Visibility

Compute which part of scene can be seen

Visibility Applications

Computer graphics

- Hidden surface removal
- Shadow computation
- Global illumination
- Occlusion culling

Visibility Applications

Computer graphics

- Hidden surface removal
- Shadow computation
- Global illumination
- Occlusion culling
Visibility Applications

Computer graphics

- Hidden surface removal
- Shadow computation
- Global illumination
- Occlusion culling

Visibility Applications

Computational Geometry

- Art galleries

Computer vision

- Object recognition
- 3D scene reconstruction
- Next best view planning

Robotics

- Motion planning
- Visibility-based pursuit-evasion
- Self-localization

Visibility Problems

Source type

- Point, line, surface, region

Result

- Exact description of visible region for each primitive, or just tell whether each primitive is visible or not

Approximation

- Approximate, exact, conservative

Timing

- Off-line, interactive
- Amortization

Outline

Hidden surface removal

- Visibility from viewpoint

Visibility Skeleton

- Visibility between scene elements

Aspect graph

- Visibility from any point in space

Outline

Hidden surface removal

- Visibility from viewpoint

Visibility Skeleton

- Visibility between scene elements

Aspect graph

- Visibility from any point in space

Hidden Surface Removal

Compute which part of every primitive can be seen from a point
Hidden Surface Removal

Occlusion by a single occluder

Hidden Surface Removal Problem

Cumulative occlusion by multiple occluders

Hidden Surface Removal Problem

Sorting according to a distance is not enough

Hidden Surface Removal Methods

- Image-space
 - Z-buffer
 - Scan-line
 - Warnock subdivision
- Object-space
 - Depth-sort
 - Weiler-Atherton
 - BSP
- Line-space
 - Ray casting

Hidden Surface Removal Methods

Sutherland

Image-space

Computation performed in the plane of the image
E.g. is triangle inside rectangle?
Usually discretized in pixels
Object-space

3D space where the scene is defined
E.g., triangle is occluded if it is inside the pyramid

Line space

Visibility expressed in terms of rays
E.g. are all rays between the eye and the triangle blocked by the rectangle?

Typical advantages and drawbacks

<table>
<thead>
<tr>
<th>Image-space</th>
<th>Object-space</th>
<th>Line space</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ Robust, easier to code, occluder fusion, can use hardware</td>
<td>+ Precision, can handle from-region visibility</td>
<td>+ Natural space, simple atomic operation (ray-casting)</td>
</tr>
<tr>
<td>- Limited to one viewpoint, aliasing, needs hardware</td>
<td>- Often robustness problems, occluder fusion is harder</td>
<td>- 4D, often requires approximation, or too complex</td>
</tr>
</tbody>
</table>

Outline

- Hidden surface removal
 - Visibility from viewpoint
- **Visibility Skeleton**
 - Visibility between scene elements
- Aspect graph
 - Visibility from any point in space

Visibility from Polygon

Umbra and Penumbra
- [Nishita et Nakamae 85, Heckbert 92, Teller 92, Lischinski et al. 93, Drettakis et Fiume 94, Stewart et Ghali 94]

Visual event

Appearance-disappearance of objects
(qualitative change of a view)
Visual event

Appearance-disappearance of objects (qualitative change of a view)

«Wedge» defined by a vertex and an edge

Type EV

Critical line

Line going through e and v

Critical lines

1D set of lines going through e and v

(1 degree of freedom)

Extremal stabbing line

1D set of lines going through e and v

(1 degree of freedom)

Extremity: extremal stabbing line (VV)

(0 degree of freedom)
Adjacent critical line set
Generated by the second edge
Same extremity ve_1e_2

Visibility skeleton
Scene
Graph in line space
Encodes adjacencies of extremal stabbing lines and critical line sets

Visibility Skeleton
Extremal stabbing line = Node
Critical line set = Arc

Visibility Skeleton
Idea:
- Graph representation of visual events
Complexity
- Memory: $O(n^2)$ in theory, n^2 observed
- Time: $O(n^2)$ in theory, $n^{2.4}$ observed
Results
- Scenes up to 1500 polygons
- 1.2 million nodes
- 32 minutes for computation
Radiosity with Visibility Skeleton

- Exact computation of form-factors
- point-polygon
- Discontinuity meshing
- scene subdivision along shadow boundaries
- also for indirect lighting
- Refinement criterion
- perceptual metric
- error estimation

492 polygons : 10 minutes 23 seconds

Outline

- Hidden surface removal
- Visibility from viewpoint
 - Visibility Skeleton
- Visibility between scene elements
 - Aspect graph
 - Visibility from any point in space

Aspect Graph

There are many possible views of any 3D object
Aspect Graph

Some produce topologically equivalent visibility solution

Qualitatively equivalent
(same aspect)

Qualitatively different
(different aspect)

Fredo Durand

Aspect Graph

Characterization of the set of possible views of an object
- [Koenderink and Van Doorn 79, Plantinga and Dyer 90, Gigus et al. 90-91, Petitjean et al. 92]

Fredo Durand

Aspect Graph

For a polygonal scene with n edges
- $O(n^3)$ visual events
- $O(n^6)$ for orthographic views
- $O(n^9)$ for perspective views

More reasonable estimate may be
- $O(n^4)$ and $O(n^6)$

Not practical to compute and store!

Fredo Durand

Summary

Object-space visibility
- Help understand the nature of visibility
- Offer insights about which algorithms will work well
- Generally difficult to code and make robust

Image-space visibility
- Usually only for visibility from a point
- Can be implemented with graphics hardware
- Usual benefits/problems of image-precision computation

Fredo Durand