude, which has interesting implications.

Figures 10 and 11 show the request patterns of several
flash crowds that CoralCDN experienced. The former was
to a site linked to in a Slashdot article in May 2005. After
rising, the Slashdot flash crowd lasted less than three hours
in duration and came to an abrupt conclusion (perhaps as
the story dropped off the website’s main page). The latter,
covering our August 2009 trace, shows spikes to the im-
age cache of a less popular portal (moonbuggy.org), as
well as to a well-publicized mirror for the collaboratively-
filtered reddit.com, with another attenuated spike 24
hours later. The embedded graphs in Figure 11 depict the
request rates around the onset of the traffic spike for a nar-
rower range of time. All three flash crowds show that the
initial rise took minutes.

For a more quantitative analysis of the frequency of flash
crowds, we examined the prevalence of domains that ex-
perience a large increase in their request rates from one
time period to the next. In particular, Figure 12 consid-
ers all five-second periods across the August 2009 ten-
day trace. The left graph plots a complementary cumu-
lative distribution function (CCDF) of the percentage of
domains requested in each period that experience a 10- or
100-fold rate increase. The right graph plots the percent-
age of requests accounted for by these domains that ex-
perience orders-of-magnitude (OOM) increases. Sudden

6

 0.001

 0.01

 0.1

 1

 10

 100

 1 10

P
er

ce
nt

ag
e

of
 E

po
ch

s

% Domains that changed by OOM

5s epochs
≥ 1 OOM
≥ 2 OOM

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100

P
er

ce
nt

ag
e

of
 E

po
ch

s

% Requests that changed by OOM

5s epochs
≥ 1 OOM
≥ 2 OOM

Figure 12: CCDF of extent of flash-crowd dynamics in August
2009 trace. Left graph shows percentage of domains experiencing or-
ders of magnitude (OOM) changes in request rates across five-second
epochs. Right shows % requests for which these domains account.

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

of
 E

po
ch

s

% Requests that changed by OOM

30s epochs

≥ 2 OOM
≥ 1 OOM

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

of
 E

po
ch

s

% Requests that changed by OOM

10m epochs

≥ 3 OOM
≥ 2 OOM
≥ 1 OOM

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

of
 E

po
ch

s

% Requests that changed by OOM

6h epochs

≥ 4 OOM
≥ 3 OOM
≥ 2 OOM
≥ 1 OOM

 0

 20

 40

 60

 80

 100

 0.01 0.1 1 10 100

P
er

ce
nt

ag
e

of
 E

po
ch

s

% Requests that changed by OOM

1d epochs

≥ 4 OOM
≥ 3 OOM
≥ 2 OOM
≥ 1 OOM

Figure 13: CDFs of percentage of requests accounted for by do-
mains experiencing order(s)-of-magnitude rate increases. Rate in-
creases computed across epochs of 30 seconds (top left), 10 minutes
(top right), six hours (bottom left), and one day (bottom right). Plots
start on the y-axis with zero domains having such an increase, e.g.,
28% of 30s epochs have no domains with a ≥ 1 OOM rate increase.

increases do exist, but they are rare. In 76% of 5s epochs,
no domains experienced any 10-fold increase, while in 1%
of epochs, 1.7% of domains (accounting for 12.9% of re-
quests) increased by one order-of-magnitude. Larger dy-
namism was even more rare: only in 0.006% of epochs did
there exist a domain that experienced a 100-fold increase
in request rate. No three OOM increase occurred.

To further understand the precipitousness of “flash”
crowds, Figure 13 extends this analysis across longer du-
rations.3 Among 30s epochs, 50% of epochs have at most
0.4% of domains experience a 10-fold increase in their
rates (not shown), which account for a total of 1.0% of
requests (top left). Only 0.29% of 30s epochs have any
domains with more than a 100-fold rate increase. At 10-
minute epochs, 28% of epochs have at least one domain
that experiences a two OOM rate increase, while 0.21%
have a domain with a three OOM increase. Still, these
flash crowds account for a small fraction of total requests:
Domains experiencing 100-fold increases accounted for at
least 1% of all requests in only 3.8% of 10m epochs, and
10% of requests in 0.05% of epochs.

3To avoid overcounting unpopular domains, we do not count changes
when the absolute number of requests to a domain in a given time period
is less than some minimum amount, i.e., 10 requests for 5s, 30s, and 10m
periods, and 100 requests for 6h and 1d periods.

In short, this data shows that (1) only a small fraction
of CoralCDN’s domains experience large rate increases
within short time periods, (2) those domains’ traffic ac-
counts for a small fraction of the total requests, and (3) any
rate increases very rarely occur on the order of seconds.

This moderate adoption rate avoids the need to introduce
even more aggressive content discovery algorithms. Sim-
ulated workloads in early experiments (Figure 4 of [14])
showed that under high concurrency, CoralCDN might is-
sue several redundant fetches to an origin server due to
a race-like condition in its lookup protocol. If multiple
nodes concurrently get the same key which does not yet ex-
ist in the index, all concurrent lookups can fail and multiple
nodes can contact the origin. This race condition is shared
by most applications which use a distributed hash table
(both peer-to-peer and datacenter services). But because
these traces show that the arrival of user requests happens
over a much longer time-scale than a DHT lookup, this
race condition does not pose a significant problem.

Note that it is possible to mitigate this condition. While
designing a network file system for PlanetLab that sup-
ported cooperative caching [2]—meant to quickly dis-
tribute a file in preparation for a new experiment—we
sought to minimize redundant fetches to the file server. We
extended Coral’s insert operation to provide return status
information, like test-and-set in shared-memory systems.
A single put+get both returns the first values it encoun-
tered in the DHT, as well as inserts its own values at an
appropriate location (for a new key, this would be at its
closest node). This optimization comes at a subtle cost,
however, as it now optimistically inserts a node’s identity
even before that proxy begins downloading the file! If the
origin fetch fails—a greater possibility in CoralCDN’s en-
vironment than with a managed file server—then the use of
these index entries degrades performance. Thus, after us-
ing this put+get protocol in CoralCDN for several months
during 2005, we discontinued its use.

CoralCDN’s openness permits users to quickly leverage
its resources under load, and its more complex coordina-
tion helps mitigate these flash crowds and mask temporary
server unavailability. Yet this very openness led to varied
usage, the majority of which does not require CoralCDN’s
more complex design. As we will see, this openness also
introduces other problems.

4 Lessons for the Web
CoralCDN’s naming technique provides an open API for
CDN services that can transparently work for almost any
website. Over the course of its deployment, clients and
servers have used this API to adopt CoralCDN as an elas-
tic resource for content distribution. Through completely
automated means, work can be dynamically expanded out
to use CoralCDN when websites require additional band-

7

width resources, and it can be contracted back when flash
crowds abate. In doing so, its use presaged the notion of
“surge computing” with public cloud platforms. But these
naming techniques and CoralCDN’s open design introduce
a number of web security problems, many of which are en-
gendered by a lack of explicitness for specifying protection
domains. We discuss these issues here.

4.1 An API for elastic CDN services
We believe that the central reason for CoralCDN’s adop-
tion has been its simple user interface and open design.

Interface design. While superficially obvious, Coral-
CDN’s interface design achieves several important goals:

• Transparency: Work with unmodified, unconfigured,
and unaware web clients and webservers.

• Deep caching: Retrieve embedded images or links
automatically through CoralCDN when appropriate.

• Server control: Not interfere with sites’ ability to per-
form usage logging or otherwise control how their
content is served (e.g., via CoralCDN or directly).

• Ad-friendly: Not interfere with third-party advertis-
ing, analytics, or other tools incorporated into a site.

• Forward compatible: Be amenable to future end-to-
end security mechanisms for content integrity or other
end-host deployed mechanisms.

Consider an alternative and even simpler interface de-
sign [11, 25, 29], in which one embeds origin URLs into
the HTTP path, e.g., http://nyud.net/example.
com/. Not only is HTTP parsing simpler, but nameservers
would not need to synthesize DNS records on the fly (un-
like our DNS servers for *.nyud.net). Unfortunately,
while this interface can be used to distribute individual ob-
jects, it fails on entire webpages. Any relative links would
lack the example.com prefix that a proxy needs to iden-
tify its origin. One alternative might be to try to rewrite
pages to add such links, although active content such as
javascript makes this notoriously difficult. Further, such
active rewriting impedes a site’s control over its content,
and it can interfere with analytics and advertisements.

CoralCDN’s approach, however, interprets relative links
with respect to a page’s Coralized hostname, and thus
transparently requests these objects through it as well.
But all absolute URLs continue to point to their origin
sites, and third-party advertisements and analytics remain
largely unaffected. Further, as CoralCDN does not mod-
ify content, content also may be amenable to verification
through end-to-end content signatures [30, 35].

In short, it was important for adoption that site owners
retain sufficient control over how their content is displayed
and accessed. In fact, our predicted usage scenario of sites
publishing Coralized URLs proved to be less popular than
that of dynamic redirection (which we did not foresee).

An API for dynamic adoption. CoralCDN was envi-
sioned with manual URL manipulation in mind, whether
by publishers editing HTML, users typing Coralized
URLs, or third-parties posting links. After deployment,
however, users soon began treating CoralCDN’s interface
as an API for accessing CDN services.

On the client side, these techniques included simple
browser extensions that offer “right-click” options to Cor-
alize links or that provide a link when a page appears un-
available. They ranged to more complex integration into
frameworks like Firefox’s Greasemonkey [21]. Grease-
monkey allows third-party developers to write site-specific
javascript code that, once installed by users, manipulates a
site’s HTML content (usually through the DOM interface)
whenever the user accesses it. Greasemonkey scripts for
CoralCDN include those that automatically rewrite links
on popular portals, or modify articles to include tooltips or
additional links to Coralized URLs. CoralCDN also has
been integrated directly into a number of client-side soft-
ware packages for podcasting.

The more interesting cases of CoralCDN integration are
on the server-side. One common strategy is for the origin
to receive the initial request, but respond with a 302 redi-
rect to a Coralized URL. This can work well even for flash
crowds, as the overhead of generating redirects is modest
compared to that of actually serving the content.

Generating such redirects can be done by installing a
server plugin and writing a few lines of configuration code.
For example, the complete dynamic redirection rule using
Apache’s mod_rewrite plugin is as follows.

RewriteEngine on
RewriteCond %{HTTP_USER_AGENT} !^CoralWebPrx
RewriteCond %{QUERY_STRING} !(^|&)coral-no-serve$
RewriteRule ^(.*)$ http://%{HTTP_HOST}.nyud.net

%{REQUEST_URI} [R,L]

Still, redirection rules must be crafted carefully. In this
example, the second line checks whether the client is a
CoralCDN proxy and thus should be served directly. Oth-
erwise, a redirection loop potentially could be formed (al-
though proxies prevent this from happening by checking
for potential loops and returning errors if one is found).

Amusingly, some early users during CoralCDN’s de-
ployment caused recursion in a different way—and a form
of amplification attack—by submitting URLs with a long
string of nyud.net’s appended to a domain. Before
proxies checked for such conditions, this single request
caused a proxy to issue a number of requests, stripping
the last instance of nyud.net off in each iteration.

While the above rewriting rule applies for all requests,
other sites incorporate redirection in more inventive ways,
such as only redirecting clients arriving from particular
high-traffic referrers:

RewriteCond %{HTTP_REFERER} slashdot\.org [NC,OR]
RewriteCond %{HTTP_REFERER} digg\.com [NC,OR]
RewriteCond %{HTTP_REFERER} blogspot\.com [NC]

8

And most interestingly, some sites have even combined
such tools with server plugins that monitor server load and
bandwidth use, so that their servers only start rewriting re-
quests under high load conditions.

Websites therefore used CoralCDN’s naming technique
to leverage its CDN resources in an elastic fashion. Based
on feedback from users, we expanded this “API” to give
sites some simple control over how CoralCDN should han-
dle their requests. For example, webservers can include
X-Coral-Control response headers, which are saved
as cache meta-data, to specify whether CoralCDN proxies
should “redirect home” domains that exceed their band-
width limits (per §5.2) or just return an error as is standard.

4.2 Security and resource protection
A number of security mechanisms curtailed the misuse of
CoralCDN. We highlight the design principle for each.

4.2.1 Limiting functionality

CoralCDN proxies have only ever supported GET and
HEAD requests. Many of the attacks for which “open”
proxies are infamous [24] are simply not feasible. For ex-
ample, clients cannot use CoralCDN to POST passwords
for brute-force cracking. Proxies do not support CON-
NECT requests, and thus they cannot be used to send spam
as SMTP relays or to forge “From” addresses in web mail.
Proxies do not support HTTPS and they delete all HTTP
cookies sent in headers. These proxies thus provide mini-
mal application functionality needed to achieve their goals,
which is cooperatively serving cacheable content.

CoralCDN’s design had several unexpected conse-
quences. Perhaps most interestingly, given CoralCDN’s
multi-layer caching architecture, attempting to crawl or
brute-force attack a website via CoralCDN is quite slow.
New or randomly-selected URLs first require a DHT
lookup to fail, which serves to delay requests against an
origin website, in much the same way that ssh “tarpits” de-
lay responses to failed login attempts. In addition, because
CoralCDN only handles explicit Coralized URLs, it cannot
be used by simply configuring a vanilla browser’s proxy
settings. Further, CoralCDN cannot be used to anony-
mously launch attacks, as it eschews anonymity. Proxies
use unique User-Agent strings (“CoralWebPrx”) and
include their identity in Via headers, and they report an
instigating client’s IP address to the origin server (in an
X-Forwarded-For request header). We can only sur-
mise whether the combination of these properties played
some role, but CoralCDN has seen little abuse as a plat-
form for proxying server attacks.

4.2.2 Curtailing excessive resource use

CoralCDN’s major limiting resource is aggregate band-
width. The system employs fair-sharing mechanisms to
balance bandwidth consumption between origin domains,

which we discuss further in §5.2. In addition to monitoring
server-side consumption, proxies keep a sliding window of
client-side usage. Not only do we seek to prevent exces-
sive bandwidth consumption by clients, but also an exces-
sive number of (even small) requests. These are caused
typically by server misconfigurations that result in HTTP
redirection loops (per §4.1) or by “bot” misuse as part of
a brute-force attack. While CoralCDN’s limited function-
ality mitigates such attacks, one notable brute-force login
attempt took advantage of poor security at a top-5 website,
which used cleartext passwords over GET requests.

Given both its storage and bandwidth limitations, Coral-
CDN enforces a maximum file size of 50 MB. This
has generally prevented clients from using CoralCDN for
video distribution, a pragmatic goal when deploying prox-
ies on university-hosted PlanetLab servers. We found
that sites attempted to circumvent these limits by omit-
ting Content-Length headers (on connections marked
as persistent and without chunked encoding). To ensure
compliance, proxies now monitor ongoing transfers and
halt (and blacklist) any ones that exceed their limits. This
skepticism is needed as proxies interact with potentially
untrusted servers, and thus must enforce complete media-
tion [33] to their resources (in this case, bandwidth).

4.2.3 Blacklisting domains and offloading security

We maintain a global blacklist for blocking access to spec-
ified origin domain names. Each proxy regularly fetches
and reloads the blacklist. This is a practical, but not fun-
damental, necessity, employed to prevent CoralCDN’s de-
ployment sites from restricting its use. Parties that request
blacklisting typically cite one of the following reasons.

Suspected phishing. Websites have been concerned that
CoralCDN is—or will be confused with—a phishing site.
After all, both appear to be “scraping” content and publish
a simulacrum under an alternate domain. The difference,
of course, is that CoralCDN is serving the site’s content
unmodified, yet the web lacks any protocol to authenticate
the integrity of content (as in S-HTTP [30]) in order to ver-
ify this. As SSL only authenticates identity, websites must
typically include CDNs in their trusted computing base.

Potential copyright violation. Typically following a
DMCA take-down notice, third-parties report that copy-
righted material may be found on a Coralized domain and
want it blocked. This scenario is mitigated by CoralCDN’s
explicit naming—which preserves the name of the actual
origin in question—and by its caching design. Once con-
tent is removed from an origin server, it is evicted auto-
matically from CoralCDN in at most 24 hours. This is a
natural implication of its goal of handling flash crowds,
rather than providing long-term availability.

Circumventing access-control restrictions. Some do-
mains mediate access to their website via IP-based authen-

9

tication, whereby requests from particular IP prefixes are
granted access. This practice is especially common for on-
line academic journals, in order to provide easy access for
university subscribers. But open proxies within whitelisted
prefixes would enable external clients to circumvent these
access-control restrictions.

By offloading policing to their customers, sites unnec-
essarily enlarge their security perimeter to include their
customer’s networks. This scenario is common yet unnec-
essary. Recall that CoralCDN proxies do not hide their
identities, and they include the originating client’s IP ad-
dress in standard request headers. Thus, origin sites can re-
tain IP-based authentication while verifying that a request
does not originate from outside allowed prefixes.4 Sites
are just not making use of this information, and thus fail to
properly mediate access to their protected resources.5

We did encounter some interesting attacks on our
domain-based blacklists, akin to fast-flux networks. An
adversary created dynamic DNS records for a random do-
main that pointed to the IP address of a target domain (an
online academic journal). The random domain naturally
was not blacklisted by CoralCDN, and the content was
successfully downloaded from the origin target. Such a
circumvention technique would not have worked if the ori-
gin site checked either proxy headers (as above) or even
just the Host field of the HTTP request. The Host cor-
responded to the fast-flux attack domain, not that of the
journal. Again, this security hole demonstrates a lack of
explicit verification and fail-safe defaults [33].

4.3 Security and naming conflation
We argued that CoralCDN’s naming provided a powerful
API for accessing CDN services. Unfortunately, its tech-
nique has serious implications as the Web’s Same Origin
Policy (SOP) conflates naming with security.

Browsers use domain names for three purposes. (1) Do-
mains specify where to retrieve content after they are re-
solved to IP addresses, precisely how CoralCDN enacts
its layer of indirection. (2) Domains provide a human-
readable name for what administrative entity a client is
interacting with (e.g., the “common name” identified in
SSL server certificates). (3) Domains specify what security
policies to enforce on web objects and their interactions.

The Same Origin Policy specifies how scripts and in-
structions from an origin domain can access and modify

4This does not address the corner case in which the original request
comes from an IP address within that prefix, while subsequent ones that
access the then-cached content do not. This can be handled typically by
marking content as not cacheable, or by having a proxy include headers
that explicitly specify its client population (i.e., as “open” or by IP prefix).

5One might argue that sites use a pure IP-based filtering approach
given its ability to be implemented in layer-3 front-end load balancers.
But this is not a simple firewall problem, as sites also permit access for
individual users that login with the appropriate credentials. The sites with
which we communicated implemented such authorization logic either di-
rectly in webservers or in complex, layer-7 front-end appliances.

browser state. This policy applies to manipulating cookies,
browser windows, frames, and documents, as well as to
accessing other URLs via an XmlHttpRequest. At its sim-
plest level, all of these behaviors are only allowed between
resources that belong to an identical origin domain. This
provides security against sites accessing each others’ pri-
vate information kept in cookies, for example. It also pre-
vents websites that run advertisements (such as Google’s
AdSense) from easily performing click fraud to pay them-
selves advertising dollars by programmatically “clicking”
on their site’s advertisements.6

One caveat to the strict definition of an identical ori-
gin [18] is that it provides an exception for domains
that share the same domain.tld suffix, in that www.
example.com can read and set cookies for example.
com. This has bad implications for CoralCDN’s naming
strategy. When example.com is accessed via Coral-
CDN, it can manipulate all nyud.net cookies, not just
those restricted to example.com.nyud.net.7 Con-
cerned with the potential privacy violations from this sce-
nario, CoralCDN deletes all cookies from headers.

Unfortunately, many websites now manage cookies via
javascript, so cookie information can still “leak” between
Coralized domains on the browser. This happens of-
ten without a site’s knowledge, as sites commonly use a
URL’s domain.tld without verifying its name. Thus,
if the Coralized example.com writes nyud.net cook-
ies, these will be sent to evil.com.nyud.net if the
client visits that webpage. Honest CoralCDN proxies will
delete these cookies in transit, but attackers can still cir-
cumvent this problem. For example, when a client vis-
its evil.com.nyud.net, javascript from that page can
access nyud.net cookies, then issue a XmlHttpRequest
back to evil.com.nyud.net with cookie information
embedded in the URL. Similar attacks are possible against
other uses of the SOP, especially as it relates to the abil-
ity to access and manipulate the DOM. Note that these at-
tack vectors exist even while CoralCDN operates on fully-
trusted nodes, let alone more peer-to-peer environments!

Rather than conclude that CoralCDN’s domain manipu-
lation is fundamentally flawed, we argue that better adher-
ence to security principles is needed. Websites are partially
at fault because they default access to domain.tld suf-
fixes too readily, as opposed to stripping the minimal num-
ber of domain prefixes: a violation of the principle of least
information. An alternative solution that embraces least

6This is prevented because advertisements like AdSense load in an
iframe that the parent document—the third-party website that stands to
gain revenue—cannot access, as the frame belongs to a different domain.

7Commercial CDNs like Akamai are typically not susceptible to such
attacks, as they generally use a separate top-level domains for each cus-
tomer, as opposed to CoralCDN’s suffix-based approach. Unlike Coral-
CDN’s zero configuration, however, such designs require that origins
preestablish an operational relationship with their CDN provider and
point their domain to the CDN service (e.g., by aliasing their domain
to the CDN through CNAME records in DNS).

10

privilege (and has much better incremental deployability)
would be to allow sources of content to explicitly constrain
default security policies. As one simple example, when
serving content for some origin.tld, proxies could use
HTTP response headers to specify that the most permis-
sive domain should be origin.tld.domain.tld, not
their own domain.tld. Interestingly, HTML 5, Flash,
and various javascript hacks [6] are all exploring methods
to expand explicit cross-domain communication.8 Both
proposals avow that the SOP is insufficient and should be
adapted to support more flexible control through explicit
rules; ours just views its corner cases as too permissive,
while the other views its implications as too restrictive.

5 Lessons for CDNs
Unlike most commercial counterparts, CoralCDN is de-
signed to interact with overloaded or poorly-behaving ori-
gin servers. Further, while commercial systems will grow
their networks based on expected use (and hence revenue),
the CoralCDN deployment is comprised of volunteer sites
with fixed, limited bandwidth. This section describes how
we adapted CoralCDN to satisfy these realities.

5.1 Designing for faulty origins
Given its design goals, CoralCDN needs to react to non-
crash failures at origin servers as the rule, not the excep-
tion. Thus, one design philosophy that has come to govern
CoralCDN’s behavior is that proxies should accept content
conservatively and serve results liberally.

Consider the following, fairly common, situation. A
portal runs a story that links to a third-party website, driv-
ing a sudden influx of readers to this previously unpopular
site. A user then posts a Coralized link to the third-party
site as a “comment” to the portal’s story, providing an al-
ternate means to fetch the content.

Several scenarios are possible. (1) The website’s origin
server becomes unavailable before any proxy downloads
its content. (2) CoralCDN already has a copy of the con-
tent, but requests arrive to it after the content’s expiry time
has passed. Unfortunately, subsequent HTTP requests to
the origin webserver result in failures or errors. (3) Or,
CoralCDN’s content is again expired, but subsequent re-
quests to the origin yield only partial transfers. CoralCDN
employs different mechanisms to handle these failures.

Cache negative service results (#1). CoralCDN may
be hit with a flood of requests for an inaccessible URL,
e.g., DNS resolution fails, TCP connections timeout, etc.
For these situations, proxies maintain a local negative re-
sult cache about repeated failures. Otherwise, both prox-
ies and their local DNS resolvers have experienced re-

8This is in reaction to the common practice of inserting third-party ob-
jects into a document’s namespace via <script>—and thus sacrificing
security protections—as the SOP does not permit a middle ground.

source exhaustion, given flash crowds to apparently dead
sites. (While negative result caching has also long been
part of some DNS implementations [19], it is not universal
and does not extend to TCP or application-level failures.)
While more a usability issue, CoralCDN still receives re-
quests for some Coralized URLs several years after their
origins became unavailable.

Serve stale content if origin faulty (#2). CoralCDN
seeks to avoid replacing good content with bad. As its
proxies mostly obey content expiry times specified in
HTTP headers,9 if cached content expires, proxies perform
a conditional request (If-Modified-Since) to revali-
date or update expired content. Overloaded origin servers
might fail to respond or might return some temporary error
condition (data in §7 shows this to occur in about 0.5% of
origin requests). Rather than retransmit this error, Coral-
CDN proxies return the stale content and continue to retain
it for future use (for up to 24 hours after it expires).

Prevent truncations through whole-file overwrites (#3).
Rather than not responding or returning an error, what if a
revalidation yields a truncated transfer? This is not uncom-
mon during a flash crowd, as a CoralCDN proxy will be
competing for a webserver’s resources. Rather than have
proxies lose stale yet complete versions of objects, proxies
implement whole-file overwrites in the spirit of AFS [16].
Namely, if a valid web object is already cached, the new
version is written to a temporary file. Only after the new
version completes downloading and appears valid (based
on Content-Length) will a proxy replace the old one.

These approaches are not fail-proof, limited by both se-
mantic ambiguity in status directives and inaccuracies with
their use. In terms of ambiguity, does a 403 (Forbidden)
response code signify that a publisher seeks to make the
content unavailable (permanent), or is it caused by a web-
site surpassing its daily bandwidth limits and having re-
quests rejected (temporary)? Does a 404 (File Not Found)
code indicate whether the condition is permanent (due to
a DMCA take-down notice) or temporary (from a PHP or
database error)? On the other hand, the application of sta-
tus directives can be flawed. We often found websites to
report human-readable errors in HTML body content, but
with an HTTP status code of 200 (Success). This scenario
leads CoralCDN to replace valid content with less useful
information. We hypothesize that bad defaults in scripting
languages such as PHP are partially to blame. Instead of
being fail-safe, the response code defaults to success.

Even if transient errors were properly identified, for how
long should CoralCDN serve expired content? HTTP lacks

9Proxies in our deployment are configured with a minimum ex-
piry time of some duration (five minutes), and thus do not recognize
No-Cache directives as such. Because CoralCDN does not support
cookies, SSL bridging, or POSTs, however, many of the privacy concerns
associated with caching such content are alleviated.

11

the ability to specify explicit policy for handling expired
content. Akamai defaults to a fail-safe scenario by not re-
turning stale content [22], while CoralCDN seeks to bal-
ance this goal with availability under server failures. As
opposed to only using the system-wide default of 24 hours,
CoralCDN recently enabled its users to explicitly specify
their policy through max-stale response headers.10

These examples all point to another lesson that governs
CoralCDN’s proxy design: Maintain the status quo unless
improvements are possible.

Decoupling service dependencies. A similar theme of
only improving the status quo governs CoralCDN’s man-
agement system. CoralCDN servers query a centralized
management point for a number of tasks: to update their
overall run status, to start or stop individual service compo-
nents (HTTP, DNS, DHT), to reinstall or update to a new
software version, or to learn shared secrets that provide
admission control to its DHT. Although designed for inter-
mittent connectivity, one of CoralCDN’s significant out-
ages came when the management server began misbehav-
ing and returning unexpected information. In response, we
adopted what one might call fail-same behavior that ac-
cepts updates conservatively, an application of decoupling
techniques from fault-tolerant systems. Management in-
formation is stored durably on servers, maintaining their
status-quo operation (even across local crashes) until well-
formed new instructions are received.

5.2 Managing oversubscribed bandwidth
While commercial CDNs and computing platforms often
respond to oversubscription by acquiring more capacity,
CoralCDN’s deployment on PlanetLab does not have that
luxury. Instead, the service must manage its bandwidth
consumption within prescribed limits. This adoption of
bandwidth limits was spurred on by administrative de-
mands from its deployment sites. Following the Asian
tsunami of December 2004, and with YouTube yet to be
created, CoralCDN distributed large quantities of amateur
videos of the natural disaster. With no bandwidth restric-
tions on PlanetLab at the time, CoralCDN’s network traf-
fic to the public Internet quickly spiked. PlanetLab sites
threatened to pull their servers off the network if such
use could not be curtailed. It was agreed that CoralCDN
should restrict its usage to approximately 10 GB per day
per server (i.e., per PlanetLab sliver).

Several design options exist for limiting bandwidth con-
sumption. A proxy could simply shut down after exceed-
ing a configured daily capacity (as supported by Tor [12]).
Or it could rate-limit its traffic to prevent transient conges-
tion (as done by BitTorrent and Tor). But as CoralCDN

10HTTP/1.1 supports max-stale request headers, although we are not
aware of their use by any HTTP clients. Further, as proxies often evict
expired content from their caches, it is unclear whether such request di-
rectives can be typically satisfied.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

R
eq

ue
st

s
pe

r
D

om
ai

n

Unique Domains Ordered by Decreasing Popularity

All Responses
Forbidden Responses

Figure 14: Requests per domain and number of 403 rejections.

primarily provides a service for websites, as opposed to
clients, we chose to allocate its limited bandwidth in a way
that both preserves some notion of fairness across its cus-
tomer domains and maintains its central goal of handling
flash crowds. The technique we developed is more broadly
applicable than just PlanetLab and federated testbeds: to
P2P deployments where users run peers within resource
containers, to multi-tenant datacenters sharing resources
between their own services, or to commercial hosting en-
vironments using billing models such as 95th-%ile usage.

Providing per-domain fairness might be resource inten-
sive or difficult in the general case, given that CoralCDN
interacts with 10,000s of domains each day, but our highly-
skewed workloads greatly simplify the necessary account-
ing. Figure 14 shows the total number of requests per
domain that CoralCDN received over one day (the solid
top line). The distribution clearly has some very pop-
ular domains—the most popular one (a Tamil clone of
YouTube) received 2.6M requests—while the remaining
distribution fell off in a Zipf-like manner. (Note that Fig-
ure 6 was in terms of unique URLs, not unique domains.)
Given that CoralCDN’s traffic is dominated by a limited
number of domains, its mechanisms can serve mainly to
reject requests for (i.e., perform admission control on)
these bandwidth hogs. Still, CoralCDN should differenti-
ate between peak limits and steady-state behavior to allow
for flash crowds or changing traffic patterns.

To achieve these aims, each CoralCDN proxy imple-
ments an algorithm that attempts to simultaneously (1)
provide a hard-upper limit on peak traffic per hour (con-
figured to 1000 MB per hour per proxy), (2) bound the
expected total traffic per epoch in steady state (400 MB
per hour per proxy), and (3) bound the steady-state limit
per domain. As setting this last limit statically—such as
1/k-th of the total traffic if there are k popular domains—
would lead to good fairness but poor utilization (given the
non-uniform distribution across domains), we dynamically
adjust this last traffic limit to balance this trade-off.

During each hour-long epoch, a proxy records the total
number of bytes transmitted for each domain. It also cal-
culates domains’ average bandwidth as an exponentially-
weighted moving average (attenuated over one week), as
well as the total average consumption across all domains.
This long attenuation period provides long-term fairness—

12

and most consumption is long-term, as shown in Fig-
ure 7—but also emphasizes support for short-term flash
crowds. Across epochs, bandwidth usage is only tracked,
and durably stored, for the top-100 domains. If a domain
is not currently one of the top-100 bandwidth consumers,
its historical average bandwidth is set to zero (providing
additional leeway to sites experiencing flash crowds).

When a requested domain is over its hourly budget (case
3 above), CoralCDN proxies respond with 403 (Forbidden)
messages. If instead the proxy is over its peak or steady-
state limit calculated over all domains (cases 1 or 2 above),
then the proxy redirects the client back to the origin site,
and the proxy temporarily makes itself unavailable for new
client requests, which would be rejected anyway.11

By applying these mechanisms, CoralCDN reduces its
bandwidth consumption to manageable levels. While its
demand sometimes exceeds 10 TBs per day (aggregate
across all proxies), its actual HTTP traffic remains steady
at about 2 TB per day after rejecting a significant number
of requests. The scatter plot in Figure 14 shows the num-
ber of requests resulting in 403 responses per domain, most
due to these admission control mechanisms. We see how
variances in domains’ object sizes yield different rejection
rates. The second-most popular domain serves mostly im-
ages smaller than 10 KB and experiences a rejection rate of
3.3%. Yet the videos of the third-most popular domain—
user-contributed screensavers of fractal flames—are typi-
cally 5 MB in size, leading to an 89% rejection rate.

Note that we could significantly curtail the use of Coral-
CDN as a long-term CDN provider (see §3.2) through sim-
ple changes to these configuration settings. A low steady-
state limit per domain, coupled with a greater weight on
a domain’s historic averages, devotes resources to flash-
crowd relief at the exclusion of long-term consumption.

Admittedly, CoralCDN’s approach penalizes an origin
site with more regional access patterns. Bandwidth ac-
counting and admission control is performed indepen-
dently on each node, reflecting CoralCDN’s lack of cen-
tralization. By not sharing information between nodes
(provided that DNS resolution preserves locality), a site
with regional interest can be throttled before it reaches its
fair share of global capacity. While this does not pose
an operational problem for CoralCDN, it is an interest-
ing research problem to perform (approximate) accounting
across the network that is both decentralized and scalable.
Distributed Rate Limiting [28] considered a related prob-
lem, but focused on instantaneous limits (e.g., Mbps) in-
stead of long-term aggregate volumes and gossiped state
that is linear in both the number of domains and nodes.

11If clients are redirected back to the origin, a proxy appends the query-
string coral-no-serve on the location URL returned to the client.
Origins that use redirection scripts with CoralCDN check for this string to
prevent loops, per §4.1. Although not the default, operators of some sites
preferred this redirection home even if their domain was to blame (a pol-
icy they can specify through a X-Coral-Control response header).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.0001 0.001 0.01 0.1 1 10 100

CD
F

of
 R

PC
 R

TT
s

Time (seconds)

Via level 2
Via level 1
Via level 0

 1e-05
 0.0001

 0.001
 0.01

 0.1
 1

 0.01 0.1 1 10

CCDF

Figure 15: RPC RTTs to various levels of Coral’s DHT hierarchy.

5.3 Managing performance jitter
Running on an oversubscribed deployment platform,
CoralCDN developed several techniques to better han-
dle latency variations. With PlanetLab services facing
high disk, memory, and CPU contention, and sometimes
additional traffic shaping in the kernel, applications can
face both performance jitter and prolonged delays. These
performance variations are not unique to PlanetLab, and
they have been well documented across a variety of set-
tings. For example, Google’s MapReduce [10] took run-
time adaption of cluster query processing [3] to the large-
scale, where performance variations even among homo-
geneous components required speculative re-execution of
work. More recently, studies of a MapReduce clone on
Amazon’s EC2 underscored how shared and virtualized
platforms provide new performance challenges [39].

CoralCDN saw the implications of performance vari-
ations most strikingly with its latency-sensitive self-
organization. For example, Coral’s DHT hierarchy was
based on nodes clustering by network RTTs. A node would
join a cluster provided some minimum fraction (85%) of
its members were below the specified threshold (30 ms for
level 2, 80 ms for level 1). Figure 15 shows the RTTs for
RPC between Coral nodes, broken down by levels (with
vertical lines added at 30ms, 80ms, and 1s). While the
clustering algorithms achieve their goals and local clusters
have lower RTTs, the heavy tail in all CDFs is rather strik-
ing. Fully 1% of RPCs took longer than 1 second, even
within local clusters. Coral’s use of concurrent RPCs dur-
ing DHT operations helped mask this effect.

Another lesson from CoralCDN’s deployment was the
need for stability in the face of performance variations.
This translated to the following rule in Coral. A node
would switch to a smaller (and hence less attractive) cluster
only if fewer than 70% of a cluster’s members now satisfy
its threshold, and form a singleton only if fewer than 50%
of neighbors are satisfactory. In other words, the barrier to
enter a cluster is high (85%), but once a member, it’s eas-
ier to remain. Before leveraging this form of hysteresis,
cluster oscillations were much more common, which led

13

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

9-16 9-17 9-18 9-19 9-20 9-21

D
at

a
S

en
t p

er
 D

ay
 (

G
B

)

Day

PlanetLab: All Dests
PlanetLab: Non-PL Dests

CoralCDN: HTTP

Figure 16: Comparison of PlanetLab’s accounting of all upstream
traffic, PlanetLab’s count to non-PlanetLab destinations, and Coral-
CDN’s accounting through HTTP logs.

to many stale DHT references. A related use of hystere-
sis within self-organizing systems helped improve virtual
network coordinate systems for both PlanetLab [26] and
Azureus [20], as well as failure recovery in Bamboo [31].

6 Lessons for Platforms
With the growth of virtualized hosting and cloud deploy-
ments, Internet services are increasingly running on third-
party infrastructure. Motivated by CoralCDN’s deploy-
ment on PlanetLab, we discuss some benefits from im-
proving an application’s visibility into and control over its
lower layers. We first revisit CoralCDN’s bandwidth man-
agement from the perspective of fine-grained service dif-
ferentiation, then describe tackling its fault-tolerance chal-
lenge with adequate network support.

6.1 Exposing information and expressing
preferences across layers

We described CoralCDN’s bandwidth management as self-
regulating, which works well in trusted environments. But
many resource providers would rather enforce restrictions
than assume applications behave well. Indeed, in 2006,
PlanetLab began enforcing average daily bandwidth limits
per node per service (i.e., per PlanetLab “sliver”). When
a sliver hits 80% of its limit—17.2 GB/day from each
server to the public Internet—the kernel begins enforcing
bandwidth caps (using Linux’s Hierarchical Token Bucket
scheduler) as calculated over five-minute epochs.

We now have the possibility of two levels of bandwidth
management: admission control by CoralCDN proxies and
rate limiting by the underlying hosting platform. Interest-
ingly, even though CoralCDN uses a relatively conserva-
tive limit for itself (10 GB/day per sliver), it still surpasses
the 80% mark (13.8 GB) on 5–10 servers per day (out of its
300-400 servers). The main cause of this overage is that,
while CoralCDN counts only successful HTTP responses,
its hosting platform accounts for all traffic—HTTP, DNS,
DHT RPCs, log transfers, packet headers, retransmissions,
etc.—generated by its sliver. Figure 16 shows the differ-
ence in these recorded values for the week of Sept 16,
2009. We see that kernel statistics were 50%-90% higher

than CoralCDN’s accounting. This problem of accurate
accounting is a general one, as it is difficult or expensive
to collect such data in user-space.12 And even accurate in-
formation does not prevent CoralCDN’s managed HTTP
traffic from competing for network resources with the rest
of its sliver’s unmanaged traffic.

We argue that hosting platforms should provide better
visibility and control. First, these platforms should export
greater information to higher levels, such as their current
measured resource consumption in a machine-readable
format and in real time. Second, these platforms should
allow applications to push policies into lower levels, i.e.,
an application’s explicit preferences for handling differ-
ent classes of resources. For the specific case of network
resources, the platform kernel could apply priorities on a
granularity finer that just per-sliver, akin to a form of end-
host DiffServ; CoralCDN would prioritize DNS and DHT
traffic over HTTP traffic, in turn over log maintenance.

Note that we are concerned with a different type of re-
source management than that provided by VM hypervisors
or kernel resource containers [4]. Those systems focus
on short-term resource isolation or prioritized scheduling
between applications, and typically reason about coarse-
grain VM-level resources. Our focus instead is on long-
term resource accounting. PlanetLab is not unique here;
commercial cloud-computing providers such as Amazon
and Rackspace use long-term resource accounting for
billing purposes. (In fact, Amazon just launched its Cloud-
Watch service in June 2009 to expose real-time resource
monitoring on a coarser-grain per-VM basis [1].) Thus,
providing greater visibility and control would be useful
not only for deploying applications on platforms with hard
constraints (e.g., PlanetLab), but also for managing appli-
cations on commercial platforms so as to minimize costs
(e.g., in both metered and 95th-%ile billing scenarios).

6.2 Providing support for fault-tolerance
A central reliability issue in CoralCDN is due to its boot-
strapping problem: To initially resolve a Coralized URL
with no prior knowledge of system participants, a client’s
resolver must contact one of only 10–12 CoralCDN name-
servers registered with the .net gTLD servers. If one
of these nameservers fails—each IP address represents
a static PlanetLab server—clients experience long DNS
timeouts. Thus, while CoralCDN internally detects and
reacts quickly to failure, the same rapid recovery is not
enjoyed by its primary nameservers registered externally.
And once legacy clients bind to a particular proxy’s IP
address—e.g., web browsers cache name-to-IP mapping
to prevent certain types of “rebinding” attacks on the

12In fact, even Akamai servers only use an estimate of bandwidth con-
sumption (their so-called “fully-weighted bits”) when calculating server
load [22]. Only more recently did PlanetLab expose kernel accounting.

14

Same Origin Policy [9]—CoralCDN cannot recover for
this client if that proxy fails.

While certainly observed before, CoralCDN’s reliabil-
ity challenge underscores the limits of purely application-
layer recovery, especially as it relates to bootstrapping. In
the context of DNS-based bootstrapping, several possibil-
ities exist, including (1) dynamically updating root name-
servers to reflect changes, e.g., via the rarely-supported
RFC2136 [36], (2) announcing IP anycast addresses via
BGP or OSPF, or (3) using transparent network-layer
failover between colocated nameservers (e.g., ARP spoof-
ing or VIP/DIP load balancers). IP-level recovery between
proxies has its own solutions, but most commonly rely on
colocated servers in LAN environments. None of these
suggestions are new ones, but they still present a higher
barrier to entry; PlanetLab did not have any available to it.

Deployment platforms should strive to provide or ex-
pose such network functionality to their services. Ama-
zon EC2’s launch of Elastic IP Addresses in March 2008,
for example, hid the complexity of ARP spoofing for VM
environments. The further development of such support
should be an explicit goal for future deployment platforms.

7 Conclusions and Looking Forward
Our retrospective on CoralCDN’s deployment has a rather
mixed message. We view the adoption of CoralCDN as
a successful proof-of-concept of how users can and will
leverage open APIs for CDN services. But many of its ar-
chitectural features were over-designed for its current en-
vironment and with its current workload: A much sim-
pler design could have sufficed with probably better per-
formance to boot.

That said, it is a entirely different question as to whether
CoralCDN provides a good basis for designing an Internet-
scale cooperative CDN. The service remained tied to Plan-
etLab because we desired a solution that was backwards
compatible with both unmodified clients and servers. Run-
ning on untrusted nodes seemed imprudent at best given
our inability to provide end-to-end security checks. We
have shown, however, that even running CoralCDN on
fully trusted nodes introduces some security concerns. So,
if we dropped the goal of full backwards compatibility,
what minimal changes could better support more open,
flexible infrastructure?

Naming. CoralCDN’s naming provided a layer of in-
direction for composing two loosely-coupled Internet ser-
vices. In fact, one could compose longer series of services
that each offer different functionality by simply chaining
together their domain names. While this technique would
not be safe under today’s Same Origin Policy, we showed
in §4.3 how a trusted proxy could constrain the default se-
curity policy. For a participating origin server with an un-

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

P
er

ce
nt

ag
e

fr
om

 L
ev

el
 /

O
rig

in

Time (hour-long epochs)

Origin
Level 2

Level 1
Level 0

Figure 17: Percentage of a proxy’s upstream requests satisfied by
origin and by peers at various clustering levels when regional coop-
eration is used, i.e., level-0 peers only serve as a failover from a faulty
origin. Dataset covers 10-day period from December 9–19, 2009.

-16

-8

 0

 8

 16

 0 50 100 150 200
P

er
ce

nt
ag

e
C

ha
ng

e
Time (hour-long epochs)

Origin
Level 2

Level 1
Level 0

-16

-8

 0

 8

 16

 0 1 2 3 4 5 6 7 8 9

P
er

ce
nt

ag
e

C
ha

ng
e

Time (day-long epochs)

Origin
Level 2

Level 1
Level 0

Figure 18: Change in percentage between regional cooperation pol-
icy (Figure 17) and CoralCDN’s traditional global peering. Positive
values correspond to increased hit rates in regional peering.

trusted CDN, the origin should specify (and sign) its min-
imally required domain suffix of origin.tld.*.

Content Integrity. Today’s CDNs are full-fledged mem-
bers of a website’s trusted computing base. They have free
reign to return modified content. Often, they can even pro-
grammatically read and modify any content served directly
from a customer website to its clients (either by serving
embedded <script>’s or by playing SOP tricks while
masquerading as their customer behind a DNS alias). To
provide content delivery via untrusted nodes, the natural
solution is an HTTP protocol that supports end-to-end sig-
natures for content integrity [30]. In fact, even a browser
extension would suffice to deploy such security [35].

Fine-Grain Origin Control. A tension in this paper
is between client latency and server load, underscored by
our varied usage scenarios. An appropriate strategy for
interacting with a well-provisioned server is a minimal at-
tempt at cooperation before contacting the origin. Yet, an
oversubscribed server wants its clients to make a maximal
effort at cooperation. So far, proxies have used a “one-
size-fits-all” approach, treating all origins as if they were
oversubscribed. Instead, much as they have adopted dy-
namic URL rewriting, origin domains can signal a Coral-
CDN proxy about their desired policy in-band. At a high-
level, this argues for a richer API for elastic CDN services.

To explore the effect of regional cooperation, we
changed the default lookup policy on about half the de-
ployed CoralCDN proxies since September 2009. If re-

15

 0

 20

 40

 60

 80

 100

 10 100 1000 10000

P
er

ce
nt

ag
e

of
 L

oo
ku

ps

Latency (ms)

Region-50%
Global-50%
Region-90%
Global-90%
Region-99%
Global-99%

Figure 19: CDF of median, 90th percentile, and 99th percentile
lookup latency (over all hour-long epochs of Dec 9–19, 2009), com-
paring regional and global cooperation policies. Individual lookups
were configured with a five-second timeout.

quested content is not already cached locally, these prox-
ies only perform lookups within local and regional clusters
(level 2 and 1) before contacting the origin. For proxies
operating under such a policy, Figure 17 shows the per-
centage of upstream requests that were satisfied by the
origin and at different levels of clusters. Figure 18 de-
picts the change in behavior compared to the traditional
global lookup strategy, showing that the 10–12% of re-
quests that had been satisfied by level-0 proxies shifted to
higher hit rates at both the origin and local proxies.13 This
change was associated with an order-of-magnitude latency
improvement for the Coral lookup, shown in Figure 19.
The global index still provides some benefit to the system,
however, as per Figure 17, it satisfies an average of 0.56%
of requests (stddev 0.51%) that failed over from origin
servers. In summary, system architectures like CoralCDN
can support different policies that trade-off server load for
latency, yet still mask temporary failures at origins.

While perhaps imperfectly suited for a smaller-scale
platform like PlanetLab, CoralCDN’s architecture pro-
vides interesting self-organizational and hierarchical prop-
erties. This paper discussed many of the challenges—in
security, availability, fault-tolerance, robustness, and, per-
haps most significantly, resource management—that we
needed to address during its five-year deployment. We
believe that its lessons may have wider and more lasting
implications for other systems as well.

Acknowledgments. We are grateful to David Mazières
for his significant contributions and support during the de-
sign and operation of CoralCDN. We also thank Larry Pe-
terson and the entire PlanetLab team for providing a de-
ployment platform for CoralCDN. CoralCDN was origi-
nally funded as part of Project IRIS (supported by the NSF
under Coop. Agreement #ANI-0225660) and recently un-
der NSF Award #0904860. Freedman was also supported
by an NDSEG Fellowship. More information about Coral-
CDN can be found at www.coralcdn.org.

13These graphs also show interesting diurnal patterns, related to a de-
fault expiry time of 12 hours for content.

References
[1] Amazon CloudWatch. http://aws.amazon.com/cloudwatch/, 2009.
[2] S. Annapureddy, M. J. Freedman, and D. Mazières. Shark: Scaling file servers

via cooperative caching. In NSDI, 2005.
[3] R. H. Arpaci-Dusseau. Run-time adaptation in river. ACM Trans. Computer

Systems, 21(1), 2003.
[4] G. Banga, P. Druschel, and J. Mogul. Resource containers: A new facility for

resource management in server systems. In OSDI, 1999.
[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and

Zipf-like distributions: Evidence and implications. In INFOCOM, 1999.
[6] J. Burke. Cross domain frame communication with fragment identifiers.

http://tagneto.blogspot.com/, June 6, 2006.
[7] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and K. Worrell. A

hierarchical Internet object cache. In USENIX Annual, 1996.
[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area

cooperative storage with CFS. In SOSP, 2001.
[9] D. Dean, E. W. Felten, and D. S. Wallach. Java security: from hotjava to

netscape and beyond. In Symp. Security and Privacy, 1996.
[10] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large

clusters. In OSDI, 2004.
[11] Dijjer. http://code.google.com/p/dijjer/, 2010.
[12] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation

onion router. In USENIX Security, 2004.
[13] M. J. Freedman and D. Mazières. Sloppy hashing and self-organizing clusters.

In IPTPS, 2003.
[14] M. J. Freedman, E. Freudenthal, and D. Mazières. Democratizing content

publication with Coral. In NSDI, 2004.
[15] E. Freudenthal, D. Herrera, S. Gutstein, R. Spring, and L. Longpre. Fern: An

updatable authenticated dictionary suitable for distributed caching. In MMM-
ACNS, 2007.

[16] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West. Scale and performance in a distributed file
system. ACM Trans. Computer Systems, 6(1):51–81, 1988.

[17] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R. Panigrahy.
Consistent hashing and random trees: Distributed caching protocols for re-
lieving hot spots on the World Wide Web. In STOC, 1997.

[18] D. Kristol and L. Montulli. RFC 2965: HTTP state management mechanism,
2000.

[19] A. Kumar, J. Postel, C. Neuman, P. Danzig, and S. Miller. RFC 1536: Com-
mon DNS errors and suggested fixes, 1993.

[20] J. Ledlie, P. Gardner, and M. Seltzer. Network coordinates in the wild. In
NSDI, 2007.

[21] A. Lieuallen, A. Boodman, and J. Sundstrom. Greasemonkey.
https://addons.mozilla.org/en-US/firefox/addon/748, 2010.

[22] B. Maggs. Personal communication, 2009.
[23] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer information

system based on the xor metric. In IPTPS, 2002.
[24] V. Pai, L. Wang, K. Park, R. Pang, and L. Peterson. The dark side of the web:

An open proxy’s view. In HotNets, 2003.
[25] K. Park and V. S. Pai. Scale and performance in the CoBlitz large-file distri-

bution service. In NSDI, 2006.
[26] P. Pietzuch, J. Ledlie, and M. Seltzer. Supporting network coordinates on

planetlab. In WORLDS, 2005.
[27] PlanetLab. http://www.planet-lab.org/, 2010.
[28] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. Snoeren.

Cloud control with distributed rate limiting. In SIGCOMM, 2007.
[29] RedSwoosh. http://www.akamai.com/redswoosh, 2009.
[30] E. Rescorla and A. Schiffman. RFC 2660: The secure hypertext transfer

protocol, 1999.
[31] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.

In USENIX Annual, 2004.
[32] H. Roberts, E. Zuckerman, and J. Palfrey. 2007 circumvention landscape re-

port: Methods, uses, and tools. Technical report, Berkman Center for Internet
& Society, Harvard, 2009.

[33] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proc. IEEE, 93(9), 1975.

[34] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan. Chord: A scalable peer-to-peer lookup proto-
col for Internet applications. IEEE/ACM Trans. Network., 11(1):17–32, 2003.

[35] J. Terrace, H. Laidlaw, H. E. Liu, S. Stern, and M. J. Freedman. Bringing P2P
to the Web: Security and privacy in the Firecoral network. In IPTPS, 2009.

[36] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. RFC 2136: Dynamic Updates
in the Domain Name System, 1997.

[37] L. Wang, V. Pai, and L. Peterson. The effectiveness of request redirection on
CDN robustness. In OSDI, Dec 2002.

[38] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy. On
the scale and performance of cooperative web proxy caching. In SOSP, 1999.

[39] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica. Improving
map-reduce performance in heterogeneous environments. In OSDI, 2008.

16

	Introduction
	Original CoralCDN Design
	System overview
	Coral indexing layer
	The CoralCDN HTTP proxy
	Locality-optimized inter-proxy transfers
	Rapid adaptation to flash crowds

	Implementation and deployment

	Analyzing CoralCDN's Usage
	System traces and traffic patterns
	Implications of usage scenarios

	Lessons for the Web
	An API for elastic CDN services
	Security and resource protection
	Limiting functionality
	Curtailing excessive resource use
	Blacklisting domains and offloading security

	Security and naming conflation

	Lessons for CDNs
	Designing for faulty origins
	Managing oversubscribed bandwidth
	Managing performance jitter

	Lessons for Platforms
	Exposing information and expressing preferences across layers
	Providing support for fault-tolerance

	Conclusions and Looking Forward

